Skip to main content
Springer Nature - PMC COVID-19 Collection logoLink to Springer Nature - PMC COVID-19 Collection
. 2010 Jan 14;14(6):731–737. doi: 10.1007/s12257-009-3012-5

Production of a heat-labile enterotoxin B subunit-porcine epidemic diarrhea virus-neutralizing epitope fusion protein in transgenic lettuce (Lactuca sativa)

Nguyen-Xuan Huy 1, Young-Sook Kim 1, Sang-Chel Jun 1, Zhewu Jin 1, Seung-Moon Park 1, Moon-Sik Yang 1, Tae-Geum Kim 1,
PMCID: PMC7091058  PMID: 32218676

Abstract

Plant-based vaccines have been produced in transgenic plants including tobacco, potatoes, corn, and rice. However, these plants are not suitable for administration without cooking. To overcome this obstacle, a fusion gene encoding the synthetic enterotoxigenic Escherichia coli heat-labile enterotoxin B subunit genetically fused with a synthetic neutralizing epitope of porcine epidemic diarrhea virus (sLTB-sCOE) was introduced into lettuce cells (Lactuca sativa) by Agrobacterium-mediated transformation methods. The integration and expression of the sLTB-sCOE fusion gene was confirmed in transgenic lettuce by genomic DNA PCR amplification and Northern blot analysis, respectively. Synthesis and assembly of the LTB-COE fusion protein into oligomeric structures with pentamer size were observed in transgenic plant extracts by Western blot analysis with anti-LTB or anti-COE antibodies. The binding of plantproduced LTB-COE to intestinal epithelial cell membrane glycolipid receptors was confirmed by GM1-ganglioside enzyme-linked immunosorbent assay (GM1-ELISA). Based on the ELISA results, LTB-COE fusion protein made up about 0.026∼0.048% of the total soluble protein in the transgenic lettuce leaf tissues. The synthesis and assembly of LTB-COE monomers into biologically active oligomers in transgenic lettuce leaf tissues demonstrates the feasibility of using uncooked edible plant-based vaccines for mucosal immunization.

Keywords: enterotoxigenic Escherichia coli heat-labile enterotoxin B subunit, edible vaccine, lettuce, mucosal immunization, PEDV

