Skip to main content
Springer Nature - PMC COVID-19 Collection logoLink to Springer Nature - PMC COVID-19 Collection
. 2014 Mar 11;19(1):70–75. doi: 10.1007/s12257-013-0599-3

Inhibition effect of flavonoid compounds against neuraminidase expressed in Pichia pastoris

Thi Thanh Hanh Nguyen 1, Hee-Kyoung Kang 1, Young-Min Kim 2, Tae-Su Jang 3, Doman Kim 1,3,
PMCID: PMC7091146  PMID: 32218679

Abstract

Neuraminidase (NA) is one of the two glycoproteins on the surface of influenza virus, which cleaves terminal sialic acid residues and facilitates the release of virions from infected cells. The recombinant NA from H5N1 influenza virus strain A/Vietnam/1203/04 was expressed in Pichia pastoris X33 as a 45 kDa protein that displayed a K m of 9.96 ± 1.26 μM with fluorogenic substrate, 2′-(4-methylumbelliferyl)-α-D-N-acetyl neuraminic acid. Partially purified NA was used for the inhibition and kinetic assays with eight flavonoid compounds and gallic acid. Among them, gallocatechin gallate (GCG) showed the best inhibition against NA with the IC50 of 8.98 ± 0.46 μM and showed a competitive inhibition pattern with K i value of 8.34 ± 0.25 μM. In molecular docking experiments, GCG displayed a binding energy of −13.71 kcal/mol to the active site of NA and the galloyl moiety was required for NA inhibition activity.

Keywords: neuraminidase, H5N1, Pichia pastoris, flavonoid, molecular docking, catechin

References

  • 1.Riedel S. Crossing the species barrier: The threat of an avian influenza pandemic. Proc.Bayl.Univ. Med. Cent. 2006;19:16–20. doi: 10.1080/08998280.2006.11928118. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2.Russell R J, Haire L F, Stevens D J, Collins P J, Lin Y P, Blackburn G M, Hay A J, Gamblin S J, Skehel J J. The structure of H5N1 avian influenza neuraminidase suggests new opportunities for drug design. Nature. 2006;443:45–49. doi: 10.1038/nature05114. [DOI] [PubMed] [Google Scholar]
  • 3.Bender C, Hall H, Huang J, Klimov A, Cox N, Hay A, Gregory V, Cameron K, Lim W, Subbarao K. Characterization of the surface proteins of influenza A (H5N1) viruses isolated from humans in 1997–1998. Virol. 1999;254:115–123. doi: 10.1006/viro.1998.9529. [DOI] [PubMed] [Google Scholar]
  • 4.D’Ursi P, Chiappori F, Merelli I, Cozzi P, Rovida E, Milanesi L. Virtual screening pipeline and ligand modelling for H5N1 neuraminidase. Biochem. Biophys. Res. Commun. 2009;383:445–449. doi: 10.1016/j.bbrc.2009.04.030. [DOI] [PubMed] [Google Scholar]
  • 5.Yen H L, Ilyushina N A, Salomon R, Hoffmann E, Webster R G, Govorkova E A. Neuraminidase inhibitorresistant recombinant A/Vietnam/1203/04 (H5N1) influenza viruses retain their replication efficiency and pathogenicity in vitro and in vivo. J. Virol. 2007;81:12418–12426. doi: 10.1128/JVI.01067-07. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Wetherall N T, Trivedi T, Zeller J, Hodges-Savola C, McKimm-Breschkin J L, Zambon M, Hayden F G. Evaluation of neuraminidase enzyme assays using different substrates to measure susceptibility of influenza virus clinical isolates to neuraminidase inhibitors: Report of the neuraminidase inhibitor susceptibility network. J. Clin. Microbiol. 2003;41:742–750. doi: 10.1128/JCM.41.2.742-750.2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.de Groot H, Rauen U. Tissue injury by reactive oxygen species and the protective effects of flavonoids. Fundam. Clin. Pharmacol. 1998;12:249–255. doi: 10.1111/j.1472-8206.1998.tb00951.x. [DOI] [PubMed] [Google Scholar]
  • 8.Tapas A R, Sakarkar D M, Kakde R B. Flavonoids as Nutraceuticals: A Review. Trop. J. Pharm. Res. 2008;7:1089–1099. doi: 10.4314/tjpr.v7i3.14693. [DOI] [Google Scholar]
  • 9.Song J M, Lee K H, Seong B L. Antiviral effect of catechins in green tea on influenza virus. Antiviral Res. 2005;68:66–74. doi: 10.1016/j.antiviral.2005.06.010. [DOI] [PubMed] [Google Scholar]
  • 10.Liu A L, Wang H D, Lee S M Y, Wang Y T, Du G H. Structure-activity relationship of flavonoids as influenza virus neuraminidase inhibitors and their in vitro anti-viral activities. Bioorg. Med. Chem. 2008;16:7141–7147. doi: 10.1016/j.bmc.2008.06.049. [DOI] [PubMed] [Google Scholar]
  • 11.Gietz D, Woods R A. Transformation of yeast by the lithium acetate single-stranded carrier DNA/PEG method. Yeast Gene Anal. 1998;26:53–66. doi: 10.1016/S0580-9517(08)70325-8. [DOI] [Google Scholar]
  • 12.Woo H J, Kang H K, Thi T H N, Kim G E, Kim Y M, Park J S, Kim D, Cha J, Moon Y H, Nam S H, Xia Y M, Kimura A, Kim D. Synthesis and characterization of ampelopsin glucosides using dextransucrase from Leuconostoc mesenteroides B-1299CB4: Glucosylation enhancing physicochemical properties. Enz. Microb. Tech. 2012;51:311–318. doi: 10.1016/j.enzmictec.2012.07.014. [DOI] [PubMed] [Google Scholar]
  • 13.Morris G M, Goodsell D S, Halliday R S, Huey R, Hart W E, Belew R K, Olson A J. Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J. Comput. Chem. 1998;19:1639–1662. doi: 10.1002/(SICI)1096-987X(19981115)19:14<1639::AID-JCC10>3.0.CO;2-B. [DOI] [Google Scholar]
  • 14.Nguyen T T H, Ryu H J, Lee S H, Hwang S, Breton V, Rhee J H, Kim D. Virtual screening identification of novel severe acute respiratory syndrome 3C-like protease inhibitors and in vitro confirmation. Bioorg. Med. Chem. Lett. 2011;21:3088–3091. doi: 10.1016/j.bmcl.2011.03.034. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Nguyen T T, Woo H J, Kang H K, Nguyen V D, Kim Y M, Kim D W, Ahn S A, Xia Y, Kim D. Flavonoidmediated inhibition of SARS coronavirus 3C-like protease expressed in Pichia pastoris. Biotechnol. Lett. 2012;34:831–838. doi: 10.1007/s10529-011-0845-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Wallace A C, Laskowski R A, Thornton J M. Ligplot — a program to generate schematic diagrams of protein ligand interactions. Protein Eng. 1995;8:127–134. doi: 10.1093/protein/8.2.127. [DOI] [PubMed] [Google Scholar]

Articles from Biotechnology and Bioprocess Engineering are provided here courtesy of Nature Publishing Group

RESOURCES