Skip to main content
Springer Nature - PMC COVID-19 Collection logoLink to Springer Nature - PMC COVID-19 Collection
. 2016 Mar 18;21(1):128–133. doi: 10.1007/s12257-015-0384-6

A rapidly new-typed detection of norovirus based on F0F1-ATPase molecular motor biosensor

Zhuo Zhao 1, Jie Zhang 2,, Mei-Ling Xu 3, Zhi-Peng Liu 1, Hua Wang 1, Ming Liu 1, Yan-Yan Yu 1, Li Sun 1, Hui Zhang 1, Hai-Yan Wu 4
PMCID: PMC7091097  PMID: 32218681

Abstract

In order to adapt port rapid detection of food borne norovirus, presently we developed a new typed detection method based on F0F1-ATPase molecular motor biosensor. A specific probe was encompassed the conservative region of norovirus and F0F1-ATPase within chromatophore was constructed as a molecular motor biosensor through the “ε-subunit antibody-streptomycin-biotin-probe” system. Norovirus was captured based on probe-RNA specific binding. Our results demonstrated that the Limit of Quantification (LOQ) is 0.005 ng/mL for NV RNA and also demonstrated that this method possesses specificity and none cross-reaction for food borne virus. What’s more, the experiment used this method could be accomplished in 1 h. We detected 10 samples by using this method and the results were consistent with RT-PCR results. Overall, based on F0F1-ATPase molecular motors biosensor system we firstly established a new typed detection method for norovirus detection and demonstrated that this method is sensitive and specific and can be used in the rapid detection for food borne virus.

Keywords: norovirus, molecular motor biosensor, detection, F0F1-ATPase

Footnotes

These authors contributed equally to this work.