References

  • 1.Pensaert M. B. Porcine epidemic diarrhea. In: Straw B. E., D’Allaire S., Mengeling W. L., Taylor D. I., editors. Diseases of swine. Iowa, USA: Iowa State University Press; 1999. pp. 179–185. [Google Scholar]
  • 2.Pensaert M. B., De Bouck P. A new coronavirus-like particle associated with diarrhea in swine. Arch. Virol. 1978;58:243–247. doi: 10.1007/BF01317606. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3.Wood E. N. An apparently new syndrome of porcine epidemic diarrhea. Vet. Rec. 1977;100:243–244. doi: 10.1136/vr.100.12.243. [DOI] [PubMed] [Google Scholar]
  • 4.Kim C. O., Choi C., Min K., Cho W. S., Kim J., Tai J. H. Prevalence of porcine epidemic diarrhea virus and transmissible gastroenteritis virus infection in Korean pigs. Vet. Rec. 2000;147:606–608. doi: 10.1136/vr.147.21.606. [DOI] [PubMed] [Google Scholar]
  • 5.Jimenez G., Castro J. M., Del Pozzo M., Correa I., Dela Torre J., Enjuanes L. Identification of a coronavirus inducing porcine gastroenteritis in spain. Proc. Int. Pig vet. Rec. Congr. 1986;9:186. [Google Scholar]
  • 6.Lauterslager T. G. M., Florack D. E. A., van der Wal T. J., Molthoff J. W., Langeveld J. P. M., Bosch D., Boersma W. J. A., Hilgers L. A. Th. Oral immunization of naive and primed animals with transgenic potato tubers expressing LT-B. Vaccine. 2001;19:2749–2755. doi: 10.1016/S0264-410X(00)00513-2. [DOI] [PubMed] [Google Scholar]
  • 7.Chang S. H., Bae J. L., Kang T. J., Kim J., Chung G. H., Lim C. W., Laude H., Yang M. S., Jang Y. S. Identification of the region capable of induction neutralizing antibodies against the porcine epidemic diarrhea virus. Mol. Cells. 2002;14:295–299. [PubMed] [Google Scholar]
  • 8.Bae J. L., Lee J. G., Kang T. J., Jang H. S., Jang Y. S., Yang M. S. Induction of antigen-specific systemic and mucosal immune responses by feeding animals transgenic plants expressing the antigen. Vaccine. 2003;21:4052–4058. doi: 10.1016/S0264-410X(03)00360-8. [DOI] [PubMed] [Google Scholar]
  • 9.Mason H. S., Ball J. M., Shi J. J., Jiang X., Estes M. K., Arntzen C. J. Expression of norwalk virus capsid protein in transgenic tobacco and potato and its oral immunogenicity in mice. Proc. Natl. Acad. Sci. USA. 1996;93:5335–5340. doi: 10.1073/pnas.93.11.5335. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.Thanavala Y., Yang Y. F., Lyons P., Mason H. S., Arntzen C. J. Immunogenicity of transgenic plant-derived hepatitis B surface antigen. Proc. Natl. Acad. Sci. USA. 1995;92:3358–3361. doi: 10.1073/pnas.92.8.3358. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Haq T. A., Mason H. S., Clements J. D., Arntzen C. J. Oral immunization with a recombinant bacterial antigen produced in transgenic plants. Science. 1995;268:714–716. doi: 10.1126/science.7732379. [DOI] [PubMed] [Google Scholar]
  • 12.Cho J. M., Kwon J. Y., Lim J. A., Kim D. I. Increased hGM-CSF production and secretion with pluronic F-68 in transgenic Nicotiana tabacum suspension cell cultures. Biotechnol. Bioprocess Eng. 2007;12:594–600. doi: 10.1007/BF02931074. [DOI] [Google Scholar]
  • 13.Kim T. G., Langridge W. H. Synthesis of an HIV-1 Tat transduction domain-rotavirus enterotoxin fusion protein in transgenic potato. Plant Cell Rep. 2004;22:382–387. doi: 10.1007/s00299-003-0697-3. [DOI] [PubMed] [Google Scholar]
  • 14.Yu D. H., Song M. H., Lim J. A., Kim D. I. Effects of culture media on hCTLA4Ig production and protein expression patterns in transgenic rice cell suspension cultures. Biotechnol. Bioprocess Eng. 2008;13:424–430. doi: 10.1007/s12257-008-0140-2. [DOI] [Google Scholar]
  • 15.Arakawa T., Chong D. K., Yu J., Hough J., Engen P. C., Elliott J. F., Langridge W. H. Suppression of autoimmune diabetes by a plant-delivered cholera toxin B subunit-human glutamate decarboxylase fusion protein. Transgenics. 1999;3:51–60. [Google Scholar]
  • 16.Mitchell V. S., Philipose N. M., Sanford J. P. The children’s vaccine initiative. Washington, DC, USA: National Academy Press; 1993. pp. 1–221. [PubMed] [Google Scholar]
  • 17.Yu J., Langridge W. H. Novel approaches to oral vaccines: delivery of antigens by edible plants. Curr. Infect. Dis. Rep. 2000;2:73–77. doi: 10.1007/s11908-000-0091-z. [DOI] [PubMed] [Google Scholar]
  • 18.De Cosa B., Moar W., Lee S. B., Miller M., Daniel H. Overexpression of the Bt cry2Aa2 operon in chloroplasts leads to formation of insecticidal crystals. Nat. Biotechnol. 2001;19:71–74. doi: 10.1038/83559. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.Kang T. J., Han S. C., Jang M. O., Kang K. H., Jang Y. S., Yang M. S. Enhanced expression of Bsubunit of Escherichia coli heat-labile enterotoxin in tobacco by optimization of coding sequence. Appl. Biochem. Biotechnol. 2004;117:175–187. doi: 10.1385/ABAB:117:3:175. [DOI] [PubMed] [Google Scholar]
  • 20.Kapila J., De Rycke R., Van Montagu M., Angenon G. An Agrobacterium-mediated transient gene expression system for intact leaves. Plant Sci. 1997;122:101–108. doi: 10.1016/S0168-9452(96)04541-4. [DOI] [Google Scholar]
