Skip to main content
Springer Nature - PMC COVID-19 Collection logoLink to Springer Nature - PMC COVID-19 Collection
. 2009 Oct 24;47(5):589. doi: 10.1007/s12275-009-0104-z

Identification of a novel linear B-cell epitope in the M protein of avian infectious bronchitis coronaviruses

Junji Xing 1, Shengwang Liu 1,, Zongxi Han 1, Yuhao Shao 1, Huixin Li 1, Xiangang Kong 1
PMCID: PMC7090873  PMID: 19851732

Abstract

This report describes the identification of a novel linear B-cell epitope at the C-terminus of the membrane (M) protein of avian infectious bronchitis virus (IBV). A monoclonal antibody (MAb) (designated as 15E2) against the IBV M protein was prepared and a series of 14 partially-overlapping fragments of the IBV M gene were expressed with a GST tag. These peptides were subjected to enzyme-linked immunosorbent assay (ELISA) and western blotting analysis using MAb 15E2 to identify the epitope. A linear motif, 199FATFVYAK206, which was located at the C-terminus of the M protein, was identified by MAb 15E2. ELISA and western blotting also showed that this epitope could be recognized by IBV-positive serum from chicken. Given that 15E2 showed reactivity with the 199FATFVYAK206 motif, expressed as a GST fusion protein, in both western blotting and in an ELISA, we proposed that this motif represented a linear B-cell epitope of the M protein. The 199FATFVYAK206 motif was the minimal requirement for reactivity as demonstrated by analysis of the reactivity of 15E2 with several truncated peptides that were derived from the motif. Alignment and comparison of the 15E2-defined epitope sequence with the sequences of other corona-viruses indicated that the epitope is well conserved among chicken and turkey coronaviruses. The identified epitope should be useful in clinical applications and as a tool for the further study of the structure and function of the M protein of IBV.

Keywords: avian infectious bronchitis virus, monoclonal antibody, linear B-cell epitope, epitope mapping, membrane protein, coronavirus

