Abstract
Plasmonics-based biosensing assays have been extensively employed for biomedical applications. Significant advancements in use of plasmonic assays for the construction of point-of-care (POC) diagnostic methods have been made to provide effective and urgent health care of patients, especially in resourcelimited settings. This rapidly progressive research area, centered on the unique surface plasmon resonance (SPR) properties of metallic nanostructures with exceptional absorption and scattering abilities, has greatly facilitated the development of cost-effective, sensitive, and rapid strategies for disease diagnostics and improving patient healthcare in both developed and developing worlds. This review highlights the recent advances and applications of plasmonic technologies for highly sensitive protein and nucleic acid biomarker detection. In particular, we focus on the implementation and penetration of various plasmonic technologies in conventional molecular diagnostic assays, and discuss how such modification has resulted in simpler, faster, and more sensitive alternatives that are suited for point-of-use. Finally, integration of plasmonic molecular assays with various portable POC platforms for mobile health applications are highlighted.
Keywords: plasmonics, molecular assay, point-of-care diagnostics, mobile health, imaging, sensing
Acknowledgements
This work was supported by the Chancellor’s Faculty Excellence Program and the Kenan Institute for Engineering, Technology & Science (KIETS) at NC State.
References
- [1].Gubala V., Harris L. F., Ricco A. J., Tan M. X., Williams D. E. Point of care diagnostics: Status and future. Anal. Chem. 2012;84:487–515. doi: 10.1021/ac2030199. [DOI] [PubMed] [Google Scholar]
- [2].In vitro diagnostics: Technologies and global markets, ReportLinker, 2017, https://www.giiresearch.com/report/bc345450-vitro-diagnostics-technologies-global-markets.ht ml (accessed May 7, 2018).
- [3].Bauer W. S., Gulka C. P., Silva-Baucage L., Adams N. M., Haselton F. R., Wright D. W. Metal affinity-enabled capture and release antibody reagents generate a multiplex biomarker enrichment system that improves detection limits of rapid diagnostic tests. Anal. Chem. 2017;89:10216–10223. doi: 10.1021/acs.analchem.7b01513. [DOI] [PubMed] [Google Scholar]
- [4].Wei T. Y., Fu Y., Chang K. H., Lin K. J., Lu Y. J., Cheng C. M. Point-of-care devices using disease biomarkers to diagnose neurodegenerative disorders. Trends Biotechnol. 2018;36:290–303. doi: 10.1016/j.tibtech.2017.11.004. [DOI] [PubMed] [Google Scholar]
- [5].Tüdős A. J., Besselink G. A. J., Schasfoort R. B. M. Trends in miniaturized total analysis systems for point-of-care testing in clinical chemistry. Lab Chip. 2001;1:83–95. doi: 10.1039/B106958F. [DOI] [PubMed] [Google Scholar]
- [6].Duffy D., Mottez E., Ainsworth S., Buivan T. P., Baudin A., Vray M., Reed B., Fontanet A., Rohel A., Petrov-Sanchez V., et al. An in vitro diagnostic certified point of care single nucleotide test for IL28B polymorphisms. PLoS One. 2017;12:e0183084. doi: 10.1371/journal.pone.0183084. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [7].Zarei M. Portable biosensing devices for point-of-care diagnostics: Recent developments and applications. TrACTrends Anal. Chem. 2017;91:26–41. doi: 10.1016/j.trac.2017.04.001. [DOI] [Google Scholar]
- [8].Wang Y. Y., Zhou J. H., Li J. H. Construction of plasmonic nano-biosensor-based devices for point-of-care testing. Small Methods. 2017;1:1700197. doi: 10.1002/smtd.201700197. [DOI] [Google Scholar]
- [9].Silva B. M. C., Rodrigues J. J. P. C., de la Torre Díez I., López-Coronado M., Saleem K. Mobile-health: A review of current state in 2015. J. Biomed. Inform. 2015;56:265–272. doi: 10.1016/j.jbi.2015.06.003. [DOI] [PubMed] [Google Scholar]
