Skip to main content
Virologica Sinica logoLink to Virologica Sinica
. 2013 Jan 16;28(1):3–15. doi: 10.1007/s12250-013-3294-9

An overview of the highly pathogenic H5N1 influenza virus

Jingchuan Yin 1, Shi Liu 1, Ying Zhu 1,
PMCID: PMC7090813  PMID: 23325419

Abstract

Since the first human case of H5N1 avian influenza virus infection was reported in 1997, this highly pathogenic virus has infected hundreds of people around the world and resulted in many deaths. The ability of H5N1 to cross species boundaries, and the presence of polymorphisms that enhance virulence, present challenges to developing clear strategies to prevent the pandemic spread of this highly pathogenic avian influenza (HPAI) virus. This review summarizes the current understanding of, and recent research on, the avian influenza H5N1 virus, including transmission, virulence, pathogenesis, clinical characteristics, treatment and prevention.

Keywords: Avian influenza, H5N1, Transmission, Virulence, Pathogenesis

Footnotes

Foundation items: National Natural Science Foundation of China (30979144 and 81271821).

References

  1. Abdelwhab E. M., Hafez H. M. An overview of the epidemic of highly pathogenic H5N1 avian influenza virus in Egypt: epidemiology and control challenges. Epidemiol Infect. 2011;139:647–657. doi: 10.1017/S0950268810003122. [DOI] [PubMed] [Google Scholar]
  2. Ayora-Talavera G., Shelton H., Scull M. A., Ren J., Jones I. M., Pickles R. J., Barclay W. S. Mutations in H5N1 influenza virus hemagglutinin that confer binding to human tracheal airway epithelium. PLoS One. 2009;4:e7836. doi: 10.1371/journal.pone.0007836. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Baskin C. R., Bielefeldt-Ohmann H., Tumpey T. M., Sabourin P. J., Long J. P., Garcia-Sastre A., Tolnay A. E., Albrecht R., Pyles J. A., Olson P. H., Aicher L. D., Rosenzweig E. R., Murali-Krishna K., Clark E. A., Kotur M. S., Fornek J. L., Proll S., Palermo R. E., Sabourin C. L., Katze M. G. Early and sustained innate immune response defines pathology and death in nonhuman primates infected by highly pathogenic influenza virus. Proc Natl Acad Sci U S A. 2009;106:3455–3460. doi: 10.1073/pnas.0813234106. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Beigel J. H., Farrar J., Han A. M., Hayden F. G., Hyer R., de Jong M. D., Lochindarat S., Nguyen T. K., Nguyen T. H., Tran T. H., Nicoll A., Touch S., Yuen K. Y., Writing Committee of the World Health Organization Consultation on Human Influenza A H Avian influenza A (H5N1) infection in humans. N Engl J Med. 2005;353:1374–1385. doi: 10.1056/NEJMra052211. [DOI] [PubMed] [Google Scholar]
  5. Bel M., Ocana-Macchi M., Liniger M., McCullough K. C., Matrosovich M., Summerfield A. Efficient sensing of avian influenza viruses by porcine plasmacytoid dendritic cells. Viruses. 2011;3:312–330. doi: 10.3390/v3040312. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bissel S. J., Giles B. M., Wang G., Olevian D. C., Ross T. M., Wiley C. A. Acute murine H5N1 influenza A encephalitis. Brain Pathol. 2012;22:150–158. doi: 10.1111/j.1750-3639.2011.00514.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Budimir N., Huckriede A., Meijerhof T., Boon L., Gostick E., Price D. A., Wilschut J., de Haan A. Induction of heterosubtypic cross-protection against influenza by a whole inactivated virus vaccine: the role of viral membrane fusion activity. PLoS One. 2012;7:e30898. doi: 10.1371/journal.pone.0030898. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Cameron M. J., Ran L., Xu L., Danesh A., Bermejo-Martin J. F., Cameron C. M., Muller M. P., Gold W. L., Richardson S. E., Poutanen S. M., Willey B. M., DeVries M. E., Fang Y., Seneviratne C., Bosinger S. E., Persad D., Wilkinson P., Greller L. D., Somogyi R., Humar A., Keshavjee S., Louie M., Loeb M. B., Brunton J., McGeer A. J., Canadian S. R. N., Kelvin D. J. Interferon-mediated immunopathological events are associated with atypical innate and adaptive immune responses in patients with severe acute respiratory syndrome. J Virol. 2007;81:8692–8706. doi: 10.1128/JVI.00527-07. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Cattoli G., Monne I., Fusaro A., Joannis T. M., Lombin L. H., Aly M. M., Arafa A. S., Sturm-Ramirez K. M., Couacy-Hymann E., Awuni J. A., Batawui K. B., Awoume K. A., Aplogan G. L., Sow A., Ngangnou A. C., El Nasri Hamza I. M., Gamatie D., Dauphin G., Domenech J. M., Capua I. Highly pathogenic avian influenza virus subtype H5N1 in Africa: a comprehensive phylogenetic analysis and molecular characterization of isolates. PLoS One. 2009;4:e4842. doi: 10.1371/journal.pone.0004842. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Cauthen A N, Swayne D E, Schultz-Cherry S, Perdue M L and Suarez D L. 2000. Continued circulation in China of highly pathogenic avian influenza viruses encoding the hemagglutinin gene associated with the 1997 H5N1 outbreak in poultry and humans. J Virol, 74. [DOI] [PMC free article] [PubMed]
  11. Centers for Disease ControlPrevention. Isolation of avian influenza A(H5N1) viruses from humans—Hong Kong, May–December 1997. MMWR Morb Mortal Wkly Rep. 1997;46:1204–1207. [PubMed] [Google Scholar]
