Abstract
Acidic protein levels in the milk decrease markedly as lactation progresses, suggesting that it is an important part of the colostrum. However, little attention has been paid to their biological function. In this study, we isolated the acidic protein fraction of bovine colostrum (AFC, isoelectric point <5) by anion-exchange chromatography, and investigated the effect of its dietary intake on influenza A (H1N1) virus infection. 100% of mice infected with 1 LD50 of the virus survived when administered AFC for 14 days prior to infection, compared with 33% survival when administered phosphate buffered saline (PBS). Moreover, consumption of AFC reduced the weight loss associated with infection. We propose that dietary intake of AFC has a prophylactic effect on influenza A virus infection.
Electronic Supplementary Material
Supplementary material is available for this article at 10.1007/s12275-013-2683-y and is accessible for authorized users.
Keywords: bovine colostrums, acidic protein, dietary intake, influenza A virus
Electronic supplementary material
Supplementary material, approximately 159 KB.
Footnotes
Supplemental material for this article may be found at http://www.springer.com/content/120956.
References
- Asakuma S, Akahori M, Kimura K, Watanabe Y, Nakamura T, Tsunemi M, Arai I, Sanai Y, Urashima T. Sialyl oligosaccharides of human colostrum: Changes in concentration during the first three days of lactation. Biosci. Biotechnol. Biochem. 2007;71:1447–1451. doi: 10.1271/bbb.60529. [DOI] [PubMed] [Google Scholar]
- Benson KF, Carter SG, Patterson KM, Patel D, Jensen GS. A novel extract from bovine colostrum whey supports anti-bacterial and anti-viral innate immune functions in vitro and in vivo: I. Enhanced immune activity in vitro translates to improved microbial clearance in animal infection models. Prev. Med. 2012;54(Suppl):S116–123. doi: 10.1016/j.ypmed.2011.12.023. [DOI] [PubMed] [Google Scholar]
- Bezkorovainy A. Comparative study of the acid glycoproteins isolated from bovine serum, colostrum, and milk whey. Arch. Biochem. Biophys. 1965;110:558–567. doi: 10.1016/0003-9861(65)90450-9. [DOI] [PubMed] [Google Scholar]
- Brinkworth GD, Buckley JD. Concentrated bovine colostrum protein supplementation reduces the incidence of self-reported symptoms of upper respiratory tract infection in adult males. Eur. J. Nutr. 2003;42:228–232. doi: 10.1007/s00394-003-0410-x. [DOI] [PubMed] [Google Scholar]
- Centers for Disease ControlPrevention CDC. Estimates of deaths associated with seasonal influenza — United States, 1976–2007. MMWR Morb. Mortal. Wkly. Rep. 2010;59:1057–1062. [PubMed] [Google Scholar]
- Claud EC, Savidge T, Walker WA. Modulation of human intestinal epithelial cell IL-8 secretion by human milk factors. Pediatr. Res. 2003;53:419–425. doi: 10.1203/01.PDR.0000050141.73528.AD. [DOI] [PubMed] [Google Scholar]
- Fendrick AM, Monto AS, Nightengale B, Sarnes M. The economic burden of non-influenza-related viral respiratory tract infection in the United States. Arch. Intern. Med. 2003;163:487–494. doi: 10.1001/archinte.163.4.487. [DOI] [PubMed] [Google Scholar]
- Gatherer D. The 2009 H1N1 influenza outbreak in its historical context. J. Clin. Virol. 2009;45:174–178. doi: 10.1016/j.jcv.2009.06.004. [DOI] [PubMed] [Google Scholar]
- Glaser L, Stevens J, Zamarin D, Wilson IA, Garcia-Sastre A, Tumpey TM, Basler CF, Taubenberger JK, Palese P. A single amino acid substitution in 1918 influenza virus hemagglutinin changes receptor binding specificity. J. Virol. 2005;79:11533–11536. doi: 10.1128/JVI.79.17.11533-11536.2005. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Goldstein E, Cobey S, Takahashi S, Miller JC, Lipsitch M. Predicting the epidemic sizes of influenza A/H1N1, A/H3N2, and B: A statistical method. PLoS Med. 2011;8:e1001051. doi: 10.1371/journal.pmed.1001051. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Johnson JL, Godden SM, Molitor T, Ames T, Hagman D. Effects of feeding heat-treated colostrum on passive transfer of immune and nutritional parameters in neonatal dairy calves. J. Dairy Sci. 2007;90:5189–5198. doi: 10.3168/jds.2007-0219. [DOI] [PubMed] [Google Scholar]