References

  • 1.Robinson C. M., Pfeiffer J. K. Virology. Leaping the norovirus hurdle. Sci. 2014;346:700–701. doi: 10.1126/science.aaa0607. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2.Cho H. G., Lee S. G., Kim J. E., Yu K. S., Lee D. Y., Park P. H., Yoon M. H., Jho E. H., Kim J., Paik S. Y. Molecular epidemiology of norovirus GII.4 variants in children under 5 years with sporadic acute gastroenteritis in South Korea during 2006–2013. J. Clin. Virol. 2014;61:340–344. doi: 10.1016/j.jcv.2014.08.018. [DOI] [PubMed] [Google Scholar]
  • 3.Iturriza-Gomara M., Lopman B. Norovirus in healthcare settings. Curr. Opin. Infect. Dis. 2014;27:437–443. doi: 10.1097/QCO.0000000000000094. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Ahmed S. M., Hall A. J., Robinson A. E., Verhoef L., Premkumar P., Parashar U. D., Koopmans M., Lopman B. A. Global prevalence of norovirus in cases of gastroenteritis: A systematic review and meta-analysis. Lancet Infect. Dis. 2014;14:725–730. doi: 10.1016/S1473-3099(14)70767-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Maunula L., Kaupke A., Vasickova P., Soderberg K., Kozyra I., Lazic S., van der Poel W. H., Bouwknegt M., Rutjes S., Willems K. A., Moloney R., D’Agostino M., de Roda H. A., von Bonsdorff C. H., Rzezutka A., Pavlik I., Petrovic T., Cook N. Tracing enteric viruses in the European berry fruit supply chain. Int. J.^Food Microbiol. 2013;167:177–185. doi: 10.1016/j.ijfoodmicro.2013.09.003. [DOI] [PubMed] [Google Scholar]
  • 6.Wang Q., Erickson M., Ortega Y. R., Cannon J. L. The fate of murine norovirus and hepatitis A virus during preparation of fresh produce by cutting and grating. Food Environ. Virol. 2013;5:52–60. doi: 10.1007/s12560-012-9099-4. [DOI] [PubMed] [Google Scholar]
  • 7.Sarvikivi E., Roivainen M., Maunula L., Niskanen T., Korhonen T., Lappalainen M., Kuusi M. Multiple norovirus outbreaks linked to imported frozen raspberries. Epidemiol. Infect. 2012;140:260–267. doi: 10.1017/S0950268811000379. [DOI] [PubMed] [Google Scholar]
  • 8.Ronnqvist M., Aho E., Mikkela A., Ranta J., Tuominen P., Ratto M., Maunula L. Norovirus transmission between hands, gloves, utensils, and fresh produce during simulated food handling. Appl. Environ. Microbiol. 2014;80:5403–5410. doi: 10.1128/AEM.01162-14. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.Lozano L. F., Hammami S., Castro A. E., Osburn B. Comparison of electron microscopy and polyacrylamide gel electrophoresis in the diagnosis of avian reovirus and rotavirus infections. Avian Dis. 1992;36:183–188. doi: 10.2307/1591488. [DOI] [PubMed] [Google Scholar]
  • 10.Sugihara K., Reupke H., Schmidt-Westhausen A., Pohle H. D., Gelderblom H. R., Reichart P. A. Negative staining EM for the detection of Epstein-Barr virus in oral hairy leukoplakia. J. Oral Pathol. Med. 1990;19:367–370. doi: 10.1111/j.1600-0714.1990.tb00861.x. [DOI] [PubMed] [Google Scholar]
  • 11.Saif L. J., Bohl E. H., Kohler E. M., Hughes J. H. Immune electron microscopy of transmissible gastroenteritis virus and rotavirus (reovirus-like agent) of swine. Am. J. Vet. Res. 1977;38:13–20. [PubMed] [Google Scholar]
  • 12.Dea S., Garzon S. Identification of coronaviruses by the use of indirect protein A-gold immunoelectron microscopy. J. Vet. Diagn. Invest. 1991;3:297–305. doi: 10.1177/104063879100300405. [DOI] [PubMed] [Google Scholar]
  • 13.Casanova Y. S., Boeira T. R., Sisti E., Celmer A., Fonseca A. S., Ikuta N., Simon D., Lunge V. R. A complete molecular biology assay for hepatitis C virus detection, quantification and genotyping. Rev. Soc. Bras. Med. Trop. 2014;47:287–294. doi: 10.1590/0037-8682-0040-2014. [DOI] [PubMed] [Google Scholar]
  • 14.Balasuriya U. B. Type A influenza virus detection from horses by real-time RT-PCR and insulated isothermal RT-PCR. Meth. Mol. Biol. 2014;1161:393–402. doi: 10.1007/978-1-4939-0758-8_34. [DOI] [PubMed] [Google Scholar]
  • 15.Boonham N., Kreuze J., Winter S., van der Vlugt R., Bergervoet J., Tomlinson J., Mumford R. Methods in virus diagnostics: From ELISA to next generation sequencing. Virus Res. 2014;186:20–31. doi: 10.1016/j.virusres.2013.12.007. [DOI] [PubMed] [Google Scholar]
  • 16.Jia N., Yan Z. Q., Liu G., Shen D. X., Suo J. J., Xing Y. B., Gao Y., Liu Y. X. Colloidal gold and dot-ELISA rapid tests for screening influenza A virus. Nan Fang Yi Ke Da Xue Xue Bao. 2010;30:2267–2269. [PubMed] [Google Scholar]
  • 17.Zhaohui S., Wenling Z., Bao Z., Rong S., Wenli M. Microarrays for the detection of HBV and HDV. J. Biochem. Mol. Biol. 2004;37:546–551. doi: 10.5483/BMBRep.2004.37.5.546. [DOI] [PubMed] [Google Scholar]