  12. Chan M. C., Cheung C. Y., Chui W. H., Tsao S. W., Nicholls J. M., Chan Y. O., Chan R. W., Long H. T., Poon L. L., Guan Y., Peiris J. S. Proinflammatory cytokine responses induced by influenza A (H5N1) viruses in primary human alveolar and bronchial epithelial cells. Respir Res. 2005;6:135. doi: 10.1186/1465-9921-6-135. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Chan R. W., Yuen K. M., Yu W. C., Ho C. C., Nicholls J. M., Peiris J. S., Chan M. C. Influenza H5N1 and H1N1 virus replication and innate immune responses in bronchial epithelial cells are influenced by the state of differentiation. PLoS One. 2010;5:e8713. doi: 10.1371/journal.pone.0008713. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Chan R. W., Chan M. C., Wong A. C., Karamanska R., Dell A., Haslam S. M., Sihoe A. D., Chui W. H., Triana-Baltzer G., Li Q., Peiris J. S., Fang F., Nicholls J. M. DAS181 inhibits H5N1 influenza virus infection of human lung tissues. Antimicrob Agents Chemother. 2009;53:3935–3941. doi: 10.1128/AAC.00389-09. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Chantratita W., Sukasem C., Kaewpongsri S., Srichunrusami C., Pairoj W., Thitithanyanont A., Chaichoune K., Ratanakron P., Songserm T., Damrongwatanapokin S., Landt O. Qualitative detection of avian influenza A (H5N1) viruses: a comparative evaluation of four real-time nucleic acid amplification methods. Mol Cell Probes. 2008;22:287–293. doi: 10.1016/j.mcp.2008.06.005. [DOI] [PubMed] [Google Scholar]
  16. Chen W., Calvo P. A., Malide D., Gibbs J., Schubert U., Bacik I., Basta S., O’Neill R., Schickli J., Palese P., Henklein P., Bennink J. R., Yewdell J. W. A novel influenza A virus mitochondrial protein that induces cell death. Nat Med. 2001;7:1306–1312. doi: 10.1038/nm1201-1306. [DOI] [PubMed] [Google Scholar]
  17. Cheung C. L., Rayner J. M., Smith G. J., Wang P., Naipospos T. S., Zhang J., Yuen K. Y., Webster R. G., Peiris J. S., Guan Y., Chen H. Distribution of amantadine-resistant H5N1 avian influenza variants in Asia. J Infect Dis. 2006;193:1626–1629. doi: 10.1086/504723. [DOI] [PubMed] [Google Scholar]
  18. Chutinimitkul S., van Riel D., Munster V. J., van den Brand J. M., Rimmelzwaan G. F., Kuiken T., Osterhaus A. D., Fouchier R. A., de Wit E. In vitro assessment of attachment pattern and replication efficiency of H5N1 influenza A viruses with altered receptor specificity. J Virol. 2010;84:6825–6833. doi: 10.1128/JVI.02737-09. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Clementi N., De Marco D., Mancini N., Solforosi L., Moreno G. J., Gubareva L. V., Mishin V., Di Pietro A., Vicenzi E., Siccardi A. G., Clementi M., Burioni R. A human monoclonal antibody with neutralizing activity against highly divergent influenza subtypes. PLoS One. 2011;6:e28001. doi: 10.1371/journal.pone.0028001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Conenello G. M., Tisoncik J. R., Rosenzweig E., Varga Z. T., Palese P., Katze M. G. A single N66S mutation in the PB1-F2 protein of influenza A virus increases virulence by inhibiting the early interferon response in vivo. J Virol. 2011;85:652–662. doi: 10.1128/JVI.01987-10. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Couch R. B. Prevention and treatment of influenza. N Engl J Med. 2000;343:1778–1787. doi: 10.1056/NEJM200012143432407. [DOI] [PubMed] [Google Scholar]
  22. Das A., Spackman E., Senne D., Pedersen J., Suarez D. L. Development of an internal positive control for rapid diagnosis of avian influenza virus infections by real-time reverse transcription-PCR with lyophilized reagents. J Clin Microbiol. 2006;44:3065–3073. doi: 10.1128/JCM.00639-06. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. de Jong M. D., Hien T. T. Avian influenza A (H5N1) J Clin Virol. 2006;35:2–13. doi: 10.1016/j.jcv.2005.09.002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. de Jong M. D., Bach V. C., Phan T. Q., Vo M. H., Tran T. T., Nguyen B. H., Beld M., Le T. P., Truong H. K., Nguyen V. V., Tran T. H., Do Q. H., Farrar J. Fatal avian influenza A (H5N1) in a child presenting with diarrhea followed by coma. N Engl J Med. 2005;352:686–691. doi: 10.1056/NEJMoa044307. [DOI] [PubMed] [Google Scholar]
  25. de Jong M. D., Tran T. T., Truong H. K., Vo M. H., Smith G. J., Nguyen V. C., Bach V. C., Phan T. Q., Do Q. H., Guan Y., Peiris J. S., Tran T. H., Farrar J. Oseltamivir resistance during treatment of influenza A (H5N1) infection. N Engl J Med. 2005;353:2667–2672. doi: 10.1056/NEJMoa054512. [DOI] [PubMed] [Google Scholar]
  26. de Jong M. D., Simmons C. P., Thanh T. T., Hien V. M., Smith G. J., Chau T. N., Hoang D. M., Chau N. V., Khanh T. H., Dong V. C., Qui P. T., Cam B. V., do Ha Q., Guan Y., Peiris J. S., Chinh N. T., Hien T. T., Farrar J. Fatal outcome of human influenza A (H5N1) is associated with high viral load and hypercytokinemia. Nat Med. 2006;12:1203–1207. doi: 10.1038/nm1477. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Ding N., Chen Q., Zhang W., Ren S., Guo Y., Li Y. Structure-activity relationships of saponin derivatives: A series of entry inhibitors for highly pathogenic H5N1 influenza virus. Eur J Med Chem. 2012;53C:316–326. doi: 10.1016/j.ejmech.2012.04.022. [DOI] [PubMed] [Google Scholar]
  28. Du N., Zhou J., Lin X., Zhang Y., Yang X., Wang Y., Shu Y. Differential activation of NK cells by influenza A pseudotype H5N1 and 1918 and 2009 pandemic H1N1 viruses. J Virol. 2010;84:7822–7831. doi: 10.1128/JVI.00069-10. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Du Q. S., Wang S. Q., Chou K. C. Analogue inhibitors by modifying oseltamivir based on the crystal neuraminidase structure for treating drug-resistant H5N1 virus. Biochem Biophys Res Commun. 2007;362:525–531. doi: 10.1016/j.bbrc.2007.08.025. [DOI] [PubMed] [Google Scholar]
  30. Duan L., Bahl J., Smith G. J., Wang J., Vijaykrishna D., Zhang L. J., Zhang J. X., Li K. S., Fan X. H., Cheung C. L., Huang K., Poon L. L., Shortridge K. F., Webster R. G., Peiris J. S., Chen H., Guan Y. The development and genetic diversity of H5N1 influenza virus in China, 1996–2006. Virology. 2008;380:243–254. doi: 10.1016/j.virol.2008.07.038. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Fall I., Sanou A., Ngom G., Dieng M., Sankale A. A., Ndoye M. Strangulated umbilical hernias in children. Pediatr Surg Int. 2006;22:233–235. doi: 10.1007/s00383-006-1634-7. [DOI] [PubMed] [Google Scholar]