- [10].Laktabai J., Platt A., Menya D., Turner E. L., Aswa D., Kinoti S., O’Meara W. P. A mobile health technology platform for quality assurance and quality improvement of malaria diagnosis by community health workers. PLoS One. 2018;13:e0191968. doi: 10.1371/journal.pone.0191968. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [11].Howes P. D., Rana S., Stevens M. M. Plasmonic nanomaterials for biodiagnostics. Chem. Soc. Rev. 2014;43:3835–3853. doi: 10.1039/C3CS60346F. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [12].Zhou W., Gao X., Liu D. B., Chen X. Y. Gold nanoparticles for in vitro diagnostics. Chem. Rev. 2015;115:10575–10636. doi: 10.1021/acs.chemrev.5b00100. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [13].Li M., Cushing S. K., Wu N. Q. Plasmon-enhanced optical sensors: A review. Analyst. 2015;140:386–406. doi: 10.1039/C4AN01079E. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [14].Unser S., Bruzas I., He J., Sagle L. Localized surface plasmon resonance biosensing: Current challenges and approaches. Sensors. 2015;15:15684–15716. doi: 10.3390/s150715684. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [15].Sannomiya T., Vörös J. Single plasmonic nanoparticles for biosensing. Trends Biotechnol. 2011;29:343–351. doi: 10.1016/j.tibtech.2011.03.003. [DOI] [PubMed] [Google Scholar]
- [16].Tokel O., Inci F., Demirci U. Advances in plasmonic technologies for point of care applications. Chem. Rev. 2014;114:5728–5752. doi: 10.1021/cr4000623. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [17].Sun J. S., Xianyu Y., Jiang X. Y. Point-of-care biochemical assays using gold nanoparticle-implemented microfluidics. Chem. Soc. Rev. 2014;43:6239–6253. doi: 10.1039/C4CS00125G. [DOI] [PubMed] [Google Scholar]
- [18].Lim W. Q., Gao Z. Q. Plasmonic nanoparticles in biomedicine. Nano Today. 2016;11:168–188. doi: 10.1016/j.nantod.2016.02.002. [DOI] [Google Scholar]
- [19].Kravets V. G., Schedin F., Jalil R., Britnell L., Gorbachev R. V., Ansell D., Thackray B., Novoselov K. S., Geim A. K., Kabashin A. V., et al. Singular phase nano-optics in plasmonic metamaterials for label-free singlemolecule detection. Nat. Mater. 2013;12:304–309. doi: 10.1038/nmat3537. [DOI] [PubMed] [Google Scholar]
- [20].Zijlstra P., Paulo P. M. R., Orrit M. Optical detection of single non-absorbing molecules using the surface plasmon resonance of a gold nanorod. Nat. Nanotechnol. 2012;7:379–382. doi: 10.1038/nnano.2012.51. [DOI] [PubMed] [Google Scholar]
- [21].Kelly K. L., Coronado E., Zhao L. L., Schatz G. C. The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment. J. Phys. Chem. B. 2003;107:668–677. doi: 10.1021/jp026731y. [DOI] [Google Scholar]
- [22].Yang X. J., Yu Y. B., Gao Z. Q. A highly sensitive plasmonic DNA assay based on triangular silver nanoprism etching. ACS Nano. 2014;8:4902–4907. doi: 10.1021/nn5008786. [DOI] [PubMed] [Google Scholar]
- [23].Fathi F., Rezabakhsh A., Rahbarghazi R., Rashidi M. R. Early-stage detection of VE-cadherin during endothelial differentiation of human mesenchymal stem cells using SPR biosensor. Biosens. Bioelectron. 2017;96:358–366. doi: 10.1016/j.bios.2017.05.018. [DOI] [PubMed] [Google Scholar]
- [24].Sendroiu I. E., Warner M. E., Corn R. M. Fabrication of silica-coated gold nanorods functionalized with DNA for enhanced surface plasmon resonance imaging biosensing applications. Langmuir. 2009;25:11282–11284. doi: 10.1021/la902675s. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [25].Shankaran D. R., Gobi K. V., Miura N. Recent advancements in surface plasmon resonance immunosensors for detection of small molecules of biomedical, food and environmental interest. Sensor. Actuat. B: Chem. 2007;121:158–177. doi: 10.1016/j.snb.2006.09.014. [DOI] [Google Scholar]
