Abstract
Adult mice were treated with dextran sulfate sodium (DSS) and infected with Citrobacter rodentium for developing a novel murine colitis model. C57BL/6N mice (7-week-old) were divided into four groups. Each group composed of control, dextran sodium sulfate-treated (DSS), C. rodentium-infected (CT), and DSS-treated and C. rodentium-infected (DSS-CT) mice. The DSS group was administered 1% DSS in drinking water for 7 days. The CT group was supplied with normal drinking water for 7 days and subsequently infected with C. rodentium via oral gavage. The DSS-CT group was supplied with 1% DSS in drinking water for 7 days and subsequently infected with C. rodentium via oral gavage. The mice were sacrificed 10 days after the induction of C. rodentium infection. The DSS-CT group displayed significantly shorter colon length, higher spleen to body weight ratio, and higher histopathological score compared to the other three groups. The mRNA expression levels of tumor necrosis factor (TNF)-α and interferon (INF)-γ were significantly upregulated; however, those of interleukin (IL)-6 and IL-10 were significantly downregulated in the DSS-CT group than in the control group. These results demonstrated that a combination of low DSS concentration (1%) and C. rodentium infection could effectively induce inflammatory bowel disease (IBD) in mice. This may potentially be used as a novel IBD model, in which colitis is induced in mice by the combination of a chemical and a pathogen.
Electronic Supplementary Material
Supplementary material is available for this article at 10.1007/s12275-018-7504-x and is accessible for authorized users.
Keywords: Citrobacter rodentium, colitis, dextran sulfate sodium
Electronic supplementary material
Footnotes
A correction to this article is available at 10.1007/s12275-018-0578-7
Change history
5/2/2018
In the article by Park <Emphasis Type="Italic">et al.</Emphasis> published in Journal of Microbiology 2018; 56, 272–279, the supplementary data Figs S1 and S2 should be corrected as below. The original article can be found online at <ExternalRef><RefSource>https://doi.org/10.1007/s12275-018-7504-x</RefSource><RefTarget Address="https://doi.org/10.1007/s12275-018-7504-x" TargetType="URL"/></ExternalRef>.
References
- Alipour M., Lou Y., Zimmerman D., Bording-Jorgensen M.W., Sergi C., Liu J.J., Wine E. A balanced IL-1β activity is required for host response to Citrobacter rodentium infection. PLoS One. 2013;8:e80656. doi: 10.1371/journal.pone.0080656. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Andres P.G., Friedman L.S. Epidemiology and the natural course of inflammatory bowel disease. Gastroenterol. Clin. North Am. 1999;28:255–281. doi: 10.1016/S0889-8553(05)70056-X. [DOI] [PubMed] [Google Scholar]
- Axelsson L.G., Landström E., Goldschmidt T.J., Grönberg A., Bylund-Fellenius A.C. Dextran sulfate sodium (DSS) induced experimental colitis in immunodeficient mice: effects in CD4+-cell depleted, athymic and NK-cell depleted SCID mice. Inflamm. Res. 1996;45:181–191. doi: 10.1007/BF02285159. [DOI] [PubMed] [Google Scholar]
- Bauer C., Duewell P., Mayer C., Lehr H.A., Fitzgerald K.A., Dauer M., Tschopp J., Endres S., Latz E., Schnurr M. Colitis induced in mice with dextran sulfate sodium (DSS) is mediated by the NLRP3 inflammasome. Gut. 2010;59:1192–1199. doi: 10.1136/gut.2009.197822. [DOI] [PubMed] [Google Scholar]
- Casati J., Toner B.B. Psychosocial aspects of inflammatory bowel disease. Biomed. Pharmacother. 2000;54:388–393. doi: 10.1016/S0753-3322(01)80006-8. [DOI] [PubMed] [Google Scholar]
- Chassaing, B., Aitken, J.D., Malleshappa, M., and Vijay-Kumar, M. 2014. Dextran sulfate sodium (DSS)-induced colitis in mice. Curr. Protoc. Immunol. 104, Unit 15.25. [DOI] [PMC free article] [PubMed]