  32. Fang J., Hao Q., Liu L., Li Y., Wu J., Huo X., Zhu Y. Epigenetic Changes Mediated by MicroRNA miR29 Activate Cyclooxygenase 2 and Lambda-1 Interferon Production during Viral Infection. J Virol. 2011;86:1010–1020. doi: 10.1128/JVI.06169-11. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Gabriel G., Dauber B., Wolff T., Planz O., Klenk H. D., Stech J. The viral polymerase mediates adaptation of an avian influenza virus to a mammalian host. Proc Natl Acad Sci U S A. 2005;102:18590–18595. doi: 10.1073/pnas.0507415102. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Gambaryan A. S., Tuzikov A. B., Pazynina G. V., Desheva J. A., Bovin N. V., Matrosovich M. N., Klimov A. I. 6-sulfo sialyl Lewis X is the common receptor determinant recognized by H5, H6, H7 and H9 influenza viruses of terrestrial poultry. Virol J. 2008;5:85. doi: 10.1186/1743-422X-5-85. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Gao P., Watanabe S., Ito T., Goto H., Wells K., McGregor M., Cooley A. J., Kawaoka Y. Biological heterogeneity, including systemic replication in mice, of H5N1 influenza A virus isolates from humans in Hong Kong. J Virol. 1999;73:3184–3189. doi: 10.1128/jvi.73.4.3184-3189.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Gao Y., Zhang Y., Shinya K., Deng G., Jiang Y., Li Z., Guan Y., Tian G., Li Y., Shi J., Liu L., Zeng X., Bu Z., Xia X., Kawaoka Y., Chen H. Identification of amino acids in HA and PB2 critical for the transmission of H5N1 avian influenza viruses in a mammalian host. PLoS Pathog. 2009;5:e1000709. doi: 10.1371/journal.ppat.1000709. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Gill J. R., Sheng Z. M., Ely S. F., Guinee D. G., Beasley M. B., Suh J., Deshpande C., Mollura D. J., Morens D. M., Bray M., Travis W. D., Taubenberger J. K. Pulmonary pathologic findings of fatal 2009 pandemic influenza A/H1N1 viral infections. Arch Pathol Lab Med. 2010;134:235–243. doi: 10.5858/134.2.235. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Guan Y., Shortridge K. F., Krauss S., Webster R. G. Molecular characterization of H9N2 influenza viruses: were they the donors of the “internal” genes of H5N1 viruses in Hong Kong? Proc Natl Acad Sci U S A. 1999;96:9363–9367. doi: 10.1073/pnas.96.16.9363. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Guan Y., Peiris J. S., Lipatov A. S., Ellis T. M., Dyrting K. C., Krauss S., Zhang L. J., Webster R. G., Shortridge K. F. Emergence of multiple genotypes of H5N1 avian influenza viruses in Hong Kong SAR. Proc Natl Acad Sci U S A. 2002;99:8950–8955. doi: 10.1073/pnas.132268999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Gutierrez R. A., Sorn S., Nicholls J. M., Buchy P. Eurasian Tree Sparrows, risk for H5N1 virus spread and human contamination through Buddhist ritual: an experimental approach. PLoS One. 2011;6:e28609. doi: 10.1371/journal.pone.0028609. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Hale B. G., Kerry P. S., Jackson D., Precious B. L., Gray A., Killip M. J., Randall R. E., Russell R. J. Structural insights into phosphoinositide 3-kinase activation by the influenza A virus NS1 protein. Proc Natl Acad Sci U S A. 2010;107:1954–1959. doi: 10.1073/pnas.0910715107. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Harvey R., Wheeler J. X., Wallis C. L., Robertson J. S., Engelhardt O. G. Quantitation of haemagglutinin in H5N1 influenza viruses reveals low haemagglutinin content of vaccine virus NIBRG-14 (H5N1) Vaccine. 2008;26:6550–6554. doi: 10.1016/j.vaccine.2008.09.050. [DOI] [PubMed] [Google Scholar]
  43. Haye K., Burmakina S., Moran T., Garcia-Sastre A., Fernandez-Sesma A. The NS1 protein of a human influenza virus inhibits type I interferon production and the induction of antiviral responses in primary human dendritic and respiratory epithelial cells. J Virol. 2009;83:6849–6862. doi: 10.1128/JVI.02323-08. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Hoelscher M. A., Garg S., Bangari D. S., Belser J. A., Lu X., Stephenson I., Bright R. A., Katz J. M., Mittal S. K., Sambhara S. Development of adenoviral-vector-based pandemic influenza vaccine against antigenically distinct human H5N1 strains in mice. Lancet. 2006;367:475–481. doi: 10.1016/S0140-6736(06)68076-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Hoffmann E., Stech J., Leneva I., Krauss S., Scholtissek C., Chin P. S., Peiris M., Shortridge K. F., Webster R. G. Characterization of the influenza A virus gene pool in avian species in southern China: was H6N1 a derivative or a precursor of H5N1? J Virol. 2000;74:6309–6315. doi: 10.1128/JVI.74.14.6309-6315.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Hsieh S. M., Chang S. C. Insufficient perforin expression in CD8+ T cells in response to hemagglutinin from avian influenza (H5N1) virus. J Immunol. 2006;176:4530–4533. doi: 10.4049/jimmunol.176.8.4530. [DOI] [PubMed] [Google Scholar]
  47. Hui D. S. Review of clinical symptoms and spectrum in humans with influenza A/H5N1 infection. Respirology. 2008;13(Suppl1):S10–13. doi: 10.1111/j.1440-1843.2008.01247.x. [DOI] [PubMed] [Google Scholar]