- [26].Homola J. Surface plasmon resonance sensors for detection of chemical and biological species. Chem. Rev. 2008;108:462–493. doi: 10.1021/cr068107d. [DOI] [PubMed] [Google Scholar]
- [27].Hoa X. D., Kirk A. G., Tabrizian M. Towards integrated and sensitive surface plasmon resonance biosensors: A review of recent progress. Biosens. Bioelectron. 2007;23:151–160. doi: 10.1016/j.bios.2007.07.001. [DOI] [PubMed] [Google Scholar]
- [28].Homola J., Yee S. S., Gauglitz G. Surface plasmon resonance sensors: Review. Sensor. Actuat. B: Chem. 1999;54:3–15. doi: 10.1016/S0925-4005(98)00321-9. [DOI] [Google Scholar]
- [29].Masson J. F. Surface plasmon resonance clinical biosensors for medical diagnostics. ACS Sens. 2017;2:16–30. doi: 10.1021/acssensors.6b00763. [DOI] [PubMed] [Google Scholar]
- [30].Zhao W. A., Brook M. A., Li Y. F. Design of gold nanoparticle-based colorimetric biosensing assays. ChemBioChem. 2008;9:2363–2371. doi: 10.1002/cbic.200800282. [DOI] [PubMed] [Google Scholar]
- [31].Ngo H. T., Wang H. N., Fales A. M., Vo-Dinh T. Label-free DNA biosensor based on SERS Molecular Sentinel on Nanowave chip. Anal. Chem. 2013;85:6378–6383. doi: 10.1021/ac400763c. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [32].Bauch M., Toma K., Toma M., Zhang Q. W., Dostalek J. Plasmon-enhanced fluorescence biosensors: A review. Plasmonics. 2014;9:781–799. doi: 10.1007/s11468-013-9660-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [33].Willets K. A., Van Duyne R. P. Localized surface plasmon resonance spectroscopy and sensing. Annu. Rev. Phys. Chem. 2007;58:267–297. doi: 10.1146/annurev.physchem.58.032806.104607. [DOI] [PubMed] [Google Scholar]
- [34].Mayer K. M., Hafner J. H. Localized surface plasmon resonance sensors. Chem. Rev. 2011;111:3828–3857. doi: 10.1021/cr100313v. [DOI] [PubMed] [Google Scholar]
- [35].Chen H. J., Kou X. S., Yang Z., Ni W. H., Wang J. F. Shape-and size-dependent refractive index sensitivity of gold nanoparticles. Langmuir. 2008;24:5233–5237. doi: 10.1021/la800305j. [DOI] [PubMed] [Google Scholar]
- [36].Zhou X., Wong T. I., Song H. Y., Wu L., Wang Y., Bai P., Kim D. H., Ng S. H., Tse M. S., Knoll W. Development of localized surface plasmon resonance-based point-of-care system. Plasmonics. 2014;9:835–844. doi: 10.1007/s11468-014-9678-3. [DOI] [Google Scholar]
- [37].Inci F., Filippini C., Baday M., Ozen M. O., Calamak S., Durmus N. G., Wang S. Q., Hanhauser E., Hobbs K. S., Juillard F., et al. Multitarget, quantitative nanoplasmonic electrical field-enhanced resonating device (NE2RD) for diagnostics. Proc. Natl. Acad. Sci. USA. 2015;112:E4354–E4363. doi: 10.1073/pnas.1510824112. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [38].Tang L. H., Li J. H. Plasmon-based colorimetric nanosensors for ultrasensitive molecular diagnostics. ACS Sens. 2017;2:857–875. doi: 10.1021/acssensors.7b00282. [DOI] [PubMed] [Google Scholar]
- [39].Elghanian R., Storhoff J. J., Mucic R. C., Letsinger R. L., Mirkin C. A. Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science. 1997;277:1078–1081. doi: 10.1126/science.277.5329.1078. [DOI] [PubMed] [Google Scholar]
- [40].Cutler J. I., Auyeung E., Mirkin C. A. Spherical nucleic acids. J. Am. Chem. Soc. 2012;134:1376–1391. doi: 10.1021/ja209351u. [DOI] [PubMed] [Google Scholar]
- [41].Lee J. S., Han M. S., Mirkin C. A. Colorimetric detection of mercuric ion (Hg2+) in aqueous media using DNAfunctionalized gold nanoparticles. Angew. Chem., Int. Ed. 2007;46:4093–4096. doi: 10.1002/anie.200700269. [DOI] [PubMed] [Google Scholar]
- [42].Jia Y. X., Guo Y. M., Wang S. W., Chen W. W., Zhang J. J., Zheng W. S., Jiang X. Y. Nanocrystalline cellulose mediated seed-growth for ultra-robust colorimetric detection of hydrogen sulfide. Nanoscale. 2017;9:9811–9817. doi: 10.1039/C7NR01775H. [DOI] [PubMed] [Google Scholar]