References

  1. Baggio R., Burgstaller P., Hale S.P., Putney A.R., Lane M., Lipovsek D., Wright M.C., Roberts R.W., Liu R., Szostak J.W., Wagner R.W. Identification of epitope-like consensus motifs using mRNA display. J. Mol. Recognit. 2002;15:126–134. doi: 10.1002/jmr.567. [DOI] [PubMed] [Google Scholar]
  2. Barlow D., Edwards M., Thornton J. Continuous and discontinuous protein antigenic determinants. Nature. 1986;322:747–748. doi: 10.1038/322747a0. [DOI] [PubMed] [Google Scholar]
  3. Boots A.M.H., Kusters J.G., van Noort J.M., Zwaagstra K.A., Rijke E., van der Zeijst B.A., Hensen E.J. Localization of a T-cell epitope within the nucleocapsid protein of avian coronavirus. Immunology. 1991;74:8–13. [PMC free article] [PubMed] [Google Scholar]
  4. Cao J., Wu C.C., Lin T.L. Complete genomic sequence of turkey coronavirus. Virus Res. 2008;136:43–49. doi: 10.1016/j.virusres.2008.04.015. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cavanagh D. Coronaviruses in poultry and other birds. Avian Pathol. 2005;34:439–448. doi: 10.1080/03079450500367682. [DOI] [PubMed] [Google Scholar]
  6. Cavanagh D. Coronavirus avian infectious bronchitis virus. Vet. Res. 2007;38:281–297. doi: 10.1051/vetres:2006055. [DOI] [PubMed] [Google Scholar]
  7. Cavanagh D., Davis P.J., Pappin D.J.C. Coronavirus IBV glycopolypeptides: Location studies using proteases and saponin, a membrane permeabilizer. Virus Res. 1986;4:145–156. doi: 10.1016/0168-1702(86)90038-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Cavanagh D., Mawditt K., Welchman D.B., Britton P., Gough R.E. Coronaviruses from pheasants (Phasianus colchicus) are genetically closely related to coronaviruses of domestic fowl (infectious bronchitis virus) and turkeys. Avian Pathol. 2002;31:81–93. doi: 10.1080/03079450120106651. [DOI] [PubMed] [Google Scholar]
  9. Chen Z., He W., Liang Z., Yan P., He H., Tang Y., Zhang J., Shen Z., Ni B., Wu Y., Li J. Protein prime-peptide boost as a new strategy induced an Eppin dominant B-cell epitope specific immune response and suppressed fertility. Vaccine. 2009;29:733–740. doi: 10.1016/j.vaccine.2008.11.025. [DOI] [PubMed] [Google Scholar]
  10. de Haan C.A.M., Rottier P.J.M. Molecular interactions in the assembly of coronaviruses. Adv. Virus Res. 2005;64:165–230. doi: 10.1016/S0065-3527(05)64006-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. den Boon J.A., Snijder E.J., Locker J.K., Horzinek M.C., Rottier P.J.M. Another triple-spanning envelope protein among intracellularly budding RNA viruses: The torovirus E protein. Virology. 1991;182:655–663. doi: 10.1016/0042-6822(91)90606-C. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Dong B.Q., Liu W., Fan X.H., Vijaykrishna D., Tang X.C., Gao F., Li L.F., Li G.J., Zhang J.X., Yang L.Q., Poon L.L., Zhang S.Y., Peiris J.S., Smith G.J., Chen H., Guan Y. Detection of a novel and highly divergent coronavirus from asian leopard cats and Chinese ferret badgers in Southern China. J. Virol. 2007;81:6920–6926. doi: 10.1128/JVI.00299-07. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Gomaa M.H., Barta J.R., Ojkic D., Yoo D. Complete genomic sequence of turkey coronavirus. Virus Res. 2008;135:237–246. doi: 10.1016/j.virusres.2008.03.020. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Gough R.E., Drury S.E., Culver F., Britton P., Cavanagh D. Isolation of a coronavirus from a green-cheeked Amazon parrot (Amazona viridigenalis Cassin) Avian Pathol. 2006;35:122–126. doi: 10.1080/03079450600597733. [DOI] [PubMed] [Google Scholar]
  15. Hofmann H., Hattermann K., Marzi A., Gramberg T., Geier M., Krumbiegel M., Kuate S., Uberla K., Niedrig M., Pöhlmann S. S protein of severe acute respiratory syndrome-associated coronavirus mediates entry into hepatoma cell lines and is targeted by neutralizing antibodies in infected patients. J. Virol. 2004;78:6134–6142. doi: 10.1128/JVI.78.12.6134-6142.2004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Ignjatovic J., Galli L. The S1 glycoprotein but not N or M proteins of avian infectious bronchitis virus induces protection in vaccinated chickens. Arch. Virol. 1994;138:117–134. doi: 10.1007/BF01310043. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Ignjatovic J., Galli L. Immune responses to structural proteins of avian infectious bronchitis virus. Avian Pathol. 1995;24:313–332. doi: 10.1080/03079459508419072. [DOI] [PubMed] [Google Scholar]
