Abstract
In recent years, the in silico epitopes prediction tools have facilitated the progress of vaccines development significantly and many have been applied to predict epitopes in viruses successfully. Herein, a general overview of different tools currently available, including T cell and B cell epitopes prediction tools, is presented. And the principles of different prediction algorithms are reviewed briefly. Finally, several examples are present to illustrate the application of the prediction tools.
Key words: Epitope, Bioinformatics, Epitope prediction algorithms
Footnotes
Fundation items: The National Natural Science Foundations of China (30870131) and the National Key Projects in the Infectious Fields (2008ZX10002-011, 2008ZX10004-004).
References
- 1.Blythe M. J., Flower D. R. Benchmarking B cell epitope prediction: Underperformance of existing methods. Protein Sci. 2005;14(1):246–248. doi: 10.1110/ps.041059505. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 2.Bui H.H., Peters B., Assarsson E., et al. Ab and T cell epitopes of influenza A virus, knowledge and opportunities. Proc Natl Acad Sci USA. 2007;104(1):246–251. doi: 10.1073/pnas.0609330104. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 3.Buus S., Lauemøller S. L., Worning P., et al. Sensitive quantitative predictions of peptide-MHC binding by a ‘Query by Committee’ artificial neural network approach. Tissue Antigens. 2003;62(5):378–384. doi: 10.1034/j.1399-0039.2003.00112.x. [DOI] [PubMed] [Google Scholar]
- 4.Davies M. N., Flower D. R. Harnessing bioinformatics to discover new vaccines. Drug Discov Today. 2007;12(9–10):389–395. doi: 10.1016/j.drudis.2007.03.010. [DOI] [PubMed] [Google Scholar]
- 5.Díaz I., Pujols J., Ganges L., et al. In silico prediction and ex vivo evaluation of potential T-cell epitopes in glycoproteins 4 and 5 and nucleocapsid protein of genotype-I (European) of porcine reproductive and respiratory syndrome virus. Vaccine. 2009;27(41):5603–5611. doi: 10.1016/j.vaccine.2009.07.029. [DOI] [PubMed] [Google Scholar]
- 6.Donnes P., Elofsson A. Prediction of MHC class Ibinding peptides, using SVMHC. BMC Bioinformatics. 2002;3:25. doi: 10.1186/1471-2105-3-25. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 7.Donnes P., Kohlbacher O. SVMHC: a server for prediction of MHC-binding peptides. Nucl Acids Res. 2006;34:W194–W197. doi: 10.1093/nar/gkl284. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 8.Guan P., Doytchinova I. A., Zygouri C., et al. MHCPred: bringing a quantitative dimension to the online prediction of MHC binding. Appl Bioinformatics. 2003;2(1):63–66. [PubMed] [Google Scholar]
- 9.Haste Andersen P., Nielsen M., Lund O. Prediction of residues in discontinuous B-cell epitopes using protein 3D structures. Protein Sci. 2006;15(11):2558–2567. doi: 10.1110/ps.062405906. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 10.Herd K. A., Mahalingam S., Mackay I. M., et al. Cytotoxic T-lymphocyte epitope vaccination protects against human metapneumovirus infection and disease in mice. J Virol. 2006;80(4):2034–2044. doi: 10.1128/JVI.80.4.2034-2044.2006. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 11.Jameson B. A., Wolf H. The antigenic index: a novel algorithm for predicting antigenic determinants. Bioinformatics. 1988;4(1):181–186. doi: 10.1093/bioinformatics/4.1.181. [DOI] [PubMed] [Google Scholar]
- 12.Jin X., Newman M. J., De-Rosa S., et al. A novel HIV T helper epitope-based vaccine elicits cytokine-secreting HIV-specific CD4+ T cells in a Phase I clinical trial in HIV-uninfected adults. Vaccine. 2009;27(50):7080–7086. doi: 10.1016/j.vaccine.2009.09.060. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 13.Kulkarni-Kale U., Bhosles S., Kolaskar A. S. CEP: a conformational epitope prediction server. Nucl Acids Res. 2005;33:W168–W171. doi: 10.1093/nar/gki460. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 14.Larsen J. E., Lund O., Nielsen M. Improved method for predicting linear B-cell epitopes. Immunome Res. 2006;2:2. doi: 10.1186/1745-7580-2-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 15.Lv Y., Ruan Z., Wang L., et al. Identification of a novel conserved HLA-A*0201-restricted epitope from the spike protein of SARS-CoV. BMC Immunol. 2009;10:61. doi: 10.1186/1471-2172-10-61. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 16.Noguchi H., Kato R., Hanai T., et al. Hidden Markov model-based prediction of antigenic peptides that interact with MHC class II molecules. J Biosci Bioeng. 2002;94(3):264–270. doi: 10.1263/jbb.94.264. [DOI] [PubMed] [Google Scholar]
- 17.Rammensee H., Bachmann J., Emmerich N. P., et al. SYFPEITHI: database for MHC ligands and peptide motifs. Immunogenetics. 1999;50(3–4):213–219. doi: 10.1007/s002510050595. [DOI] [PubMed] [Google Scholar]
- 18.Saha S., Raghava G. P. Prediction of Continuous B-cell Epitopes in an Antigen Using Recurrent Neural Network. Proteins. 2006;65(1):40–48. doi: 10.1002/prot.21078. [DOI] [PubMed] [Google Scholar]
- 19.Simon G. G., Hu Y., Khan A. M., et al. Dendritic cell mediated delivery of plasmid DNA encoding LAMP/HIV-1 Gag fusion immunogen enhances T cell epitope responses in HLA DR4 transgenic mice. PLoS One. 2010;5(1):e8574. doi: 10.1371/journal.pone.0008574. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 20.Singh H., Raghava G. P. ProPred: Prediction of HLA-DR binding sites. Bioinformatics. 2001;17(12):1236–1237. doi: 10.1093/bioinformatics/17.12.1236. [DOI] [PubMed] [Google Scholar]
- 21.Wang B., Yao K., Liu G., et al. Computational Prediction and Identification of Epstein-Barr Virus Latent Membrane Protein 2A Antigen-Specific CD8+ T-Cell. Cell Mol Immunol. 2009;6(2):97–103. doi: 10.1038/cmi.2009.13. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 22.Zhang Z. W., Zhang Y. G., Wang Y. L., et al. Screening and identification of B cell epitopes of structural proteins of foot-and-mouth disease virus serotype Asia1. Vet Microbiol. 2010;140(1–2):25–33. doi: 10.1016/j.vetmic.2009.07.011. [DOI] [PubMed] [Google Scholar]