- [43].Gu Y., Song J., Li M. X., Zhang T. T., Zhao W., Xu J. J., Liu M. L., Chen H. Y. Ultrasensitive microRNA assay via surface plasmon resonance responses of Au@Ag nanorods etching. Anal. Chem. 2017;89:10585–10591. doi: 10.1021/acs.analchem.7b02920. [DOI] [PubMed] [Google Scholar]
- [44].Kim J. Y., Zeng Z. C., Xiao L. F., Schultz Z. D. Elucidating protein/ligand recognition with combined surface plasmon resonance and surface enhanced Raman spectroscopy. Anal. Chem. 2017;89:13074–13081. doi: 10.1021/acs.analchem.7b04246. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [45].Muehlethaler C., Leona M., Lombardi J. R. Review of surface enhanced Raman scattering applications in forensic science. Anal. Chem. 2016;88:152–169. doi: 10.1021/acs.analchem.5b04131. [DOI] [PubMed] [Google Scholar]
- [46].Lu J. D., Spasic D., Delport F., Van Stappen T., Detrez I., Daems D., Vermeire S., Gils A., Lammertyn J. Immunoassay for detection of infliximab in whole blood using a fiber-optic surface plasmon resonance biosensor. Anal. Chem. 2017;89:3664–3671. doi: 10.1021/acs.analchem.6b05092. [DOI] [PubMed] [Google Scholar]
- [47].Kim S., Wark A. W., Lee H. J. Femtomolar detection of tau proteins in undiluted plasma using surface plasmon resonance. Anal. Chem. 2016;88:7793–7799. doi: 10.1021/acs.analchem.6b01825. [DOI] [PubMed] [Google Scholar]
- [48].Kim H., Lee J. U., Song S., Kim S., Sim S. J. A shape-code nanoplasmonic biosensor for multiplex detection of Alzheimer’s disease biomarkers. Biosens. Bioelectron. 2018;101:96–102. doi: 10.1016/j.bios.2017.10.018. [DOI] [PubMed] [Google Scholar]
- [49].Bui M. P. N., Ahmed S., Abbas A. Single-digit pathogen and attomolar detection with the naked eye using liposomeamplified plasmonic immunoassay. Nano Lett. 2015;15:6239–6246. doi: 10.1021/acs.nanolett.5b02837. [DOI] [PubMed] [Google Scholar]
- [50].Valentini P., Pompa P. P. A universal polymerase chain reaction developer. Angew. Chem., Int. Ed. 2016;55:2157–2160. doi: 10.1002/anie.201511010. [DOI] [PubMed] [Google Scholar]
- [51].Xiong L. H., He X. W., Xia J. J., Ma H. W., Yang F., Zhang Q., Huang D., Chen L., Wu C. L., Zhang X. M., et al. Highly sensitive naked-eye assay for enterovirus 71 detection based on catalytic nanoparticle aggregation and immunomagnetic amplification. ACS Appl. Mater. Interfaces. 2017;9:14691–14699. doi: 10.1021/acsami.7b02237. [DOI] [PubMed] [Google Scholar]
- [52].Teengam P., Siangproh W., Tuantranont A., Vilaivan T., Chailapakul O., Henry C. S. Multiplex paper-based colorimetric DNA sensor using pyrrolidinyl peptide nucleic acid-induced AgNPs aggregation for detecting MERS-CoV, MTB, and HPV oligonucleotides. Anal. Chem. 2017;89:5428–5435. doi: 10.1021/acs.analchem.7b00255. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [53].Chuong T. T., Pallaoro A., Chaves C. A., Li Z., Lee J., Eisenstein M., Stucky G. D., Moskovits M., Soh H. T. Dual-reporter SERS-based biomolecular assay with reduced false-positive signals. Proc. Natl. Acad. Sci. USA. 2017;114:9056–9061. doi: 10.1073/pnas.1700317114. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [54].Tang B. C., Wang J. J., Hutchison J. A., Ma L., Zhang N., Guo H., Hu Z. B., Li M., Zhao Y. L. Ultrasensitive, multiplex Raman frequency shift immunoassay of liver cancer biomarkers in physiological media. ACS Nano. 2016;10:871–879. doi: 10.1021/acsnano.5b06007. [DOI] [PubMed] [Google Scholar]
- [55].Fu X. L., Cheng Z. Y., Yu J. M., Choo P., Chen L. X., Choo J. A SERS-based lateral flow assay biosensor for highly sensitive detection of HIV-1DNA. Biosens. Bioelectron. 2016;78:530–537. doi: 10.1016/j.bios.2015.11.099. [DOI] [PubMed] [Google Scholar]
