Abstract
Porcine reproductive and respiratory syndrome (PRRS) is an important disease, which leads to severe economic losses in swine-producing areas of the world. However, current antiviral strategies cannot provide highly effective protection. In this study, three theoretically effective interference target sites (71–91, 144–164, 218–238) targeting the nucleocapsid (N) gene of PRRSV were designed and selected, and then three siRNA-expressing plasmids were constructed, respectively named p2.1-N71, p2.1-N144, and p2.1-N218. The recombinant siRNA-expressing plasmids were transfected into Marc-145 cells; then the cells were infected with PRRSV (JL07SW strain); finally, after incubation for 48 h, the antiviral activity of those siRNA-expressing plasmids in Marc-145 cells was assessed by cytopathic effects, virus titers, indirect immunofluorescence, and quantitative real-time PCR. Experimental results demonstrated that these three siRNA-expressing plasmids could effectively and significantly inhibit the replication of PRRSV by 93.2%, 83.6%, and 89.2% in Marc-145 cells, respectively. Among these three siRNA-expressing plasmids, p2.1-N71 was found to be most effective, while p2.1-N144 and p2.1-N218 displayed relatively weak inhibition of virus replication. The results indicated that siRNA-expressing plasmids targeting the N gene of PRRSV could significantly inhibit PRRSV replication in Marc-145 cells. Based on our experimental results and previous reports, the 71–91, 179–197, and 234–252 sites of the N gene are good choices to effectively inhibit the replication of PRRSV, and this RNA interference technique can be a potential anti-PRRSV strategy.
Keywords: PRRSV, RNA interference, replication, nucleocapsid protein, Marc-145 cells
Contributor Information
Xiaodong Zhang, Email: zhang_xd@jlu.edu.cn.
Zhuang Ding, Phone: +86-0431-87836167, FAX: +86-0431-87836160, Email: Zhuang_Ding@yahoo.com.cn.
References
- Bao YH, Guo YC, Zhang LY, Zhao ZH, Li N. Inhibition of porcine reproductive and respiratory syndrome virus replication by RNA interference in MARC-145 cells. Mol. Biol. Rep. 2012;39:2515–2522. doi: 10.1007/s11033-011-1003-z. [DOI] [PubMed] [Google Scholar]
- Brockmeier SL, Loving CL, Vorwald AC, Kehrli JME, Baker RB, Nicholson TL, Lager KM, Miller LC, Faaberg KS. Genomic sequence and virulence comparison of four Type 2 porcine reproductive and respiratory syndrome virus strains. Virus Res. 2012;169:212–221. doi: 10.1016/j.virusres.2012.07.030. [DOI] [PubMed] [Google Scholar]
- Cao J, Wang XL, Du YJ, Li YF, Wang XW, Jiang P. CD40 ligand expressed in adenovirus can improve the immunogenicity of the GP3 and GP5 of porcine reproductive and respiratory syndrome virus in swine. Vaccine. 2010;28:7514–7522. doi: 10.1016/j.vaccine.2010.09.002. [DOI] [PubMed] [Google Scholar]
- Chen WZ, Yan WY, Du QY, Fei L, Liu MQ, Ni Z, Sheng ZT, Zheng ZX. RNA interference targeting VP1 inhibits foot-and-mouth disease virus replication in BHK-21 cells and suckling mice. J. Virol. 2004;78:6900–6907. doi: 10.1128/JVI.78.13.6900-6907.2004. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dea S, Gagnon CA, Mardassi H, Pirzadeh B, Rogan D. Current knowledge on the structural proteins of porcine reproductive and respiratory syndrome (PRRS) virus: comparison of the North American and European isolates. Arch. Virol. 2000;145(Suppl 4):659–688. doi: 10.1007/s007050050662. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ding YH, Zhang H, Li YX, Wu D, He SM, Wang Y, Li YY, Wang F, Niu JQ. Inhibition of HCV 5 -NTR and core expression by a small hairpin RNA delivered by a histone gene carrier, HPhA. Int. J. Med. Sci. 2013;10:957–964. doi: 10.7150/ijms.5632. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ferreira HL, Spilki FR, Almeida RS, Santos MM, Arns CW. Inhibition of avian metapneumo virus (AMPV) replication by RNA interference targeting nucleoprotein gene (N) in cultured cells. Antiviral Res. 2007;74:77–81. doi: 10.1016/j.antiviral.2006.12.002. [DOI] [PubMed] [Google Scholar]
- Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature. 1998;391:806–811. doi: 10.1038/35888. [DOI] [PubMed] [Google Scholar]
- Ge Q, McManus MT, Nguyen T, Shen CH, Sharp PA, Eisen HN, Chen J. RNA interference of influenza virus production by directly targeting mRNA for degradation and indirectly inhibiting all viral RNA transcription. Proc. Natl. Acad. Sci. USA. 2003;100:2718–2723. doi: 10.1073/pnas.0437841100. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Guo XK, Zhang Q, Gao L, Li N, Chen XX, Feng WH. Increasing expression of microRNA-181 inhibits porcine reproductive and respiratory syndrome virus replication and has implications for controlling virus infection. J. Virol. 2013;87(Suppl 2):1159–1171. doi: 10.1128/JVI.02386-12. [DOI] [PMC free article] [PubMed] [Google Scholar]
- He YX, Hua RH, Zhou YJ, Qiu HJ, Tong GZ. Interference of porcine reproductive and respiratory syndrome virus replication on MARC-145 cells using DNA-based short interfering RNAs. Antiviral Res. 2007;74:83–91. doi: 10.1016/j.antiviral.2006.04.013. [DOI] [PubMed] [Google Scholar]
- Huang J, Jiang P, Li YF, Xu JR, Jiang WM, Wang XW. Inhibition of porcine reproductive and respiratory syndrome virus replication by short hairpin RNA in MARC-145 cells. Vet. Microbiol. 2006;115:302–310. doi: 10.1016/j.vetmic.2006.02.018. [DOI] [PubMed] [Google Scholar]
- Kärber G. Beitrag zur Kollektiven Behandlung pharmakologischer Reishnversuche. Arch. Exp. Pathol. Pharmkol. 1931;62:480–483. doi: 10.1007/BF01863914. [DOI] [Google Scholar]
- Lee C, Yoo D. Cysteine residues of the porcine reproductive and respiratory syndrome virus small envelope protein are non-essential for virus infectivity. J. Gen. Virol. 2005;86:3091–3096. doi: 10.1099/vir.0.81160-0. [DOI] [PubMed] [Google Scholar]
- Li GX, Ren XF. Differentiation of porcine reproductive and respiratory syndrome virus N protein using a virus-based ELISA. Hybridoma. 2011;30:195–198. doi: 10.1089/hyb.2010.0105. [DOI] [PubMed] [Google Scholar]
- Lu ZC, Zhang JQ, Huang CJ, Go YY, Faaberg KS, Rowland RRR, Timoney PJ, Balasuriya UBR. Chimeric viruses containing the N-terminal ectodomains of GP5 and M proteins of porcine reproductive and respiratory syndrome virus do not change the cellular tropism of equine arteritis virus. Virology. 2012;432:99–109. doi: 10.1016/j.virol.2012.05.022. [DOI] [PubMed] [Google Scholar]
- Meulenberg JJ, Bende RJ, Pol JM, Wenswoort G, Moormann RJ. Nucleocapsid protein N of Lelystad virus: expression by recombinant baculovirus, immunological properties, and suitability for detection of serum antibodies. Clin. Diagn. Lab. Immunol. 1995;2:652–656. doi: 10.1128/cdli.2.6.652-656.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Meulenberg JJ, Hulst MM, Meijer EJ, Moonen PL, Besten A, Kluyver EP, Wensvoort G, Moormann RJ. Lelystad virus, the causative agent of porcine epidemic abortion and respiratory syndrome PEARS, is related to LDV and EAV. Virology. 1993;192:62–72. doi: 10.1006/viro.1993.1008. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Murtaugh MP, Xiao Z, Zuckermann F. Immunological responses of swine to porcine reproductive and respiratory syndrome virus infection. Viral Immunol. 2002;15:533–547. doi: 10.1089/088282402320914485. [DOI] [PubMed] [Google Scholar]
- Porntrakulpipat S, Supankong S, Chatchawanchonteera A, Pakdee P. RNA interference targeting nucleocapsid protein (C) inhibits classical swine fever virus replication in SK-6 cells. Vet. Microbiol. 2010;142:41–44. doi: 10.1016/j.vetmic.2009.09.041. [DOI] [PubMed] [Google Scholar]
- Sagong M, Lee C. Porcine reproductive and respiratory syndrome virus nucleocapsid protein modulates interferon-β production by inhibiting IRF3 activation in immortalized porcine alveolar macrophages. Arch. Virol. 2011;156:2187–2195. doi: 10.1007/s00705-011-1116-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Siomi H, Siomi MC. On the road to reading the RNA-interference code. Nature. 2009;457:396–404. doi: 10.1038/nature07754. [DOI] [PubMed] [Google Scholar]