  48. Imai H., Shinya K., Takano R., Kiso M., Muramoto Y., Sakabe S., Murakami S., Ito M., Yamada S., Le M. T., Nidom C. A., Sakai-Tagawa Y., Takahashi K., Omori Y., Noda T., Shimojima M., Kakugawa S., Goto H., Iwatsuki-Horimoto K., Horimoto T., Kawaoka Y. The HA and NS genes of human H5N1 influenza A virus contribute to high virulence in ferrets. PLoS Pathog. 2010;6:e1001106. doi: 10.1371/journal.ppat.1001106. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Ito T., Couceiro J. N., Kelm S., Baum L. G., Krauss S., Castrucci M. R., Donatelli I., Kida H., Paulson J. C., Webster R. G., Kawaoka Y. Molecular basis for the generation in pigs of influenza A viruses with pandemic potential. J Virol. 1998;72:7367–7373. doi: 10.1128/jvi.72.9.7367-7373.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Jackson D., Hossain M. J., Hickman D., Perez D. R., Lamb R. A. A new influenza virus virulence determinant: the NS1 protein four C-terminal residues modulate pathogenicity. Proc Natl Acad Sci U S A. 2008;105:4381–4386. doi: 10.1073/pnas.0800482105. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Jang H., Boltz D., Sturm-Ramirez K., Shepherd K. R., Jiao Y., Webster R., Smeyne R. J. Highly pathogenic H5N1 influenza virus can enter the central nervous system and induce neuroinflammation and neurodegeneration. Proc Natl Acad Sci U S A. 2009;106:14063–14068. doi: 10.1073/pnas.0900096106. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Jia D., Rahbar R., Chan R. W., Lee S. M., Chan M. C., Wang B. X., Baker D. P., Sun B., Peiris J. S., Nicholls J. M., Fish E. N. Influenza virus non-structural protein 1 (NS1) disrupts interferon signaling. PLoS One. 2010;5:e13927. doi: 10.1371/journal.pone.0013927. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Kandun I. N., Tresnaningsih E., Purba W. H., Lee V., Samaan G., Harun S., Soni E., Septiawati C., Setiawati T., Sariwati E., Wandra T. Factors associated with case fatality of human H5N1 virus infections in Indonesia: a case series. Lancet. 2008;372:744–749. doi: 10.1016/S0140-6736(08)61125-3. [DOI] [PubMed] [Google Scholar]
  54. Kimble B., Nieto G. R., Perez D. R. Characterization of influenza virus sialic acid receptors in minor poultry species. Virol J. 2010;7:365. doi: 10.1186/1743-422X-7-365. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Kongchanagul A., Suptawiwat O., Boonarkart C., Kitphati R., Puthavathana P., Uiprasertkul M., Auewarakul P. Decreased expression of surfactant protein D mRNA in human lungs in fatal cases of H5N1 avian influenza. J Med Virol. 2011;83:1410–1417. doi: 10.1002/jmv.22105. [DOI] [PubMed] [Google Scholar]
  56. Kuiken T., van den Brand J., van Riel D., Pantin-Jackwood M., Swayne D. E. Comparative pathology of select agent influenza a virus infections. Vet Pathol. 2010;47:893–914. doi: 10.1177/0300985810378651. [DOI] [PubMed] [Google Scholar]
  57. Le Q. M., Kiso M., Someya K., Sakai Y. T., Nguyen T. H., Nguyen K. H., Pham N. D., Ngyen H. H., Yamada S., Muramoto Y., Horimoto T., Takada A., Goto H., Suzuki T., Suzuki Y., Kawaoka Y. Avian flu: isolation of drug-resistant H5N1 virus. Nature. 2005;437:1108. doi: 10.1038/4371108a. [DOI] [PubMed] [Google Scholar]
  58. Lee D. C., Cheung C. Y., Law A. H., Mok C. K., Peiris M., Lau A. S. p38 mitogen-activated protein kinase-dependent hyperinduction of tumor necrosis factor alpha expression in response to avian influenza virus H5N1. J Virol. 2005;79:10147–10154. doi: 10.1128/JVI.79.16.10147-10154.2005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Lee D. C., Law A. H., Hui K., Tam A. H., Peiris J. S., Lau A. S. Interferon dysregulation and virus-induced cell death in avian influenza H5N1 virus infections. Hong Kong Med J. 2012;18Suppl2:12–16. [PubMed] [Google Scholar]
  60. Lee S. M., Gardy J. L., Cheung C. Y., Cheung T. K., Hui K. P., Ip N. Y., Guan Y., Hancock R. E., Peiris J. S. Systems-level comparison of host-responses elicited by avian H5N1 and seasonal H1N1 influenza viruses in primary human macrophages. PLoS One. 2009;4:e8072. doi: 10.1371/journal.pone.0008072. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Lei F., Shi W. Prospective of Genomics in Revealing Transmission, Reassortment and Evolution of Wildlife-Borne Avian Influenza A (H5N1) Viruses. Curr Genomics. 2011;12:466–474. doi: 10.2174/138920211797904052. [DOI] [PMC free article] [PubMed] [Google Scholar]
  62. Li C., Hatta M., Nidom C. A., Muramoto Y., Watanabe S., Neumann G., Kawaoka Y. Reassortment between avian H5N1 and human H3N2 influenza viruses creates hybrid viruses with substantial virulence. Proc Natl Acad Sci U S A. 2010;107:4687–4692. doi: 10.1073/pnas.0912807107. [DOI] [PMC free article] [PubMed] [Google Scholar]
  63. Li K. S., Guan Y., Wang J. Genesis of a highly pathogenic and potentially pandemic H5N1 Influenza virus in eastern Asia. Nature. 2004;430:209–213. doi: 10.1038/nature02746. [DOI] [PubMed] [Google Scholar]
  64. Li W., Wang G., Zhang H., Xin G., Zhang D., Zeng J., Chen X., Xu Y., Cui Y., Li K. Effects of NS1 variants of H5N1 influenza virus on interferon induction, TNFalpha response and p53 activity. Cell Mol Immunol. 2010;7:235–242. doi: 10.1038/cmi.2010.6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  65. Li W., Sun W., Liu L., Yang F., Li Y., Chen Y., Fang J., Zhang W., Wu J., Zhu Y. IL-32: a host proinflammatory factor against influenza viral replication is upregulated by aberrant epigenetic modifications during influenza A virus infection. J Immunol. 2010;185:5056–5065. doi: 10.4049/jimmunol.0902667. [DOI] [PubMed] [Google Scholar]
  66. Li W., Yang F., Liu Y., Gong R., Liu L., Feng Y., Hu P., Sun W., Hao Q., Kang L., Wu J., Zhu Y. Negative feedback regulation of IL-32 production by iNOS activation in response to dsRNA or influenza virus infection. Eur J Immunol. 2009;39:1019–1024. doi: 10.1002/eji.200838885. [DOI] [PubMed] [Google Scholar]
