Skip to main content
Springer Nature - PMC COVID-19 Collection logoLink to Springer Nature - PMC COVID-19 Collection
. 2012 Oct 24;17(5):966–971. doi: 10.1007/s12257-012-0242-8

Inhibitory effects of epigallocatechin gallate and its glucoside on the human intestinal maltase inhibition

Thi Thanh Hanh Nguyen 1, Sun-Hwa Jung 2, Sun Lee 1, Hwa-Ja Ryu 1, Hee-Kyoung Kang 1, Young-Hwan Moon 3, Young-Min Kim 4, Atsuo Kimura 5, Doman Kim 1,
PMCID: PMC7091073  PMID: 32218677

Abstract

Human intestinal maltase (HMA) is an α-glucosidase responsible for the hydrolysis of α-1,4-linkages from the non-reducing end of malto-oligosaccharides. HMA has become an important target in the treatment of type-2 diabetes. In this study, epigallocatechin gallate (EGCG) and EGCG glucoside (EGCG-G1) were identified as inhibitors of HMA by an in vitro assay with IC50 of 20 ± 1.0 and 31.5 ± 1.0 μM, respectively. A Lineweaver-Burk plot confirmed that EGCG and EGCG-G1 were competitive inhibitors of maltose substrate against HMA and inhibition kinetic constants (K i) calculated from a Dixon plot were 5.93 ± 0.26 and 7.88 ± 0.57 μM, respectively. Both EGCG and EGCG-G1 bound to the active site of HMA with numerous hydrophobic and hydrogen bond interactions.

Keywords: alpha-glucosidase, human intestinal maltase, EGCG, EGCG glucoside, molecular docking