- Deng W., Li Y., Vallance B.A., Finlay B.B. Locus of enterocyte effacement from Citrobacter rodentium: sequence analysis and evidence for horizontal transfer among attaching and effacing pathogens. Infect. Immun. 2001;69:6323–6335. doi: 10.1128/IAI.69.10.6323-6335.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Eckmann L. Animal models of inflammatory bowel disease: lessons from enteric infections. Ann. N. Y. Acad. Sci. 2006;1072:28–38. doi: 10.1196/annals.1326.008. [DOI] [PubMed] [Google Scholar]
- Flynn J.L., Chan J.M., Triebold K.J., Dalton D.K., Stewart T.A., Bloom B.R. An essential role for interferon gamma in resistance to Mycobacterium tuberculosis infection. J. Exp. Med. 1993;178:2249–2254. doi: 10.1084/jem.178.6.2249. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gibson D.L., Ma C., Rosenberger C.M., Bergstrom K.S., Valdez Y., Huang J.T., Khan M.A., Vallance B.A. Toll-like receptor 2 plays a critical role in maintaining mucosal integrity during Citrobacter rodentium-induced colitis. Cell. Microbiol. 2008;10:388–403. doi: 10.1111/j.1462-5822.2007.01071.x. [DOI] [PubMed] [Google Scholar]
- Hanauer S.B. Inflammatory bowel disease: epidemiology, pathogenesis, and therapeutic opportunities. Inflamm. Bowel Dis. 2006;12:S3–S9. doi: 10.1097/01.MIB.0000195385.19268.68. [DOI] [PubMed] [Google Scholar]
- Hirono I., Kuhara K., Yamaji T., Hosaka S., Golberg L. Carcinogenicity of dextran sulfate sodium in relation to its molecular weight. Cancer Lett. 1983;18:29–34. doi: 10.1016/0304-3835(83)90114-3. [DOI] [PubMed] [Google Scholar]
- Hoshi O., Iwanaga T., Fujino M.A. Selective uptake of intraluminal dextran sulfate sodium and senna by macrophages in the cecal mucosa of the guinea pig. J. Gastroenterol. 1996;31:189–198. doi: 10.1007/BF02389517. [DOI] [PubMed] [Google Scholar]
- Iwanaga T., Hoshi O., Han H., Fujita T. Morphological analysis of acute ulcerative colitis experimentally induced by dextran sulfate sodium in the guinea pig: some possible mechanisms of cecal ulceration. J. Gastroenterol. 1994;29:430–438. doi: 10.1007/BF02361239. [DOI] [PubMed] [Google Scholar]
- Kim J.J., Shajib M.S., Manocha M.M., Khan W.I. Investigating intestinal inflammation in DSS-induced model of IBD. J. Vis. Exp. 2012;60:e3678. doi: 10.3791/3678. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kitajima S., Takuma S., Morimoto M. Histological analysis of murine colitis induced by dextran sulfate sodium of different molecular weights. Exp. Anim. 2000;49:9–15. doi: 10.1538/expanim.49.9. [DOI] [PubMed] [Google Scholar]
- Knod J.L., Crawford K., Dusing M., Frischer J.S. Mouse strain influences angiogenic response to dextran sodium sulfate-induced colitis. J. Surg. Res. 2014;190:47–54. doi: 10.1016/j.jss.2014.04.009. [DOI] [PubMed] [Google Scholar]
- Kwon K.H., Murakami A., Tanaka T., Ohigashi H. Dietary rutin, but not its aglycone quercetin, ameliorates dextran sulfate sodium-induced experimental colitis in mice: attenuation of pro-inflammatory gene expression. Biochem. Pharmacol. 2005;69:395–406. doi: 10.1016/j.bcp.2004.10.015. [DOI] [PubMed] [Google Scholar]
- Luperchio S.A., Schauer D.B. Molecular pathogenesis of Citrobacter rodentium and transmissible murine colonic hyperplasia. Microbes Infect. 2001;3:333–340. doi: 10.1016/S1286-4579(01)01387-9. [DOI] [PubMed] [Google Scholar]
- Maaser C., Housley M.P., Iimura M., Smith J.R., Vallance B.A., Finlay B.B., Schreiber J.R., Varki N.M., Kagnoff M.F., Eckmann L. Clearance of Citrobacter rodentium requires B cells but not secretory immunoglobulin A (IgA) or IgM antibodies. Infect. Immun. 2004;72:3315–3324. doi: 10.1128/IAI.72.6.3315-3324.2004. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MacDonald T.T., Frankel G., Dougan G., Goncalves N.S., Simmons C. Host defences to Citrobacter rodentium. Int. J. Med. Microbiol. 2003;293:87–93. doi: 10.1078/1438-4221-00247. [DOI] [PubMed] [Google Scholar]
- Moore K.W., de Waal Malefyt R., Coffman R.L., O’Garra A. Interleukin-10 and the interleukin-10 receptor. Annu. Rev. Immunol. 2001;19:683–765. doi: 10.1146/annurev.immunol.19.1.683. [DOI] [PubMed] [Google Scholar]