  18. Ignjatovic J., Sapats S. Identification of previously unknown antigenic epitopes on the S and N proteins of avian infectious bronchitis virus. Arch. Virol. 2005;150:1813–1831. doi: 10.1007/s00705-005-0541-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Johnson M.A., Pooley C., Ignjatovic J., Tyack S.G. A recombinant fowl adenovirus expressing the S1 gene of infectious bronchitis virus protects against challenge with infectious bronchitis virus. Vaccine. 2003;21:2730–2736. doi: 10.1016/S0264-410X(03)00227-5. [DOI] [PubMed] [Google Scholar]
  20. Jonassen C.M., Kofstad T., Larsen I.L., Lovland A., Handeland K., Follestad A., Lillehang A. Molecular identification and characterization of novel coronaviruses infecting greylag geese (Anser anser), feral pigeons (Columba livia) and mallards (Anas platyrhynchos) J. Gen. Virol. 2005;86:1597–1607. doi: 10.1099/vir.0.80927-0. [DOI] [PubMed] [Google Scholar]
  21. Kant A., Koch G., van Roozelaar D.J., Kusters J.G., Poelwijk F.A.J., van der Zeijst B.A.M. Location of antigenic sites defined by neutralising monoclonal antibodies on the S1 avian infectious bronchitis virus glycopolypeptide. J. Gen. Virol. 1992;73:591–596. doi: 10.1099/0022-1317-73-3-591. [DOI] [PubMed] [Google Scholar]
  22. Koch G., Hartog L., Kant A., van Roozelaar D. Antigenic domains on the peplomer protein of avian infectious bronchitis virus: correlation with biological functions. J. Gen. Virol. 1990;71:1929–1935. doi: 10.1099/0022-1317-71-9-1929. [DOI] [PubMed] [Google Scholar]
  23. Kusters J.G., Jager E.J., Lenstra J.A., Koch G., Posthumus W.P.A., Meloen R.H., van der Zeijst B.A.M. Analysis of an immunodominant region of infectious bronchitis virus. J. Immunol. 1989;143:2692–2698. [PubMed] [Google Scholar]
  24. Langeveld J., Martinez-Torrecuadrada J., Boshuizen R., Meloen R., Ignacio C. Characterisation of a protective linear B cell epitope against feline parvoviruses. Vaccine. 2001;19:2352–2360. doi: 10.1016/S0264-410X(00)00526-0. [DOI] [PubMed] [Google Scholar]
  25. Lenstra J.A., Kusters J.G., Koch G., van der Zeijst B.A.M. Antigenicity of the peplomer protein of infectious bronchitis virus. Mol. Immunol. 1989;26:7–15. doi: 10.1016/0161-5890(89)90014-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Liu S., Chen J., Chen J., Kong X., Shao Y., Han Z., Kong X. Isolation of avian infectious bronchitis coronavirus from domestic peafowl (Pavo cristatus) and teal (Anas) J. Gen. Virol. 2005;86:719–725. doi: 10.1099/vir.0.80546-0. [DOI] [PubMed] [Google Scholar]
  27. Liu S., Chen J., Han Z., Zhang Q., Shao Y., Kong X. Infectious bronchitis virus: S1 gene characteristics of vaccines used in China and efficacy of vaccination against heterologous strains from China. Avian Pathol. 2006;35:394–399. doi: 10.1080/03079450600920984. [DOI] [PubMed] [Google Scholar]
  28. Liu S., Han Z., Chen J., Liu X., Shao Y., Kong X. S1 gene sequence heterogeneity of a pathogenic infectious bronchitis virus strain and its embryo-passaged, attenuated derivatives. Avian Pathol. 2007;36:231–234. doi: 10.1080/03079450701338730. [DOI] [PubMed] [Google Scholar]
  29. Liu S., Kong X. A new genotype of nephropathogenic infectious bronchitis virus circulating in vaccinated and nonvaccinated flocks in China. Avian Pathol. 2004;33:321–327. doi: 10.1080/0307945042000220697. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Liu S., Wang Y., Ma Y., Han Z., Zhang Q., Shao Y., Chen J., Kong X. Identification of a newly isolated avian infectious bronchitis coronavirus variant in China exhibiting affinity for the respiratory tract. Avian Dis. 2008;52:306–314. doi: 10.1637/8110-091307-ResNote.1. [DOI] [PubMed] [Google Scholar]