References

  • 1.Zaveri N. T. Green tea and its polyphenolic catechins: Medicinal uses in cancer and noncancer applications. Life Sci. 2006;78:2073–2080. doi: 10.1016/j.lfs.2005.12.006. [DOI] [PubMed] [Google Scholar]
  • 2.Khan N., Afaq F., Saleem M., Ahmad N., Mukhtar H. Targeting multiple signaling pathways by green tea polyphenol (−)-epigallocatechin-3-gallate. Cancer Res. 2006;66:2500–2505. doi: 10.1158/0008-5472.CAN-05-3636. [DOI] [PubMed] [Google Scholar]
  • 3.Higdon J. V., Frei B. Tea catechins and polyphenols: Health effects, metabolism, and antioxidant functions. Crit. Rev. Food Sci. 2003;43:89–143. doi: 10.1080/10408690390826464. [DOI] [PubMed] [Google Scholar]
  • 4.Yang C. S., Wang X. Green tea and cancer prevention. Nutr. Cancer. 2010;62:931–937. doi: 10.1080/01635581.2010.509536. [DOI] [PubMed] [Google Scholar]
  • 5.Wolfram S., Wang Y., Thielecke F. Anti-obesity effects of green tea: From bedside to bench. Mol. Nutr. Food Res. 2006;50:176–187. doi: 10.1002/mnfr.200500102. [DOI] [PubMed] [Google Scholar]
  • 6.Hamiltonmiller J. M. T. Antimicrobial properties of tea (Camellia-Sinensis L) Antimicrob. Agents Chemother. 1995;39:2375–2377. doi: 10.1128/AAC.39.11.2375. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Shankar S., Ganapathy S., Hingorani S. R., Srivastava R. K. EGCG inhibits growth, invasion, angiogenesis and metastasis of pancreatic cancer. Front. Biosci. 2008;13:440–452. doi: 10.2741/2691. [DOI] [PubMed] [Google Scholar]
  • 8.Kitao S., Matsudo T., Saitoh M., Horiuchi T., Sekine H. Enzymatic syntheses of 2 stable (−)-epigallocatechin gallate-glucosides by sucrose phosphorylase. Biosci. Biotechnol. Biochem. 1995;59:2167–2169. doi: 10.1271/bbb.59.2167. [DOI] [Google Scholar]
  • 9.Moon Y. H., Lee J. H., Ahn J. S., Nam S. H., Oh D. K., Park D. H., Chung H. J., Kang S., Day D. F., Kim D. Synthesis, structure analyses, and characterization of novel epigallocatechin gallate (EGCG) glycosides using the glucansucrase from Leuconostoc mesenteroides B-1299CB. J. Agric. Food Chem. 2006;54:1230–1237. doi: 10.1021/jf052359i. [DOI] [PubMed] [Google Scholar]
  • 10.Lee K. M., Yeo M., Choue J. S., Jin J. H., Park S. J., Cheong J. Y., Lee K. J., Kim J. H., Hahm K. B. Protective mechanism of epigallocatechin-3-gallate against Helicobacter pylori-induced gastric epithelial cytotoxicity via the blockage of TLR-4 signaling. Helicobacter. 2004;9:632–642. doi: 10.1111/j.1083-4389.2004.00281.x. [DOI] [PubMed] [Google Scholar]
  • 11.Seo E. S., Kang J., Lee J. H., Kin G. E., Kim G. J., Kim D. Synthesis and characterization of hydroquinone glucoside using Leuconostoc mesenteroides dextransucrase. Enz. Microb. Technol. 2009;45:355–360. doi: 10.1016/j.enzmictec.2009.07.011. [DOI] [Google Scholar]
  • 12.Kim G. E., Lee J. H., Jung S. H., Seo E. S., Jin S. D., Kim G. J., Cha J., Kim E. J., Park K. D., Kim D. Enzymatic synthesis and characterization of hydroquinone galactoside using Kluyveromyces lactis Lactase. J. Agric. Food Chem. 2010;58:9492–9497. doi: 10.1021/jf101748j. [DOI] [PubMed] [Google Scholar]
  • 13.Tadera K., Minami Y., Takamatsu K., Matsuoka T. Inhibition of alpha-glucosidase and alpha-amylase by flavonoids. J. Nutr. Sci. Vitaminol. 2006;52:149–153. doi: 10.3177/jnsv.52.149. [DOI] [PubMed] [Google Scholar]
  • 14.Park H., Hwang K. Y., Oh K. H., Kim Y. H., Lee J. Y., Kim K. Discovery of novel alpha-glucosidase inhibitors based on the virtual screening with the homology-modeled protein structure. Bioorg. Med. Chem. 2008;16:284–292. doi: 10.1016/j.bmc.2007.09.036. [DOI] [PubMed] [Google Scholar]
  • 15.Rossi E. J., Sim L., Kuntz D. A., Hahn D., Johnston B. D., Ghavami A., Szczepina M. G., Kumar N. S., Sterchi E. E., Nichols B. L., Pinto B. M., Rose D. R. Inhibition of recombinant human maltase glucoamylase by salacinol and derivatives. FEBS J. 2006;273:2673–2683. doi: 10.1111/j.1742-4658.2006.05283.x. [DOI] [PubMed] [Google Scholar]
  • 16.Henrissat B., Davies G. Structural and sequencebased classification of glycoside hydrolases. Curr. Opin. Struct. Biol. 1997;7:637–644. doi: 10.1016/S0959-440X(97)80072-3. [DOI] [PubMed] [Google Scholar]
  • 17.Ryu H. J., Seo E. S., Kang H. K., Kim Y. M., Kim D. Expression, purification, and characterization of human intestinal maltase secreted from Pichia pastoris. Food Sci. Biotechnol. 2011;20:561–565. doi: 10.1007/s10068-011-0079-5. [DOI] [Google Scholar]