  67. Li W., Liu Y., Mukhtar M. M., Gong R., Pan Y., Rasool S. T., Gao Y., Kang L., Hao Q., Peng G., Chen Y., Chen X., Wu J., Zhu Y. Activation of interleukin-32 pro-inflammatory pathway in response to influenza A virus infection. PLoS One. 2008;3:e1985. doi: 10.1371/journal.pone.0001985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  68. Lipatov A. S., Andreansky S., Webby R. J., Hulse D. J., Rehg J. E., Krauss S., Perez D. R., Doherty P. C., Webster R. G., Sangster M. Y. Pathogenesis of Hong Kong H5N1 influenza virus NS gene reassortants in mice: the role of cytokines and B- and T-cell responses. J Gen Virol. 2005;86:1121–1130. doi: 10.1099/vir.0.80663-0. [DOI] [PubMed] [Google Scholar]
  69. Liu J., Xiao H., Lei F., Zhu Q., Qin K., Zhang X. W., Zhang X. L., Zhao D., Wang G., Feng Y., Ma J., Liu W., Wang J., Gao G. F. Highly pathogenic H5N1 influenza virus infection in migratory birds. Science. 2005;309:1206. doi: 10.1126/science.1115273. [DOI] [PubMed] [Google Scholar]
  70. Liu L., Cao Z., Chen J., Li R., Cao Y., Zhu C., Wu K., Wu J., Liu F., Zhu Y. Influenza A virus induces interleukin-27 through cyclooxygenase-2 and protein kinase A signaling. J Biol Chem. 2012;287:11899–11910. doi: 10.1074/jbc.M111.308064. [DOI] [PMC free article] [PubMed] [Google Scholar]
  71. Loeffelholz M. J. Avian influenza A H5N1 virus. Clin Lab Med. 2010;30:1–20. doi: 10.1016/j.cll.2009.10.005. [DOI] [PubMed] [Google Scholar]
  72. Loeffelholz M. J. Avian Influenza (H5N1) Update: Role of the Clinical Microbiology Laboratory. Labmedicine. 2011;42:291–298. [Google Scholar]
  73. Long J. X., Peng D. X., Liu Y. L., Wu Y. T., Liu X. F. Virulence of H5N1 avian influenza virus enhanced by a 15-nucleotide deletion in the viral nonstructural gene. Virus Genes. 2008;36:471–478. doi: 10.1007/s11262-007-0187-8. [DOI] [PubMed] [Google Scholar]
  74. Lowen A. C., Mubareka S., Steel J., Palese P. Influenza virus transmission is dependent on relative humidity and temperature. PLoS Pathog. 2007;3:1470–1476. doi: 10.1371/journal.ppat.0030151. [DOI] [PMC free article] [PubMed] [Google Scholar]
  75. Luke J. M., Simon G. G., Soderholm J., Errett J. S., August J. T., Gale M., Jr., Hodgson C. P., Williams J. A. Coexpressed RIG-I agonist enhances humoral immune response to influenza virus DNA vaccine. J Virol. 2011;85:1370–1383. doi: 10.1128/JVI.01250-10. [DOI] [PMC free article] [PubMed] [Google Scholar]
  76. Malaisree M., Rungrotmongkol T., Nunthaboot N., Aruksakunwong O., Intharathep P., Decha P., Sompornpisut P., Hannongbua S. Source of oseltamivir resistance in avian influenza H5N1 virus with the H274Y mutation. Amino Acids. 2009;37:725–732. doi: 10.1007/s00726-008-0201-z. [DOI] [PubMed] [Google Scholar]
  77. Manz B., Matrosovich M., Bovin N., Schwemmle M. A polymorphism in the hemagglutinin of the human isolate of a highly pathogenic H5N1 influenza virus determines organ tropism in mice. J Virol. 2010;84:8316–8321. doi: 10.1128/JVI.00850-10. [DOI] [PMC free article] [PubMed] [Google Scholar]
  78. Medina R. A., Garcia-Sastre A. Influenza A viruses: new research developments. Nat Rev Microbiol. 2011;9:590–603. doi: 10.1038/nrmicro2613. [DOI] [PMC free article] [PubMed] [Google Scholar]
  79. Mok C. K., Lee D. C., Cheung C. Y., Peiris M., Lau A. S. Differential onset of apoptosis in influenza A virus H5N1- and H1N1-infected human blood macrophages. J Gen Virol. 2007;88:1275–1280. doi: 10.1099/vir.0.82423-0. [DOI] [PubMed] [Google Scholar]
  80. Mukhtar M. M., Rasool S. T., Song D., Zhu C., Hao Q., Zhu Y., Wu J. Origin of highly pathogenic H5N1 avian influenza virus in China and genetic characterization of donor and recipient viruses. J Gen Virol. 2007;88:3094–3099. doi: 10.1099/vir.0.83129-0. [DOI] [PubMed] [Google Scholar]
  81. Munir M., Zohari S., Metreveli G., Baule C., Belak S., Berg M. Alleles A and B of non-structural protein 1 of avian influenza A viruses differentially inhibit beta interferon production in human and mink lung cells. J Gen Virol. 2011;92:2111–2121. doi: 10.1099/vir.0.031716-0. [DOI] [PubMed] [Google Scholar]
  82. Nduati R., Richardson B. A., John G., Mbori-Ngacha D., Mwatha A., Ndinya-Achola J., Bwayo J., Onyango F. E., Kreiss J. Effect of breastfeeding on mortality among HIV-1 infected women: a randomised trial. Lancet. 2001;357:1651–1655. doi: 10.1016/S0140-6736(00)04820-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  83. Ndung’u T., Sepako E., McLane M. F., Chand F., Bedi K., Gaseitsiwe S., Doualla-Bell F., Peter T., Thior I., Moyo S. M., Gilbert P. B., Novitsky V. A., Essex M. HIV-1 subtype C in vitro growth and coreceptor utilization. Virology. 2006;347:247–260. doi: 10.1016/j.virol.2005.11.047. [DOI] [PubMed] [Google Scholar]
  84. Nelson M. I., Holmes E. C. The evolution of epidemic influenza. Nat Rev Genet. 2007;8:196–205. doi: 10.1038/nrg2053. [DOI] [PubMed] [Google Scholar]
  85. Nicholls J. M., Bourne A. J., Chen H., Guan Y., Peiris J. S. Sialic acid receptor detection in the human respiratory tract: evidence for widespread distribution of potential binding sites for human and avian influenza viruses. Respir Res. 2007;8:73. doi: 10.1186/1465-9921-8-73. [DOI] [PMC free article] [PubMed] [Google Scholar]
  86. Nicholls J. M., Chan M. C., Chan W. Y., Wong H. K., Cheung C. Y., Kwong D. L., Wong M. P., Chui W. H., Poon L. L., Tsao S. W., Guan Y., Peiris J. S. Tropism of avian influenza A (H5N1) in the upper and lower respiratory tract. Nat Med. 2007;13:147–149. doi: 10.1038/nm1529. [DOI] [PubMed] [Google Scholar]
  87. Noah D. L., Hill H., Hines D., White E. L., Wolff M. C. Qualification of the hemagglutination inhibition assay in support of pandemic influenza vaccine licensure. Clin Vaccine Immunol. 2009;16:558–566. doi: 10.1128/CVI.00368-08. [DOI] [PMC free article] [PubMed] [Google Scholar]
  88. Noda T., Sagara H., Yen A., Takada A., Kida H., Cheng R. H., Kawaoka Y. Architecture of ribonucleoprotein complexes in influenza A virus particles. Nature. 2006;439:490–492. doi: 10.1038/nature04378. [DOI] [PubMed] [Google Scholar]