  31. Liu S., Zhang Q., Chen J., Han Z., Liu X., Feng L., Kong X. Genetic diversity of avian infectious bronchitis coronavirus strains isolated in China between 1995 and 2004. Arch. Virol. 2006;151:1133–1148. doi: 10.1007/s00705-005-0695-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Liu S., Zhang Q., Chen J., Han Z., Shao Y., Kong X. Identification of the avian infectious bronchitis coronaviruses with mutations in gene 3. Gene. 2008;412:12–25. doi: 10.1016/j.gene.2008.01.004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Liu S., Zhang X., Wang Y., Li C., Liu Q., Han Z., Zhang Q., Kong X., Tong G. Evaluation of the protection conferred by commercial vaccines and attenuated heterologous isolates in China against the CK/CH/LDL/97I strain of infectious bronchitis coronavirus. Vet. J. 2009;179:130–136. doi: 10.1016/j.tvjl.2007.08.018. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Masters P.S. The molecular biology of coronaviruses. Adv. Virus Res. 2006;66:193–292. doi: 10.1016/S0065-3527(06)66005-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Mihindukulasuriya K.A., Wu G., St. Leger J., Nordhausen R.W., Wang D. Identification of a novel coronavirus from a beluga whale by using a panviral microarray. J. Virol. 2008;82:5084–5088. doi: 10.1128/JVI.02722-07. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Moore K.M., Jackwood M.W., Hilt D.A. Identification of amino acids involved in a serotype and neutralisation specific epitope within the S1 subunit of avian infectious bronchitis virus. Arch. Virol. 1997;142:2249–2256. doi: 10.1007/s007050050239. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Niesters H.G.M., Bleumink-Pluym N.M.C., Osterhaus A.D.M.E., Horzinek M.C., van der Zeijst B.A.M. Epitopes on the peplomer protein of infectious bronchitis virus strain M41 as defined by monoclonal antibodies. Virology. 1987;161:511–519. doi: 10.1016/0042-6822(87)90145-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Roggen E.L. Recent developments with B-cell epitope identification for predictive studies. J. Immunotox. 2006;3:137–149. doi: 10.1080/15476910600845690. [DOI] [PubMed] [Google Scholar]
  39. Rottier P.J.M., Brandenburg D., Armstrong J., van der Zeijst B.A.M. Assembly in vitro of a spanning membrane protein of the endoplasmic reticulum: The E1 glycoprotein of coronavirus mouse hepatitis virus A59. Proc. Natl. Acad. Sci. USA. 1984;81:1421–1425. doi: 10.1073/pnas.81.5.1421. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Ruf J., Carayon P., Sarles-Philip N., Kourilsky F., Lissitzky S. Specificity of monoclonal antibodies against human thyroglobulin; comparison with autoimmune antibodies. EMBO J. 1983;2:1821–1826. doi: 10.1002/j.1460-2075.1983.tb01664.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Seah J.N., Yu L., Kwang J. Localization of linear B-cell epitopes on infectious bronchitis virus nucleocapsid protein. Vet. Microbiol. 2000;75:11–16. doi: 10.1016/S0378-1135(00)00202-9. [DOI] [PubMed] [Google Scholar]
  42. Seo S.H., Wang L., Smith R., Collisson E.W. The car-boxyl-terminal 120-residue polypetide of infectious bronchitis virus nucleocapsid induces cytotoxic T lymphocytes and protects chickens from acute infection. J. Virol. 1997;71:7888–7894. doi: 10.1128/jvi.71.10.7889-7894.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc. Natl. Acad. Sci. USA. 1979;76:4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Vilella R., Yague J., Vives J. Monoclonal antibody against HLA-Aw32+A25. Is HLA-Aw32 an allele with no unique antigenic determinant? Hum. Immunol. 1983;6:53–62. doi: 10.1016/0198-8859(83)90073-3. [DOI] [PubMed] [Google Scholar]
  45. Walter G. Production and use of antibodies against synthetic peptides. J. Immunol. Methods. 1986;88:149–161. doi: 10.1016/0022-1759(86)90001-3. [DOI] [PubMed] [Google Scholar]
  46. Woo P.C.Y., Lau S.K.P., Lam C.S.F., Lai K.K.Y., Huang Y., Lee P., Luk G.S.M., Dyrting K.C., Chan K.H., Yuen K.Y. Comparative analysis of complete genome sequences of three avian coronaviruses reveals a novel group 3c coronavirus. J. Virol. 2008;82:908–917. doi: 10.1128/JVI.01977-08. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Yachida S., Aoyama S., Takahashi N., Iritani Y., Katagiri K. Growth kinetics of embryo- and organ-culture adapted Beaudette strain of infectious bronchitis virus in embryonated chicken eggs. Avian Dis. 1979;23:128–131. [PubMed] [Google Scholar]

Articles from Journal of Microbiology (Seoul, Korea) are provided here courtesy of Nature Publishing Group

RESOURCES