  • 18.Morris G. M., Goodsell D. S., Halliday R. S., Huey R., Hart W. E., Belew R. K., Olson A. J. Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J. Comput. Chem. 1998;19:1639–1662. doi: 10.1002/(SICI)1096-987X(19981115)19:14<1639::AID-JCC10>3.0.CO;2-B. [DOI] [Google Scholar]
  • 19.Hyun E. K., Park H. Y., Kim H. J., Lee J. K., Kim D., Oh D. K. Production of epigallocatechin gallate 7-O-alpha-Dglucopyranoside (EGCG-G1) using the glucosyltransferase from Leuconostoc mesenteroides. Biotechnol. Prog. 2007;23:1082–1086. doi: 10.1021/bp0700657. [DOI] [PubMed] [Google Scholar]
  • 20.Sim L., Quezada-Calvillo R., Sterchi E. E., Nichois B. L., Rose D. R. Human intestinal maltase-glucoamylase: Crystal structure of the N-terminal catalytic subunit and basis of inhibition and substrate specificity. J. Mol. Biol. 2008;375:782–792. doi: 10.1016/j.jmb.2007.10.069. [DOI] [PubMed] [Google Scholar]
  • 21.Thi T. H. N., Ryu H. J., Lee S. H., Hwang S., Cha J., Breton V., Kim D. Discovery of novel inhibitors for human intestinal maltase: Virtual screening in a WISDOM environment and in vitro evaluation. Biotechnol. Lett. 2011;33:2185–2191. doi: 10.1007/s10529-011-0675-8. [DOI] [PubMed] [Google Scholar]
  • 22.Nguyen T. T., Woo H. J., Kang H. K., Nguyen V. D., Kim Y. M., Kim D. W., Ahn S. A., Xia Y., Kim D. Flavonoidmediated inhibition of SARS coronavirus 3C-like protease expressed in Pichia pastoris. Biotechnol. Lett. 2012;31:831–838. doi: 10.1007/s10529-011-0845-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23.Nguyen T. T. H., Ryu H. J., Lee S. H., Hwang S., Breton V., Rhee J. H., Kim D. Virtual screening identification of novel severe acute respiratory syndrome 3C-like protease inhibitors and in vitro confirmation. Bioorg. Med. Chem. Lett. 2011;21:3088–3091. doi: 10.1016/j.bmcl.2011.03.034. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Wallace A. C., Laskowski R. A., Thornton J. M. Ligplot — a program to generate schematic diagrams of protein ligand interactions. Protein Eng. 1995;8:127–134. doi: 10.1093/protein/8.2.127. [DOI] [PubMed] [Google Scholar]
  • 25.de Melo E. B., Gomes A. D., Carvalho I. alpha- and beta-glucosidase inhibitors: chemical structure and biological activity. Tetrahedron. 2006;62:10277–10302. doi: 10.1016/j.tet.2006.08.055. [DOI] [Google Scholar]
  • 26.Li T., Liu J. W., Zhang X. D., Ji G. Antidiabetic activity of lipophilic (−)-epigallocatechin-3-gallate derivative under its role of alpha-glucosidase inhibition. Biomed. Pharmacother. 2007;61:91–96. doi: 10.1016/j.biopha.2006.11.002. [DOI] [PubMed] [Google Scholar]
  • 27.Toshima A., Matsui T., Noguchi M., Qiu J., Tamaya K., Miyata Y., Tanaka T., Tanaka K. Identification of alphaglucosidase inhibitors from a new fermented tea obtained by tearolling processing of loquat (Eriobotrya japonica) and green tea leaves. J. Agric. Food Chem. 2010;90:1545–1550. doi: 10.1002/jsfa.3983. [DOI] [PubMed] [Google Scholar]
  • 28.Kamiyama O., Sanae F., Ikeda K., Higashi Y., Minami Y., Asano N., Adachi I., Kato A. In vitro inhibition of alphaglucosidases and glycogen phosphorylase by catechin gallates in green tea. Food Chem. 2010;122:1061–1066. doi: 10.1016/j.foodchem.2010.03.075. [DOI] [Google Scholar]
  • 29.Wu D., Yu X. W., Wang T. C., Wang R., Xu Y. High yield Rhizopus chinenisis prolipase production in Pichia pastoris: Impact of methanol concentration. Biotechnol. Bioproc. Eng. 2011;16:305–311. doi: 10.1007/s12257-009-3021-4. [DOI] [Google Scholar]
  • 30.Zhang J. H., Wu D., Chen J., Wu J. Enhancing functional expression of beta-glucosidase in Pichia pastoris by coexpressing protein disulfide isomerase. Biotechnol. Bioproc. Eng. 2011;16:1196–1200. doi: 10.1007/s12257-011-0136-1. [DOI] [Google Scholar]
  • 31.Xu Z., Shih M. C., Poulton J. E. An extracellular exo-beta-(1,3)-glucanase from Pichia pastoris: Purification, characterization, molecular cloning, and functional expression. Protein Expr. Purif. 2006;47:118–127. doi: 10.1016/j.pep.2005.11.025. [DOI] [PubMed] [Google Scholar]
  • 32.Cereghino J. L., Cregg J. M. Heterologous protein expression in the methylotrophic yeast Pichia pastoris. FEMS Microbiol. Rev. 2000;24:45–66. doi: 10.1111/j.1574-6976.2000.tb00532.x. [DOI] [PubMed] [Google Scholar]

Articles from Biotechnology and Bioprocess Engineering are provided here courtesy of Nature Publishing Group

RESOURCES