- [56].Mei Z., Tang L. Surface-plasmon-coupled fluorescence enhancement based on ordered gold nanorod array biochip for ultrasensitive DNA analysis. Anal. Chem. 2017;89:633–639. doi: 10.1021/acs.analchem.6b02797. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [57].Zhang B., Jarrell J. A., Price J. V., Tabakman S. M., Li Y. G., Gong M., Hong G. S., Feng J., Utz P. J., Dai H. J. An integrated peptide-antigen microarray on plasmonic gold films for sensitive human antibody profiling. PLoS One. 2013;8:e71043. doi: 10.1371/journal.pone.0071043. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [58].Liu B., Li Y. L., Wan H., Wang L., Xu W., Zhu S. J., Liang Y. Y., Zhang B., Lou J. T., Dai H. J., et al. High performance, multiplexed lung cancer biomarker detection on a plasmonic gold chip. Adv. Funct. Mater. 2016;26:7994–8002. doi: 10.1002/adfm.201603547. [DOI] [Google Scholar]
- [59].Song H. Y., Wong T. I., Sadovoy A., Wu L., Bai P., Deng J., Guo S. F., Wang Y., Knoll W., Zhou X. D. Imprinted gold 2D nanoarray for highly sensitive and convenient PSA detection via plasmon excited quantum dots. Lab Chip. 2015;15:253–263. doi: 10.1039/C4LC00978A. [DOI] [PubMed] [Google Scholar]
- [60].Tu X. Y., Muhammad P., Liu J., Ma Y. Y., Wang S. S., Yin D. Y., Liu Z. Molecularly imprinted polymer-based plasmonic immunosandwich assay for fast and ultrasensitive determination of trace glycoproteins in complex samples. Anal. Chem. 2016;88:12363–12370. doi: 10.1021/acs.analchem.6b03597. [DOI] [PubMed] [Google Scholar]
- [61].Liu K., Bai Y. C., Zhang L., Yang Z. B., Fan Q. K., Zheng H. Q., Yin Y. D., Gao C. B. Porous Au-Ag nanospheres with high-density and highly accessible hotspots for SERS analysis. Nano Lett. 2016;16:3675–3681. doi: 10.1021/acs.nanolett.6b00868. [DOI] [PubMed] [Google Scholar]
- [62].Zheng J. W., Zhou Y. G., Li X. W., Ji Y., Lu T. H., Gu R. A. Surface-enhanced Raman scattering of 4-aminothiophenol in assemblies of nanosized particles and the macroscopic surface of silver. Langmuir. 2003;19:632–636. doi: 10.1021/la011706p. [DOI] [Google Scholar]
- [63].Yang K. H., Liu Y. C., Yu C. C. Enhancements in intensity and stability of surface-enhanced Raman scattering on optimally electrochemically roughened silver substrates. J. Mater. Chem. 2008;18:4849–4855. doi: 10.1039/b808516a. [DOI] [Google Scholar]
- [64].Chang C. C., Hsu T. C., Liu Y. C., Yang K. H. Surface-enhanced Raman scattering-active silver substrates electrochemically prepared in solutions containing bielectrolytes. J. Mater. Chem. 2011;21:6660–6667. doi: 10.1039/c0jm04544f. [DOI] [Google Scholar]
- [65].Shin H. H., Yeon G. J., Choi H.-K., Park S. M., Lee K. S., Kim Z. H. Frequency-domain proof of the existence of atomic-scale SERS hot-spots. Nano Lett. 2018;18:262–271. doi: 10.1021/acs.nanolett.7b04052. [DOI] [PubMed] [Google Scholar]
- [66].Qian X. M., Peng X. H., Ansari D. O., Yin-Goen Q., Chen G. Z., Shin D. M., Yang L., Young A. N., Wang M. D., Nie S. M. In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags. Nat. Biotechnol. 2008;26:83–90. doi: 10.1038/nbt1377. [DOI] [PubMed] [Google Scholar]
- [67].Marks H., Schechinger M., Garza J., Locke A., Coté G. Surface enhanced Raman spectroscopy (SERS) for in vitro diagnostic testing at the point of care. Nanophotonics. 2017;6:681–701. doi: 10.1515/nanoph-2016-0180. [DOI] [Google Scholar]
- [68].Granger J. H., Schlotter N. E., Crawford A. C., Porter M. D. Prospects for point-of-care pathogen diagnostics using surface-enhanced Raman scattering (SERS) Chem. Soc. Rev. 2016;45:3865–3882. doi: 10.1039/C5CS00828J. [DOI] [PubMed] [Google Scholar]
- [69].Vasilev K., Knoll W., Kreiter M. Fluorescence intensities of chromophores in front of a thin metal film. J. Chem. Phys. 2004;120:3439–3445. doi: 10.1063/1.1640341. [DOI] [PubMed] [Google Scholar]