  • 18.Yao C. Y., Fu W. L. Biosensors for hepatitis B virus detection. World J. Gastroenterol. 2014;20:12485–12492. doi: 10.3748/wjg.v20.i35.12485. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.Pang Y., Wang J., Xiao R., Wang S. SERS molecular sentinel for the RNA genetic marker of PB1-F2 protein in highly pathogenic avian influenza (HPAI) virus. Biosens. Bioelectron. 2014;61:460–465. doi: 10.1016/j.bios.2014.04.018. [DOI] [PubMed] [Google Scholar]
  • 20.Van Thu V., Dung P. T., Tam L. T., Tam P. D. Biosensor based on nanocomposite material for pathogenic virus detection. Colloids Surf. B Biointerfaces. 2014;115:176–181. doi: 10.1016/j.colsurfb.2013.11.016. [DOI] [PubMed] [Google Scholar]
  • 21.Tao N., Cheng J., Wei L., Yue J. Self-assembly of F0F1-ATPase motors and ghost. Langmuir. 2009;25:5747–5752. doi: 10.1021/la804083f. [DOI] [PubMed] [Google Scholar]
  • 22.Azarashvili T., Odinokova I., Bakunts A., Ternovsky V., Krestinina O., Tyynela J., Saris N. E. Potential role of subunit c of F0F1-ATPase and subunit c of storage body in the mitochondrial permeability transition. Effect of the phosphorylation status of subunit c on pore opening. Cell Calcium. 2014;55:69–77. doi: 10.1016/j.ceca.2013.12.002. [DOI] [PubMed] [Google Scholar]
  • 23.Cheng J., Zhang X. A., Shu Y. G., Yue J. C. F0F1-ATPase activity regulated by external links on beta subunits. Biochem. Biophys. Res. Commun. 2010;391:182–186. doi: 10.1016/j.bbrc.2009.11.028. [DOI] [PubMed] [Google Scholar]
  • 24.Zhang J., Li Z., Zhang H., Wang J., Liu Y., Chen G. Rapid detection of several foodborne pathogens by F0F1-ATPase molecular motor biosensor. J. Microbiol. Methods. 2013;93:37–41. doi: 10.1016/j.mimet.2013.01.011. [DOI] [PubMed] [Google Scholar]
  • 25.Li Z., Liu X., Zhang Z. Preparation of F0F1 -ATPase nanoarray by dip-pen nanolithography and its application as biosensors. IEEE Trans Nanobiosci. 2008;7:194–199. doi: 10.1109/TNB.2008.2002282. [DOI] [PubMed] [Google Scholar]
  • 26.Dreyfus G., Williams A. W., Kawagishi I., Macnab R. M. Genetic and biochemical analysis of Salmonella typhimurium FliI, a flagellar protein related to the catalytic subunit of the F0F1 ATPase and to virulence proteins of mammalian and plant pathogens. J. Bacteriol. 1993;175:3131–3138. doi: 10.1128/jb.175.10.3131-3138.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27.Liu X., Zhang Y., Yue J., Jiang P., Zhang Z. F0F1-ATPase as biosensor to detect single virus. Biochem. Biophys. Res. Commun. 2006;342:1319–1322. doi: 10.1016/j.bbrc.2006.02.103. [DOI] [PubMed] [Google Scholar]
  • 28.Su T., Cui Y., Zhang X., Liu X., Yue J., Liu N., Jiang P. Constructing a novel Nanodevice powered by delta-free FoF1-ATPase. Biochem. Biophys. Res. Commun. 2006;350:1013–1018. doi: 10.1016/j.bbrc.2006.09.152. [DOI] [PubMed] [Google Scholar]
  • 29.Hanly W. C., Artwohl J. E., Bennett B. T. Review of polyclonal antibody production procedures in mammals and poultry. ILAR J. 1995;37:93–118. doi: 10.1093/ilar.37.3.93. [DOI] [PubMed] [Google Scholar]
  • 30.Zhang J., Xu M., Wang X., Wang Y., Wang X., Liu Y., Gu D., Chen G., Wang P., Yue J. Detection of food-borne rotavirus by molecular motor biosensor. Sheng Wu Gong Cheng Xue Bao. 2013;29:681–690. [PubMed] [Google Scholar]
  • 31.Kim G., Moon J. H., Moh C. Y., Lim J. G. A microfluidic nano-biosensor for the detection of pathogenic Salmonella. Biosens. Bioelectron. 2014;16:243–247. doi: 10.1016/j.bios.2014.08.023. [DOI] [PubMed] [Google Scholar]
  • 32.Singh M., Nesakumar N., Sethuraman S., Krishnan U. M., Rayappan J. B. Electrochemical biosensor with ceria-polyaniline core shell nano-interface for the detection of carbonic acid in blood. J. Colloid Interface Sci. 2014;425:52–58. doi: 10.1016/j.jcis.2014.03.041. [DOI] [PubMed] [Google Scholar]
  • 33.Holzinger M., Le Goff A., Cosnier S. Nanomaterials for biosensing applications: A review. Front Chem. 2014;2:63. doi: 10.3389/fchem.2014.00063. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34.Bagheryan Z., Raoof J. B., Ojani R., Rezaei P. Development of a new biosensor based on functionalized SBA-15 modified screen-printed graphite electrode as a nano-reactor for Gquadruplex recognition. Talanta. 2014;119:24–33. doi: 10.1016/j.talanta.2013.09.052. [DOI] [PubMed] [Google Scholar]
  • 35.Daggumati P., Kurtulus O., Chapman C. A., Dimlioglu D., Seker E. J. Vis. Exp. 2013. Microfabrication of nanoporous gold patterns for cell-material interaction studies; p. e50678. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biotechnology and Bioprocess Engineering are provided here courtesy of Nature Publishing Group

RESOURCES