- Stefanie SJ, Fernando AO, Julian AH. Biophysical characterisation of the nucleocapsid protein from a highly pathogenic porcine reproductive and respiratory syndrome virus strain. Biochem. Biophys. Res. Commun. 2012;419:137–141. doi: 10.1016/j.bbrc.2011.11.126. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sun MX, Liu XQ, Cao SB, He QG, Zhou Q, Ye J, Li YM, Chen HC. Inhibition of porcine circovirus type 1 and type 2 production in PK-15 cells by small interfering RNAs targeting the Rep gene. Vet. Microbiol. 2007;123:203–209. doi: 10.1016/j.vetmic.2007.03.005. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sun Z, Li YH, Ransburgh R, Snijder EJ, Fang Y. Nonstructural protein 2 of porcine reproductive and respiratory syndrome virus inhibits the antiviral function of interferon-stimulated gene 15. J. Virol. 2012;86:3839–3850. doi: 10.1128/JVI.06466-11. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Terje D. The structural biology of PRRSV. Virus Res. 2010;154:86–97. doi: 10.1016/j.virusres.2010.07.029. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ui-Tei K, Naito Y, Takahashi F, Haraguchi T, Ohki-Hamazaki H, Juni A, Ueda R, Saigo K. Guidelines for the selection of highly effective siRNA sequences for mammalian and chick RNA interference. Nucleic Acids Res. 2004;32:936–948. doi: 10.1093/nar/gkh247. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ullu E, Tschudi C, Chakraborty T. RNA interference in protozoan parasites. Cell. Microbiol. 2004;6(Suppl 6):509–519. doi: 10.1111/j.1462-5822.2004.00399.x. [DOI] [PubMed] [Google Scholar]
- Wensvoort G, Tepstra C, Pol JMA, Laak EA, Bloemraad M, Kluyver EP, Kragten C, Buiten L, Besten A, Wagenaar F, et al. Mystery swine disease in the Netherlands: the isolation of Lelystad virus. Vet. Q. 1991;13:121–130. doi: 10.1080/01652176.1991.9694296. [DOI] [PubMed] [Google Scholar]
- Whangbo JS, Hunter CP. Environmental RNA interference. Trends Genet. 2008;24:297–305. doi: 10.1016/j.tig.2008.03.007. [DOI] [PubMed] [Google Scholar]
- Wu CJ, Huang HW, Liu CY, Hong CF, Chan YL. Inhibition of SARS-CoV replication by siRNA. Antiviral Res. 2005;65:45–48. doi: 10.1016/j.antiviral.2004.09.005. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Xiao SQ, Wang QW, Gao JT, Wang LL, He ZY, Mo DL, Liu XH, Chen YS. Inhibiton of highly pathogenic PRRSV replication in MARC-145 cells by artificial microRNAs. Virol. J. 2011;8:491–500. doi: 10.1186/1743-422X-8-491. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yin RF, Ding Z, Liu XX, Mu LZ, Cong YL, Stoeger T. Inhibition of Newcastle disease virus replication by RNA interference targeting the matrix protein gene in chicken embryo fibroblasts. J. Virol. Methods. 2010;167:107–111. doi: 10.1016/j.jviromet.2010.02.014. [DOI] [PubMed] [Google Scholar]
- Zhang XD, Li GJ, Gao L, Mu LZ, Zhang L, Cong YL, Ding Z. Positive inductive effect of IL-18 on virus-specific immune responses induced by PRRSV-GP5 DNA vaccine in swine. Res. Vet. Sci. 2013;94:346–353. doi: 10.1016/j.rvsc.2012.09.011. [DOI] [PubMed] [Google Scholar]
- Zhang XD, Wang XP, Mu LZ, Ding Z. Immune responses in pigs induced by recombinant DNA vaccine co-expressing Swine IL-18 and membrane protein of porcine reproductive and respiratory syndrome virus. Int. J. Mol. Sci. 2012;13:5715–5728. doi: 10.3390/ijms13055715. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhou JF, Hua XG, Cui L, Zhu JG, Miao DN, Zou Y, He XZ, Su WG. Effective inhibition of porcine transmissible gastroenteritis virus replication in ST cells by shRNAs targeting RNA-dependent RNA polymerase gene. Antiviral Res. 2007;74:36–42. doi: 10.1016/j.antiviral.2006.12.007. [DOI] [PMC free article] [PubMed] [Google Scholar]