- [70].Enderlein J. A theoretical investigation of single-molecule fluorescence detection on thin metallic layers. Biophys. J. 2000;78:2151–2158. doi: 10.1016/S0006-3495(00)76761-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [71].Loebermann T., Knoll W. Surface-plasmon field-enhanced fluorescence spectroscopy. Colloids Surf. A: Physicochem. Eng. Aspects. 2000;171:115–130. doi: 10.1016/S0927-7757(99)00550-6. [DOI] [Google Scholar]
- [72].Acuna G. P., Möller F. M., Holzmeister P., Beater S., Lalkens B., Tinnefeld P. Fluorescence enhancement at docking sites of DNA-directed self-assembled nanoantennas. Science. 2012;338:506–510. doi: 10.1126/science.1228638. [DOI] [PubMed] [Google Scholar]
- [73].Kinkhabwala A., Yu Z. F., Fan S. H., Avlasevich Y., Müllen K., Moerner W. E. Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna. Nat. Photonics. 2009;3:654–657. doi: 10.1038/nphoton.2009.187. [DOI] [Google Scholar]
- [74].Punj D., Mivelle M., Moparthi S. B., van Zanten T. S., Rigneault H., van Hulst N. F., García-Parajó M. F., Wenger J. A plasmonic ‘antenna-in-box’ platform for enhanced single-molecule analysis at micromolar concentrations. Nat. Nanotechnol. 2013;8:512–516. doi: 10.1038/nnano.2013.98. [DOI] [PubMed] [Google Scholar]
- [75].Zhang B., Price J., Hong G. S., Tabakman S. M., Wang H. L., Jarrell J. A., Feng J., Utz P. J., Dai H. J. Multiplexed cytokine detection on plasmonic gold substrates with enhanced near-infrared fluorescence. Nano Res. 2013;6:113–120. doi: 10.1007/s12274-012-0286-2. [DOI] [Google Scholar]
- [76].Tabakman S. M., Lau L., Robinson J. T., Price J., Sherlock S. P., Wang H. L., Zhang B., Chen Z., Tangsombatvisit S., Jarrell J. A., et al. Plasmonic substrates for multiplexed protein microarrays with femtomolar sensitivity and broad dynamic range. Nat. Commun. 2011;2:466. doi: 10.1038/ncomms1477. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [77].Zhang B., Kumar R. B., Dai H. J., Feldman B. J. A plasmonic chip for biomarker discovery and diagnosis of type 1 diabetes. Nat. Med. 2014;20:948–953. doi: 10.1038/nm.3619. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [78].Hong G. S., Tabakman S. M., Welsher K., Chen Z., Robinson J. T., Wang H. L., Zhang B., Dai H. J. Nearinfrared-fluorescence-enhanced molecular imaging of live cells on gold substrates. Angew. Chem., Int. Ed. 2011;50:4644–4648. doi: 10.1002/anie.201100934. [DOI] [PubMed] [Google Scholar]
- [79].Guo L. H., Jackman J. A., Yang H. H., Chen P., Cho N. J., Kim D. H. Strategies for enhancing the sensitivity of plasmonic nanosensors. Nano Today. 2015;10:213–239. doi: 10.1016/j.nantod.2015.02.007. [DOI] [Google Scholar]
- [80].Engvall E., Perlmann P. Enzyme-linked immunosorbent assay (ELISA) quantitative assay of immunoglobulin G. Immunochemistry. 1971;8:871–874. doi: 10.1016/0019-2791(71)90454-X. [DOI] [PubMed] [Google Scholar]
- [81].Liang Y., Huang X. L., Chen X. R., Zhang W. J., Ping G., Xiong Y. H. Plasmonic ELISA for naked-eye detection of ochratoxin A based on the tyramine-H2O2 amplification system. Sensor. Actuat. B: Chem. 2018;259:162–169. doi: 10.1016/j.snb.2017.12.004. [DOI] [Google Scholar]
- [82].Zhang S. Y., Garcia-D’Angeli A., Brennan J. P., Huo Q. Predicting detection limits of enzyme-linked immunosorbent assay (ELISA) and bioanalytical techniques in general. Analyst. 2014;139:439–445. doi: 10.1039/C3AN01835K. [DOI] [PubMed] [Google Scholar]
- [83].de la Rica R., Stevens M. M. Plasmonic ELISA for the ultrasensitive detection of disease biomarkers with the naked eye. Nat. Nanotechnol. 2012;7:821–824. doi: 10.1038/nnano.2012.186. [DOI] [PubMed] [Google Scholar]
- [84].de la Rica R., Stevens M. M. Plasmonic ELISA for the detection of analytes at ultralow concentrations with the naked eye. Nat. Protoc. 2013;8:1759–1764. doi: 10.1038/nprot.2013.085. [DOI] [PubMed] [Google Scholar]
- [85].Cecchin D., de la Rica R., Bain R. E. S., Finnis M. W., Stevens M. M., Battaglia G. Plasmonic ELISA for the detection of gp120 at ultralow concentrations with the naked eye. Nanoscale. 2014;6:9559–9562. doi: 10.1039/C3NR06167A. [DOI] [PubMed] [Google Scholar]