  89. Nolan T., Richmond P. C., Formica N. T., Hoschler K., Skeljo M. V., Stoney T., McVernon J., Hartel G., Sawlwin D. C., Bennet J., Ryan D., Basser R. L., Zambon M. C. Safety and immunogenicity of a prototype adjuvanted inactivated split-virus influenza A (H5N1) vaccine in infants and children. Vaccine. 2008;26:6383–6391. doi: 10.1016/j.vaccine.2008.08.046. [DOI] [PubMed] [Google Scholar]
  90. Ohnishi K., Takahashi Y., Kono N., Nakajima N., Mizukoshi F., Misawa S., Yamamoto T., Mitsuki Y. Y., Fu S., Hirayama N., Ohshima M., Ato M., Kageyama T., Odagiri T., Tashiro M., Kobayashi K., Itamura S., Tsunetsugu-Yokota Y. Newly established monoclonal antibodies for immunological detection of H5N1 influenza virus. Jpn J Infect Dis. 2012;65:19–27. doi: 10.7883/yoken.65.442. [DOI] [PubMed] [Google Scholar]
  91. Park A. W., Glass K. Dynamic patterns of avian and human influenza in east and southeast Asia. Lancet Infect Dis. 2007;7:543–548. doi: 10.1016/S1473-3099(07)70186-X. [DOI] [PubMed] [Google Scholar]
  92. Peiris J. S., de Jong M. D., Guan Y. Avian influenza virus (H5N1): a threat to human health. Clin Microbiol Rev. 2007;20:243–267. doi: 10.1128/CMR.00037-06. [DOI] [PMC free article] [PubMed] [Google Scholar]
  93. Peiris J. S., Hui K. P., Yen H. L. Host response to influenza virus: protection versus immunopathology. Curr Opin Immunol. 2010;22:475–481. doi: 10.1016/j.coi.2010.06.003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  94. Peiris J. S., Cheung C. Y., Leung C. Y., Nicholls J. M. Innate immune responses to influenza A H5N1: friend or foe? Trends Immunol. 2009;30:574–584. doi: 10.1016/j.it.2009.09.004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  95. Peiris M. Pathogenesis of avian flu H5N1 and SARS. Novartis Found Symp. 2006;279:56–60. doi: 10.1002/9780470035399.ch5. [DOI] [PubMed] [Google Scholar]
  96. Pfeiffer D. U., Otte M. J., Roland-Holst D., Inui K., Nguyen T., Zilberman D. Implications of global and regional patterns of highly pathogenic avian influenza virus H5N1 clades for risk management. Vet J. 2011;190:309–316. doi: 10.1016/j.tvjl.2010.12.022. [DOI] [PubMed] [Google Scholar]
  97. Qin G., Mao H., Zheng J., Sia S. F., Liu Y., Chan P. L., Lam K. T., Peiris J. S., Lau Y. L., Tu W. Phosphoantigen-expanded human gammadelta T cells display potent cytotoxicity against monocyte-derived macrophages infected with human and avian influenza viruses. J Infect Dis. 2009;200:858–865. doi: 10.1086/605413. [DOI] [PMC free article] [PubMed] [Google Scholar]
  98. Qin G., Liu Y., Zheng J., Ng I. H., Xiang Z., Lam K. T., Mao H., Li H., Peiris J. S., Lau Y. L., Tu W. Type 1 responses of human Vgamma9Vdelta2 T cells to influenza A viruses. J Virol. 2011;85:10109–10116. doi: 10.1128/JVI.05341-11. [DOI] [PMC free article] [PubMed] [Google Scholar]
  99. Ramos I., Bernal-Rubio D., Durham N., Belicha-Villanueva A., Lowen A. C., Steel J., Fernandez-Sesma A. Effects of receptor binding specificity of avian influenza virus on the human innate immune response. J Virol. 2011;85:4421–4431. doi: 10.1128/JVI.02356-10. [DOI] [PMC free article] [PubMed] [Google Scholar]
  100. Reperant L. A., van de Bildt M. W., van Amerongen G., Buehler D. M., Osterhaus A. D., Jenni-Eiermann S., Piersma T., Kuiken T. Highly pathogenic avian influenza virus H5N1 infection in a long-distance migrant shorebird under migratory and non-migratory states. PLoS One. 2011;6:e27814. doi: 10.1371/journal.pone.0027814. [DOI] [PMC free article] [PubMed] [Google Scholar]
  101. Rimmelzwaan G. F., Kuiken T., van Amerongen G., Bestebroer T. M., Fouchier R. A., Osterhaus A. D. Pathogenesis of influenza A (H5N1) virus infection in a primate model. J Virol. 2001;75:6687–6691. doi: 10.1128/JVI.75.14.6687-6691.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  102. Robb N. C., Fodor E. The accumulation of influenza A virus segment 7 spliced mRNAs is regulated by the NS1 protein. J Gen Virol. 2012;93:113–118. doi: 10.1099/vir.0.035485-0. [DOI] [PubMed] [Google Scholar]
  103. Rockman S., Brown L. Pre-pandemic and pandemic influenza vaccines. Hum Vaccin. 2010;6:792–801. doi: 10.4161/hv.6.10.12915. [DOI] [PubMed] [Google Scholar]
  104. Sambhara S., Poland G. A. H5N1 Avian influenza: preventive and therapeutic strategies against a pandemic. Annu Rev Med. 2010;61:187–198. doi: 10.1146/annurev.med.050908.132031. [DOI] [PubMed] [Google Scholar]
  105. Sandbulte M. R., Boon A. C., Webby R. J., Riberdy J. M. Analysis of cytokine secretion from human plasmacytoid dendritic cells infected with H5N1 or low-pathogenicity influenza viruses. Virology. 2008;381:22–28. doi: 10.1016/j.virol.2008.08.018. [DOI] [PMC free article] [PubMed] [Google Scholar]
  106. Seo S. H., Hoffmann E., Webster R. G. Lethal H5N1 influenza viruses escape host anti-viral cytokine responses. Nat Med. 2002;8:950–954. doi: 10.1038/nm757. [DOI] [PubMed] [Google Scholar]
  107. Shaw M., Arden N. H., Maassab H. F. New Aspect of Influenza Viruses. Clin Microbiol Rev. 1992;5:74–92. doi: 10.1128/cmr.5.1.74. [DOI] [PMC free article] [PubMed] [Google Scholar]
  108. Shu Y., Yu H., Li D. Lethal avian influenza A (H5N1) infection in a pregnant woman in Anhui Province, China. N Engl J Med. 2006;354:1421–1422. doi: 10.1056/NEJMc053524. [DOI] [PubMed] [Google Scholar]
  109. Snelgrove R. J., Godlee A., Hussell T. Airway immune homeostasis and implications for influenza-induced inflammation. Trends Immunol. 2011;32:328–334. doi: 10.1016/j.it.2011.04.006. [DOI] [PubMed] [Google Scholar]