  • 21.Marillonnet S., Thoeringer C., Kandzia R., Klimyuk V., Gleba Y. Systemic Agrobacterium tumefaciens-mediated transfection of viral replicons for efficient transient expression in plants. Nat. Biotechnol. 2005;23:718–723. doi: 10.1038/nbt1094. [DOI] [PubMed] [Google Scholar]
  • 22.Kim T. G., Befus N., Langridge W. H. Coimmunization with an HIV-1 tat transduction peptiderotavirus enterotoxin fusion protein stimulates a Th1 mucosal response in mice. Vaccine. 2004;22:431–438. doi: 10.1016/j.vaccine.2003.07.015. [DOI] [PubMed] [Google Scholar]
  • 23.Williams N. A., Hirst T. R., Nashar T. O. Immune modulation by the cholera-like enterotoxins: from adjuvant to therapeutic. Immunol. Today. 1999;20:95–101. doi: 10.1016/S0167-5699(98)01397-8. [DOI] [PubMed] [Google Scholar]
  • 24.Bagdasarian M. M., Nagai M., Frey J., Bagdasarian M. Immunogenicity of Actinobacillus ApxIA toxin epitopes fused to the Escherichia coli heatlabile enterotoxin B subunit. Vaccine. 1999;17:441–447. doi: 10.1016/S0264-410X(98)00216-3. [DOI] [PubMed] [Google Scholar]
  • 25.Arakawa T., Yu J., Chong D. K., Hough J., Engen P. C., Langridge W. H. A plant-based cholera toxin B subunit-insulin fusion protein protects against the development of autoimmune diabetes. Nat. Biotechnol. 1998;16:934–938. doi: 10.1038/nbt1098-934. [DOI] [PubMed] [Google Scholar]
  • 26.Holmgren J., Lonnroth I., Mansson J., Svennerholm L. Interaction of the cholera toxin and membrane Gm1 ganglioside of small intestine. Proc. Nat. Acad. Sci. USA. 1975;72:2520–2524. doi: 10.1073/pnas.72.7.2520. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27.Millar D. G., Hirst T. R., Snider D. P. Escherichia coli heat-labile enterotoxin B subunit is a more potent mucosal adjuvant than its closely related homologue, the B subunit of cholera toxin. Infect. Immun. 2001;69:3476–3482. doi: 10.1128/IAI.69.5.3476-3482.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28.Kang T. J., Han S. C., Yang M. S., Jang Y. S. Expression of synthetic neutralizing epitope of porcine epidemic diarrhea virus fused with synthetic B subunit of Escherichia coli heat-labile enterotoxin in tobacco plants. Protein Expr. Purf. 2006;46:16–22. doi: 10.1016/j.pep.2005.07.026. [DOI] [PubMed] [Google Scholar]
  • 29.Oszvald M., Kang T. J., Tomoskozi S., Tamas C., Tamas L., Kim T. G., Yang M. S. Expression of a synthetic neutralizing epitope of porcine epidemic diarrhea virus fused with synthetic B subunit of Escherichia coli heat labile enterotoxin in rice endosperm. Mol. Biotechnol. 2007;35:215–223. doi: 10.1007/BF02686007. [DOI] [PubMed] [Google Scholar]
  • 30.Kang T. J., Kwon T. H., Kim T. G., Loc N. H., Yang M. S. Comparing constitutive promoter using CAT activity in transgenic tobacco plants. Mol. Cells. 2003;16:117–122. [PubMed] [Google Scholar]
  • 31.Murashige T., Skoog F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 1962;15:473–497. doi: 10.1111/j.1399-3054.1962.tb08052.x. [DOI] [Google Scholar]
  • 32.Kim T. G., Kim M. Y., Kim B. G., Kang T. J., Kim Y. S., Jang Y. S., Arntzen C. J., Yang M. S. Synthesis and assembly of Escherichia coli heat-labile enterotoxin B subunit in transgenic lettuce (Lactuca sativa) Protein Expr. Purif. 2007;51:22–27. doi: 10.1016/j.pep.2006.05.024. [DOI] [PubMed] [Google Scholar]
  • 33.Maniatis T., Fritsch E. F., Sambrook J. Molecular cloning. 2nd ed. NY, USA: Cold Spring Harbor Laboratory Press, Cold Spring Harbor; 1989. [Google Scholar]
  • 34.Oszvald M., Kang T. J., Jenes B., Kim T. G., Tamas L., Yang M. S. Synthesis and assembly of Escherichia coli heat-labile enterotoxin B subunit in transgenic rice (Oryza sativa L.) Biotechnol. Bioprocess Eng. 2007;12:676–683. doi: 10.1007/BF02931085. [DOI] [Google Scholar]
  • 35.Kozak M. Possible role of flanking nucleotides in recognition of the AUG initiator codon by eukaryotic ribosomes. Nucleic Acids Res. 1981;9:5233–5262. doi: 10.1093/nar/9.20.5233. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36.Dean C., Jones J., Favreau M., Dunsmuir P., Bedbrook J. Influence of flanking sequences on variability in expression levels of an introduced gene in transgenic tobacco plants. Nucleic Acids Res. 1988;16:9267–9283. doi: 10.1093/nar/16.19.9267. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 37.Peach C., Velten J. Transgene expression variability position effect of CAT and GUS reporter genes driven by linked divergent T-DNA promoters. Plant Mol. Biol. 1991;17:49–60. doi: 10.1007/BF00036805. [DOI] [PubMed] [Google Scholar]
  • 38.Kang T. J., Loc N. H., Jang M. O., Jang Y. S., Kim Y. S., Seo J. E., Yang M. S. Expression of the B subunit of Escherichia coli heat-labile enterotoxin in the chloroplasts of plants and its characterization. Transgenic Res. 2003;12:683–691. doi: 10.1023/B:TRAG.0000005114.23991.bc. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biotechnology and Bioprocess Engineering are provided here courtesy of Nature Publishing Group

RESOURCES