- Jouan PN, Pouliot Y, Gauthier SF, Laforest JP. Hormones in bovine milk and milk products: A survey. Int. Dairy J. 2006;16:1408–1414. doi: 10.1016/j.idairyj.2006.06.007. [DOI] [Google Scholar]
- Kelly GS. Bovine colostrums: A review of clinical uses. Altern. Med. Rev. 2003;8:378–394. [PubMed] [Google Scholar]
- Kobayashi Y, Fukami T, Nakajima A, Watanabe A, Nakajima M, Yokoi T. Species differences in tissue distribution and enzyme activities of arylacetamide deacetylase in human, rat, and mouse. Drug Metab. Dispos. 2012;40:671–679. doi: 10.1124/dmd.111.043067. [DOI] [PubMed] [Google Scholar]
- Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970;227:680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Martin-Sosa S, Martin MJ, Garcia-Pardo LA, Hueso P. Sialyloligosaccharides in human and bovine milk and in infant formulas: Variations with the progression of lactation. J. Dairy Sci. 2003;86:52–59. doi: 10.3168/jds.S0022-0302(03)73583-8. [DOI] [PubMed] [Google Scholar]
- Matrosovich M, Klenk HD. Natural and synthetic sialic acid-containing inhibitors of influenza virus receptor binding. Rev. Med. Virol. 2003;13:85–97. doi: 10.1002/rmv.372. [DOI] [PubMed] [Google Scholar]
- Patiroglu T, Kondolot M. Clin. Respir. J. 2011. The effect of bovine colostrum on viral upper respiratory tract infections in children with immunoglobulin A deficiency. [DOI] [PubMed] [Google Scholar]
- Petschow BW, Talbott RD. Reduction in virus-neutralizing activity of a bovine colostrum immunoglobulin concentrate by gastric acid and digestive enzymes. J. Pediatr. Gastroenterol. Nutr. 1994;19:228–235. doi: 10.1097/00005176-199408000-00014. [DOI] [PubMed] [Google Scholar]
- Playford RJ, Macdonald CE, Johnson WS. Colostrum and milk-derived peptide growth factors for the treatment of gastrointestinal disorders. Am. J. Clin. Nutr. 2000;72:5–14. doi: 10.1093/ajcn/72.1.5. [DOI] [PubMed] [Google Scholar]
- Reed L, Muench M. A simple method of estimating fifty percent endpoints. Am. J. Hyg. 1938;27:493–497. [Google Scholar]
- Robison JD, Stott GH, Denise SK. Effects of passive-immunity on growth and survival in the dairy heifer. J. Dairy Sci. 1988;71:1283–1287. doi: 10.3168/jds.S0022-0302(88)79684-8. [DOI] [PubMed] [Google Scholar]
- Sandbulte MR, Westgeest KB, Gao J, Xu X, Klimov AI, Russell CA, Burke DF, Smith DJ, Fouchier RA, Eichelberger MC. Discordant antigenic drift of neuraminidase and hemagglutinin in H1N1 and H3N2 influenza viruses. Proc. Natl. Acad. Sci. USA. 2011;108:20748–20753. doi: 10.1073/pnas.1113801108. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Senda A, Fukuda K, Ishii T, Urashima T. Changes in the bovine whey proteome during the early lactation period. Anim. Sci. J. 2011;82:698–706. doi: 10.1111/j.1740-0929.2011.00886.x. [DOI] [PubMed] [Google Scholar]
- Struff WG, Sprotte G. Bovine colostrum as a biologic in clinical medicine: a review. Part I: Biotechnological standards, pharmacodynamic and pharmacokinetic characteristics and principles of treatment. Int. J. Clin. Pharmacol. Ther. 2007;45:193–202. doi: 10.5414/cpp45193. [DOI] [PubMed] [Google Scholar]
- Wang B, Brand-Miller J. The role and potential of sialic acid in human nutrition. Eur. J. Clin. Nutr. 2003;57:1351–1369. doi: 10.1038/sj.ejcn.1601704. [DOI] [PubMed] [Google Scholar]
- Webster RG, Laver WG, Air GM, Schild GC. Molecular mechanisms of variation in influenza viruses. Nature. 1982;296:115–121. doi: 10.1038/296115a0. [DOI] [PubMed] [Google Scholar]
- World Health Organization. Influenza (Seasonal) 2009. [Google Scholar]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Supplementary material, approximately 159 KB.