- Mundy R., MacDonald T.T., Dougan G., Frankel G., Wiles S. Citrobacter rodentium of mice and man. Cell. Microbiol. 2005;7:1697–1706. doi: 10.1111/j.1462-5822.2005.00625.x. [DOI] [PubMed] [Google Scholar]
- Ohkusa T., Okayasu I., Tokoi S., Araki A., Ozaki Y. Changes in bacterial phagocytosis of macrophages in experimental ulcerative colitis. Digestion. 1995;56:159–164. doi: 10.1159/000201236. [DOI] [PubMed] [Google Scholar]
- Okayasu I., Hatakeyama S., Yamada M., Ohkusa T., Inagaki Y., Nakaya R. A novel method in the induction of reliable experimental acute and chronic ulcerative colitis in mice. Gastroenterology. 1990;98:694–702. doi: 10.1016/0016-5085(90)90290-H. [DOI] [PubMed] [Google Scholar]
- Ouyang N., Zhu C., Zhou D., Nie T., Go M.F., Richards R.J., Rigas B. MC-12, an annexin A1-based peptide, is effective in the treatment of experimental colitis. PLoS One. 2012;7:e41585. doi: 10.1371/journal.pone.0041585. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Perše M., Cerar A. J. Biomed. Biotechnol. 2012. 2012. Dextran sodium sulphate colitis mouse model: traps and tricks; p. 718617. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Randhawa P.K., Singh K., Singh N., Jaggi A.S. A review on chemical-induced inflammatory bowel disease models in rodents. Korean J. Physiol. Pharmacol. 2014;18:279–288. doi: 10.4196/kjpp.2014.18.4.279. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rath H.C., Herfarth H.H., Ikeda J.S., Grenther W.B., Hamm T.E., Jr., Balish E., Taurog J.D., Hammer R.E., Wilson K.H., Sartor R.B. Normal luminal bacteria, especially bacteroides species, mediate chronic colitis, gastritis, and arthritis in HLA-B27/human beta2 microglobulin transgenic rats. J. Clin. Invest. 1996;98:945–953. doi: 10.1172/JCI118878. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ryu S.H., Park J.H., Choi S.Y., Jeon H.Y., Park J.I., Kim J.Y., Ham S.H., Choi Y.K. The probiotic Lactobacillus prevents Citrobacter rodentium-induced murine colitis in a TLR2-dependent manner. J. Microbiol. Biotechnol. 2016;26:1333–1340. doi: 10.4014/jmb.1602.02004. [DOI] [PubMed] [Google Scholar]
- Sang L., Chang B., Zhu J., Yang F., Li Y., Jiang X., Sun X., Lu C., Wang D. Dextran sulfate sodium-induced acute experimental colitis in C57BL/6 mice is mitigated by selenium. Int. Immunopharmacol. 2016;39:359–368. doi: 10.1016/j.intimp.2016.07.034. [DOI] [PubMed] [Google Scholar]
- Scheller J., Chalaris A., Schmidt-Arras D., Rose-John S. The pro-and anti-inflammatory properties of the cytokine interleukin-6. Biochim. Biophys. Acta. 2011;1813:878–888. doi: 10.1016/j.bbamcr.2011.01.034. [DOI] [PubMed] [Google Scholar]
- Simmons C.P., Goncalves N.S., Ghaem-Maghami M., Bajaj-Elliott M., Clare S., Neves B., Frankel G., Dougan G., MacDonald T.T. Impaired resistance and enhanced pathology during infection with a noninvasive, attaching-effacing enteric bacterial pathogen, Citrobacter rodentium, in mice lacking IL-12 or IFN-γ. J. Immunol. 2002;168:1804–1812. doi: 10.4049/jimmunol.168.4.1804. [DOI] [PubMed] [Google Scholar]
- Wu X., Vallance B.A., Boyer L., Bergstrom K.S., Walker J., Madsen K., O’Kusky J.R., Buchan A.M., Jacobson K. Saccharomyces boulardii ameliorates Citrobacter rodentium-induced colitis through actions on bacterial virulence factors. Am. J. Physiol. Gastrointest. Liver Physiol. 2008;294:G295–G306. doi: 10.1152/ajpgi.00173.2007. [DOI] [PubMed] [Google Scholar]
- Yamada M., Ohkusa T., Okayasu I. Occurrence of dysplasia and adenocarcinoma after experimental chronic ulcerative colitis in hamsters induced by dextran sulphate sodium. Gut. 1992;33:1521–1527. doi: 10.1136/gut.33.11.1521. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yu D., Zhu H., Liu Y., Cao J., Zhang X. Regulation of proinflammatory cytokine expression in primary mouse astrocytes by coronavirus infection. J. Virol. 2009;83:12204–12214. doi: 10.1128/JVI.01103-09. [DOI] [PMC free article] [PubMed] [Google Scholar]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.