Skip to main content
Springer Nature - PMC COVID-19 Collection logoLink to Springer Nature - PMC COVID-19 Collection
. 2012 Feb 2;35(1):77–85. doi: 10.1007/s12272-012-0108-9

Synthesis and antiviral evaluation of 7-O-arylmethylquercetin derivatives against SARS-associated coronavirus (SCV) and hepatitis C virus (HCV)

Hye Ri Park 1, Hyunjun Yoon 1, Mi Kyoung Kim 1, Sung Dae Lee 2, Youhoon Chong 1,3,
PMCID: PMC7090976  PMID: 22297745

Abstract

Aryl diketoacid (ADK) is well known for antiviral activity which can be enhanced by introduction of an aromatic arylmethyl substituent. A natural flavonoid quercetin has a 3,5-dihydroxychromone pharmacophore which is in bioisosteric relationship with the 1,3-diketoacid moiety of the ADK. Thus, it was of our interest to test the antiviral activity of the quercetin derivatives with an arylmethyl group attached. In this study, we prepared a series of the 7-O-arylmethylquercetin derivatives with various aromatic substituents and evaluated their antiviral activity against the SARS-associated coronavirus (SARS-CoV, SCV) as well as hepatitis C virus (HCV). Single difference in the aromatic substituent fine-tuned the biological activity of the 7-O-arylmethylquercetin derivatives to result in two different classes of derivatives selectively active against SCV and HCV.

Key words: Quercetin, Arylmethyl, Hepatitis C, Severe acute respiratory syndrome (SARS)

Footnotes

These authors contributed equally to this work.

References

  1. Amoros M., Simös C. M. O., Girre L., Sauvager F., Cormier M. Synergistic effect of flavones and flavonols against herpes simplex virus type 1 in cell culture. Comparison with the antiviral activity of propolis. J. Nat. Prod. 1992;55:1732–1740. doi: 10.1021/np50090a003. [DOI] [PubMed] [Google Scholar]
  2. Ferry D. R., Smith A., Malkhandi J., Fyfe D. W., de Takats P. G., Anderson D., Baker J., Kerr D. J. Phase I clinical trial of the flavonoid quercetin: pharmacokinetics and evidence for in vivo tyrosine kinase inhibition. Clin. Cancer Res. 1996;2:659–668. [PubMed] [Google Scholar]
  3. Gozdek A., Zhukov I., Polkowska A., Poznanski J., Stankiewicz-Drogon A., Pawlowicz J. M., Zagorski-Ostoja W., Borowski P., Boguszewska-Chachulska A. NS3 Peptide, a novel potent hepatitis C virus NS3 helicase inhibitor: Its mechanism of action and antiviral activity in the replicon system. Antimicrob. Agents Chemother. 2008;52:393–401. doi: 10.1128/AAC.00961-07. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Harada S., Haneda E., Maekawa T., Morikawa Y., Funayama S., Nagata N., Ohtsuki K. Casein kinase II (CK-II)-mediated stimulation of HIV-1 reverse transcriptase activity and characterization of selective inhibitors in vitro. Biol. Pharm. Bull. 1999;22:1122–1126. doi: 10.1248/bpb.22.1122. [DOI] [PubMed] [Google Scholar]
  5. Kaul T. N., Middleton E., Jr., Ogra P. L. Antiviral effect of flavonoids on human viruses. J. Med. Virol. 1985;15:71–79. doi: 10.1002/jmv.1890150110. [DOI] [PubMed] [Google Scholar]
  6. Kim J., Kim K.-S., Lee H. S., Park K.-S., Park S. Y., Kang S.-Y., Lee S. J., Park H. S., Kim D.-E., Chong Y. Effects of the aryl linker and the aromatic substituent on the anti-HCV activities of aryl diketoacid (ADK) analogues. Bioorg. Med. Chem. Lett. 2008;18:4661–4665. doi: 10.1016/j.bmcl.2008.07.008. [DOI] [PubMed] [Google Scholar]
  7. Lamson D. W., Brignall M. S. Antioxidant and cancer III: quercetin. Altern. Med. Rev. 2000;5:196–208. [PubMed] [Google Scholar]
  8. Lee C., Lee J. M., Lee N.-R., Kim D.-E., Jeong Y.-J., Chong Y. Investigation of the pharmacophore space of severe acute respiratory syndrome coronavirus (SARSCoV) NTPase/helicase by dihydroxychromone derivatives. Bioorg. Med. Chem. Lett. 2009;19:4538–4541. doi: 10.1016/j.bmcl.2009.07.009. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Lee C., Lee J. M., Lee N.-R., Jin B.-S., Jang K. J., Kim D.-E., Jeong Y.-J., Chong Y. Aryl diketoacids (ADK) selectively inhibit duplex DNA-unwinding activity of SARS coronavirus NTPase/helicase. Bioorg. Med. Chem. Lett. 2009;19:1636–1638. doi: 10.1016/j.bmcl.2009.02.010. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Lee H. S., Park K.-S., Lee C., Lee B., Kim D.-E., Chong Y. 7-O-Arylmethylgalangin as a novel scaffold for anti-HCV agents. Bioorg. Med. Chem. Lett. 2010;20:5709–5712. doi: 10.1016/j.bmcl.2010.08.012. [DOI] [PubMed] [Google Scholar]
  11. Li M., Han X., Yu B. Facile synthesis of flavonoid 7-Oglycosides. J. Org. Chem. 2003;68:6842–6845. doi: 10.1021/jo034553e. [DOI] [PubMed] [Google Scholar]
  12. Lohmann V., Korner F., Koch J., Herian U., Theilmann L., Bartenschlager R. Replication of subgenomic hepatitis C virus RNAs in a hepatoma cell line. Science. 1999;285:110–113. doi: 10.1126/science.285.5424.110. [DOI] [PubMed] [Google Scholar]
  13. Sabui S. K., Venkateswaran R. V. Synthesis of O-methyl epi-heliannuol E. Tetrahedron. 2003;59:8375–8381. doi: 10.1016/j.tet.2003.08.059. [DOI] [Google Scholar]
  14. Vrijsen R., Everaert L., Boeyé A. Antiviral activity of flavones and potentiation by ascorbate. J. Gen. Virol. 1988;69:1749–1751. doi: 10.1099/0022-1317-69-7-1749. [DOI] [PubMed] [Google Scholar]
  15. Vroljk J. M., Kaul A., Hansen B. E., Lohmann V., Haagmans B. L., Schalm S. W., Bartenschlager R. A repliconbased bioassay for the measurement of interferons in patients with chronic hepatitis C. J. Virol. Methods. 2003;110:201–209. doi: 10.1016/S0166-0934(03)00134-4. [DOI] [PubMed] [Google Scholar]

Articles from Archives of Pharmacal Research are provided here courtesy of Nature Publishing Group

RESOURCES