  110. Stelzer-Braid S., Wong B., Robertson P., Lynch G. W., Laurie K., Shaw R., Barr I., Selleck P. W., Baleriola C., Escott R., Katsoulotos G., Rawlinson W. D. A commercial ELISA detects high levels of human H5 antibody but cross-reacts with influenza A antibodies. J Clin Virol. 2008;43:241–243. doi: 10.1016/j.jcv.2008.06.012. [DOI] [PubMed] [Google Scholar]
  111. Stevens J., Blixt O., Tumpey T. M., Taubenberger J. K., Paulson J. C., Wilson I. A. Structure and receptor specificity of the hemagglutinin from an H5N1 influenza virus. Science. 2006;312:404–410. doi: 10.1126/science.1124513. [DOI] [PubMed] [Google Scholar]
  112. Stewart C. R., Karpala A. J., Lowther S., Lowenthal J. W., Bean A. G. Immunostimulatory motifs enhance antiviral siRNAs targeting highly pathogenic avian influenza H5N1. PLoS One. 2011;6:7. doi: 10.1371/journal.pone.0021552. [DOI] [PMC free article] [PubMed] [Google Scholar]
  113. Suarez D. L. Avian influenza: our current understanding. Anim Health Res Rev. 2010;11:19–33. doi: 10.1017/S1466252310000095. [DOI] [PubMed] [Google Scholar]
  114. Suarez D. L., Schultz-Cherry S. Immunology of avian influenza virus: a review. Dev Comp Immunol. 2000;24:269–283. doi: 10.1016/S0145-305X(99)00078-6. [DOI] [PubMed] [Google Scholar]
  115. Subbarao E. K., London W., Murphy B. R. A single amino acid in the PB2 gene of influenza A virus is a determinant of host range. J Virol. 1993;67:1761–1764. doi: 10.1128/jvi.67.4.1761-1764.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  116. Subbarao K., Klimov A., Katz J., Regnery H., Lim W., Hall H., Perdue M., Swayne D., Bender C., Huang J., Hemphill M., Rowe T., Shaw M., Xu X., Fukuda K., Cox N. Characterization of an avian influenza A (H5N1) virus isolated from a child with a fatal respiratory illness. Science. 1998;279:393–396. doi: 10.1126/science.279.5349.393. [DOI] [PubMed] [Google Scholar]
  117. Suksatu A., Sangsawad W., Thitithanyanont A., Smittipat N., Fukuda M. M., Ubol S. Characteristics of stork feces-derived H5N1 viruses that are preferentially transmitted to primary human airway epithelial cells. Microbiol Immunol. 2009;53:675–684. doi: 10.1111/j.1348-0421.2009.00177.x. [DOI] [PubMed] [Google Scholar]
  118. Sun Y., Li C., Shu Y., Ju X., Zou Z., Wang H., Rao S., Guo F., Liu H., Nan W., Zhao Y., Yan Y., Tang J., Zhao C., Yang P., Liu K., Wang S., Lu H., Li X., Tan L., Gao R., Song J., Gao X., Tian X., Qin Y., Xu K. F., Li D., Jin N., Jiang C. Inhibition of autophagy ameliorates acute lung injury caused by avian influenza A H5N1 infection. Sci Signal. 2012;5:ra16. doi: 10.1126/scisignal.2001931. [DOI] [PubMed] [Google Scholar]
  119. Szretter K. J., Gangappa S., Lu X., Smith C., Shieh W. J., Zaki S. R., Sambhara S., Tumpey T. M., Katz J. M. Role of host cytokine responses in the pathogenesis of avian H5N1 influenza viruses in mice. J Virol. 2007;81:2736–2744. doi: 10.1128/JVI.02336-06. [DOI] [PMC free article] [PubMed] [Google Scholar]
  120. Szretter K. J., Gangappa S., Belser J. A., Zeng H., Chen H., Matsuoka Y., Sambhara S., Swayne D. E., Tumpey T. M., Katz J. M. Early control of H5N1 influenza virus replication by the type I interferon response in mice. J Virol. 2009;83:5825–5834. doi: 10.1128/JVI.02144-08. [DOI] [PMC free article] [PubMed] [Google Scholar]
  121. Tafforeau L., Chantier T., Pradezynski F., Pellet J., Mangeot P. E., Vidalain P. O., Andre P., Rabourdin-Combe C., Lotteau V. Generation and comprehensive analysis of an influenza virus polymerase cellular interaction network. J Virol. 2011;85:13010–13018. doi: 10.1128/JVI.02651-10. [DOI] [PMC free article] [PubMed] [Google Scholar]
  122. Thanh T. T., van Doorn H. R., de Jong M. D. Human H5N1 influenza: current insight into pathogenesis. Int J Biochem Cell Biol. 2008;40:2671–2674. doi: 10.1016/j.biocel.2008.05.019. [DOI] [PubMed] [Google Scholar]
  123. Thiry E., Zicola A., Addie D., Egberink H., Hartmann K., Lutz H., Poulet H., Horzinek M. C. Highly pathogenic avian influenza H5N1 virus in cats and other carnivores. Vet Microbiol. 2007;122:25–31. doi: 10.1016/j.vetmic.2006.12.021. [DOI] [PubMed] [Google Scholar]
  124. Tolnay A. E., Baskin C. R., Tumpey T. M., Sabourin P. J., Sabourin C. L., Long J. P., Pyles J. A., Albrecht R. A., Garcia-Sastre A., Katze M. G., Bielefeldt-Ohmann H. Extrapulmonary tissue responses in cynomolgus macaques (Macaca fascicularis) infected with highly pathogenic avian influenza A (H5N1) virus. Arch Virol. 2010;155:905–914. doi: 10.1007/s00705-010-0662-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  125. Tu W., Zheng J., Liu Y., Sia S. F., Liu M., Qin G., Ng I. H., Xiang Z., Lam K. T., Peiris J. S., Lau Y. L. The aminobisphosphonate pamidronate controls influenza pathogenesis by expanding a gammadelta T cell population in humanized mice. J Exp Med. 2011;208:1511–1522. doi: 10.1084/jem.20110226. [DOI] [PMC free article] [PubMed] [Google Scholar]
  126. Ungchusak K., Auewarakul P., Dowell S. F., Kitphati R., Auwanit W., Puthavathana P., Uiprasertkul M., Boonnak K., Pittayawonganon C., Cox N. J., Zaki S. R., Thawatsupha P., Chittaganpitch M., Khontong R., Simmerman J. M., Chunsutthiwat S. Probable person-to-person transmission of avian influenza A (H5N1) N Engl J Med. 2005;352:333–340. doi: 10.1056/NEJMoa044021. [DOI] [PubMed] [Google Scholar]
  127. Van Kerkhove M. D., Mumford E., Mounts A. W., Bresee J., Ly S., Bridges C. B., Otte J. Highly pathogenic avian influenza (H5N1): pathways of exposure at the animal-human interface, a systematic review. PLoS One. 2011;6:e14582. doi: 10.1371/journal.pone.0014582. [DOI] [PMC free article] [PubMed] [Google Scholar]
  128. van Riel D., Munster V. J., de Wit E., Rimmelzwaan G. F., Fouchier R. A., Osterhaus A. D., Kuiken T. H5N1 Virus Attachment to Lower Respiratory Tract. Science. 2006;312:399. doi: 10.1126/science.1125548. [DOI] [PubMed] [Google Scholar]