- [86].Peng M. P., Ma W., Long Y. T. Alcohol Dehydrogenasecatalyzed gold nanoparticle seed-mediated growth allows reliable detection of disease biomarkers with the naked eye. Anal. Chem. 2015;87:5891–5896. doi: 10.1021/acs.analchem.5b00287. [DOI] [PubMed] [Google Scholar]
- [87].Ambrosi A., Airò F., Merkoçi A. Enhanced gold nanoparticle based ELISA for a breast cancer biomarker. Anal. Chem. 2010;82:1151–1156. doi: 10.1021/ac902492c. [DOI] [PubMed] [Google Scholar]
- [88].Liu D. B., Yang J., Wang H. F., Wang Z. L., Huang X. L., Wang Z. T., Niu G., Hight Walker A. R., Chen X. Y. Glucose oxidase-catalyzed growth of gold nanoparticles enables quantitative detection of attomolar cancer biomarkers. Anal. Chem. 2014;86:5800–5806. doi: 10.1021/ac500478g. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [89].Zhou F., Wang M. M., Yuan L., Cheng Z. P., Wu Z. Q., Chen H. Sensitive sandwich ELISA based on a gold nanoparticle layer for cancer detection. Analyst. 2012;137:1779–1784. doi: 10.1039/c2an16257a. [DOI] [PubMed] [Google Scholar]
- [90].Jia C. P., Zhong X. Q., Hua B., Liu M. Y., Jing F. X., Lou X. H., Yao S. H., Xiang J. Q., Jin Q. H., Zhao J. L. Nano-ELISA for highly sensitive protein detection. Biosens. Bioelectron. 2009;24:2836–2841. doi: 10.1016/j.bios.2009.02.024. [DOI] [PubMed] [Google Scholar]
- [91].Liu M. Y., Jia C. P., Huang Y. Y., Lou X. H., Yao S. H., Jin Q. H., Zhao J. L., Xiang J. Q. Highly sensitive protein detection using enzyme-labeled gold nanoparticle probes. Analyst. 2010;135:327–331. doi: 10.1039/B916629G. [DOI] [PubMed] [Google Scholar]
- [92].Liang J. J., Yao C. Z., Li X. Q., Wu Z., Huang C. H., Fu Q. Q., Lan C. F., Cao D. L., Tang Y. Silver nanoprism etching-based plasmonic ELISA for the high sensitive detection of prostate-specific antigen. Biosens. Bioelectron. 2015;69:128–134. doi: 10.1016/j.bios.2015.02.026. [DOI] [PubMed] [Google Scholar]
- [93].Nie X. M., Huang R., Dong C. X., Tang L. J., Gui R., Jiang J. H. Plasmonic ELISA for the ultrasensitive detection of Treponema pallidum. Biosens. Bioelectron. 2014;58:314–319. doi: 10.1016/j.bios.2014.03.007. [DOI] [PubMed] [Google Scholar]
- [94].Rissin D. M., Kan C. W., Campbell T. G., Howes S. C., Fournier D. R., Song L., Piech T., Patel P. P., Chang L., Rivnak A. J., et al. Single-molecule enzyme-linked immunosorbent assay detects serum proteins at subfemtomolar concentrations. Nat. Biotechnol. 2010;28:595–599. doi: 10.1038/nbt.1641. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [95].Chen S., Svedendahl M., Antosiewicz T. J., Käll M. Plasmon-enhanced enzyme-linked immunosorbent assay on large arrays of individual particles made by electron beam lithography. ACS Nano. 2013;7:8824–8832. doi: 10.1021/nn403287a. [DOI] [PubMed] [Google Scholar]
- [96].Chen S., Svedendahl M., van Duyne R. P., Käll M. Plasmon-enhanced colorimetric ELISA with single molecule sensitivity. Nano Lett. 2011;11:1826–1830. doi: 10.1021/nl2006092. [DOI] [PubMed] [Google Scholar]
- [97].Sia S. K., Linder V., Parviz B. A., Siegel A., Whitesides G. M. An integrated approach to a portable and low-cost immunoassay for resource-poor settings. Angew. Chem., Int. Ed. 2004;43:498–502. doi: 10.1002/anie.200353016. [DOI] [PubMed] [Google Scholar]
- [98].Gupta S., Huda S., Kilpatrick P. K., Velev O. D. Characterization and optimization of gold nanoparticlebased silver-enhanced immunoassays. Anal. Chem. 2007;79:3810–3820. doi: 10.1021/ac062341m. [DOI] [PubMed] [Google Scholar]
- [99].Yang C. T., Wu L., Bai P., Thierry B. Investigation of plasmonic signal enhancement based on long range surface plasmon resonance with gold nanoparticle tags. J. Mater. Chem. C. 2016;4:9897–9904. doi: 10.1039/C6TC03981B. [DOI] [Google Scholar]