  129. van Riel D., Munster V. J., de Wit E., Rimmelzwaan G. F., Fouchier R. A., Osterhaus A. D., Kuiken T. Human and avian influenza viruses target different cells in the lower respiratory tract of humans and other mammals. Am J Pathol. 2007;171:1215–1223. doi: 10.2353/ajpath.2007.070248. [DOI] [PMC free article] [PubMed] [Google Scholar]
  130. Vandegrift K. J., Sokolow S. H., Daszak P., Kilpatrick A. M. Ecology of avian influenza viruses in a changing world. Ann N Y Acad Sci. 2010;1195:113–128. doi: 10.1111/j.1749-6632.2010.05451.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  131. Wan H., Perez D. R. Quail carry sialic acid receptors compatible with binding of avian and human influenza viruses. Virology. 2006;346:278–286. doi: 10.1016/j.virol.2005.10.035. [DOI] [PMC free article] [PubMed] [Google Scholar]
  132. Wang H., Jiang C. Avian influenza H5N1 an update on molecular pathogensis. Sci China C Life Sci. 2009;52:459–463. doi: 10.1007/s11427-009-0059-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  133. Wang J., Oberley-Deegan R., Wang S., Nikrad M., Funk C. J., Hartshorn K. L., Mason R. J. Differentiated human alveolar type II cells secrete antiviral IL-29 (IFN-lambda 1) in response to influenza A infection. J Immunol. 2009;182:1296–1304. doi: 10.4049/jimmunol.182.3.1296. [DOI] [PMC free article] [PubMed] [Google Scholar]
  134. Wang S., Hackett A., Jia N., Zhang C., Zhang L., Parker C., Zhou A., Li J., Cao W. C., Huang Z., Li Y., Lu S. Polyvalent DNA vaccines expressing HA antigens of H5N1 influenza viruses with an optimized leader sequence elicit cross-protective antibody responses. PLoS One. 2011;6:e28757. doi: 10.1371/journal.pone.0028757. [DOI] [PMC free article] [PubMed] [Google Scholar]
  135. Wasilenko J. L., Lee C. W., Sarmento L., Spackman E., Kapczynski D. R., Suarez D. L., Pantin-Jackwood M. J. NP, PB1 and PB2 viral genes contribute to altered replication of H5N1 avian influenza viruses in chickens. J Virol. 2008;82:4544–4553. doi: 10.1128/JVI.02642-07. [DOI] [PMC free article] [PubMed] [Google Scholar]
  136. Watanabe Y., Ibrahim M. S., Suzuki Y., Ikuta K. The changing nature of avian influenza A virus (H5N1) Trends Microbiol. 2012;20:11–20. doi: 10.1016/j.tim.2011.10.003. [DOI] [PubMed] [Google Scholar]
  137. Webster R. G., Bean W. J., Gorman O. T., Chambers T. M., Kawaoka Y. Evolution and ecology of influenza A viruses. Microbiol Rev. 1992;56:152–179. doi: 10.1128/mr.56.1.152-179.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  138. Wise H. M., Foeglein A., Sun J., Dalton R. M., Patel S., Howard W., Anderson E. C., Barclay W. S., Digard P. A complicated message: Identification of a novel PB1-related protein translated from influenza A virus segment 2 mRNA. J Virol. 2009;83:8021–8031. doi: 10.1128/JVI.00826-09. [DOI] [PMC free article] [PubMed] [Google Scholar]
  139. Writing Committee of the Second World Health Organization Consultation on Clinical Aspects of Human Infection with Avian Influenza A Update on avian influenza A (H5N1) virus infection in humans. N Engl J Med. 2008;358:261–273. doi: 10.1056/NEJMra0707279. [DOI] [PubMed] [Google Scholar]
  140. Yu W. C., Chan R. W., Wang J., Travanty E. A., Nicholls J. M., Peiris J. S., Mason R. J., Chan M. C. Viral replication and innate host responses in primary human alveolar epithelial cells and alveolar macrophages infected with influenza H5N1 and H1N1 viruses. J Virol. 2011;85:6844–6855. doi: 10.1128/JVI.02200-10. [DOI] [PMC free article] [PubMed] [Google Scholar]
  141. Yuen K. Y., Chan P. K., Peiris M., Tsang D. N., Que T. L., Shortridge K. F., Cheung P. T., To W. K., Ho E. T., Sung R., Cheng A. F. Clinical features and rapid viral diagnosis of human disease associated with avian influenza A H5N1 virus. Lancet. 1998;351:467–471. doi: 10.1016/S0140-6736(98)01182-9. [DOI] [PubMed] [Google Scholar]
  142. Zamarin D., Ortigoza M. B., Palese P. Influenza A virus PB1-F2 protein contributes to viral pathogenesis in mice. J Virol. 2006;80:7976–7983. doi: 10.1128/JVI.00415-06. [DOI] [PMC free article] [PubMed] [Google Scholar]
  143. Zamarin D., Garcia-Sastre A., Xiao X., Wang R., Palese P. Influenza virus PB1-F2 protein induces cell death through mitochondrial ANT3 and VDAC1. PLoS Pathog. 2005;1:e4. doi: 10.1371/journal.ppat.0010004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  144. Zeng H., Goldsmith C., Thawatsupha P., Chittaganpitch M., Waicharoen S., Zaki S., Tumpey T. M., Katz J. M. Highly pathogenic avian influenza H5N1 viruses elicit an attenuated type i interferon response in polarized human bronchial epithelial cells. J Virol. 2007;81:12439–12449. doi: 10.1128/JVI.01134-07. [DOI] [PMC free article] [PubMed] [Google Scholar]
  145. Zheng B. J., Chan K. W., Lin Y. P., Zhao G. Y., Chan C., Zhang H. J., Chen H. L., Wong S. S., Lau S. K., Woo P. C., Chan K. H., Jin D. Y., Yuen K. Y. Delayed antiviral plus immunomodulator treatment still reduces mortality in mice infected by high inoculum of influenza A/H5N1 virus. Proc Natl Acad Sci U S A. 2008;105:8091–8096. doi: 10.1073/pnas.0711942105. [DOI] [PMC free article] [PubMed] [Google Scholar]
  146. Zhu Q., Yang H., Chen W., Cao W., Zhong G., Jiao P., Deng G., Yu K., Yang C., Bu Z., Kawaoka Y., Chen H. A naturally occurring deletion in its NS gene contributes to the attenuation of an H5N1 swine influenza virus in chickens. J Virol. 2008;82:220–228. doi: 10.1128/JVI.00978-07. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Virologica Sinica are provided here courtesy of Wuhan Institute of Virology, Chinese Academy of Sciences

RESOURCES