- [100].Lyon L. A., Musick M. D., Natan M. J. Colloidal Au-enhanced surface plasmon resonance immunosensing. Anal. Chem. 1998;70:5177–5183. doi: 10.1021/ac9809940. [DOI] [PubMed] [Google Scholar]
- [101].Kwon M. J., Lee J., Wark A. W., Lee H. J. Nanoparticleenhanced surface plasmon resonance detection of proteins at attomolar concentrations: Comparing different nanoparticle shapes and sizes. Anal. Chem. 2012;84:1702–1707. doi: 10.1021/ac202957h. [DOI] [PubMed] [Google Scholar]
- [102].Guarrotxena N., Liu B., Fabris L., Bazan G. C. Antitags: Nanostructured tools for developing SERS-based ELISA analogs. Adv. Mater. 2010;22:4954–4958. doi: 10.1002/adma.201002369. [DOI] [PubMed] [Google Scholar]
- [103].Li X. Y., Kuznetsova T., Cauwenberghs N., Wheeler M., Maecker H., Wu J. C., Haddad F., Dai H. J. Autoantibody profiling on a plasmonic nano-gold chip for the early detection of hypertensive heart disease. Proc. Natl. Acad. Sci. USA. 2017;114:7089–7094. doi: 10.1073/pnas.1621457114. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [104].Zhao Y. X., Chen F., Li Q., Wang L. H., Fan C. H. Isothermal amplification of nucleic acids. Chem. Rev. 2015;115:12491–12545. doi: 10.1021/acs.chemrev.5b00428. [DOI] [PubMed] [Google Scholar]
- [105].White P. L., Hibbitts S. J., Perry M. D., Green J., Stirling E., Woodford L., McNay G., Stevenson R., Barnes R. A. Evaluation of a commercially developed semiautomated PCR-surface-enhanced Raman scattering assay for diagnosis of invasive fungal disease. J. Clin. Microbiol. 2014;52:3536–3543. doi: 10.1128/JCM.01135-14. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [106].Almassian D. R., Cockrell L. M., Nelson W. M. Portable nucleic acid thermocyclers. Chem. Soc. Rev. 2013;42:8769–8798. doi: 10.1039/c3cs60144g. [DOI] [PubMed] [Google Scholar]
- [107].Zhang C. S., Xing D. Single-molecule DNA amplification and analysis using microfluidics. Chem. Rev. 2010;110:4910–4947. doi: 10.1021/cr900081z. [DOI] [PubMed] [Google Scholar]
- [108].Lee D., Chou W. P., Yeh S. H., Chen P. J., Chen P. H. DNA detection using commercial mobile phones. Biosens. Bioelectron. 2011;26:4349–4354. doi: 10.1016/j.bios.2011.04.036. [DOI] [PubMed] [Google Scholar]
- [109].Myers F. B., Henrikson R. H., Bone J., Lee L. P. A handheld point-of-care genomic diagnostic system. PLoS One. 2013;8:e70266. doi: 10.1371/journal.pone.0070266. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [110].Priye A., Wong S., Bi Y. P., Carpio M., Chang J., Coen M., Cope D., Harris J., Johnson J., Keller A., et al. Lab-on-a-Drone: Toward pinpoint deployment of smartphone-enabled nucleic acid-based diagnostics for mobile health care. Anal. Chem. 2016;88:4651–4660. doi: 10.1021/acs.analchem.5b04153. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [111].Sawata S., Kai E., Ikebukuro K., Iida T., Honda T., Karube I. Application of peptide nucleic acid to the direct detection of deoxyribonucleic acid amplified by polymerase chain reaction. Biosens. Bioelectron. 1999;14:397–404. doi: 10.1016/S0956-5663(99)00018-4. [DOI] [PubMed] [Google Scholar]
- [112].Kai E., Sawata S., Ikebukuro K., Iida T., Honda T., Karube I. Detection of PCR products in solution using surface plasmon resonance. Anal. Chem. 1999;71:796–800. doi: 10.1021/ac9807161. [DOI] [PubMed] [Google Scholar]
- [113].Wu J. L., Huang Y., Bian X. T., Li D. D., Cheng Q., Ding S. J. Biosensing of BCR/ABL fusion gene using an intensity-interrogation surface plasmon resonance imaging system. Opt. Commun. 2016;377:24–32. doi: 10.1016/j.optcom.2016.05.035. [DOI] [Google Scholar]
- [114].Yao D., Yu F., Kim J., Scholz J., Nielsen P. E., Sinner E. K., Knoll W. Surface plasmon field-enhanced fluorescence spectroscopy in PCR product analysis by peptide nucleic acid probes. Nucleic Acids Res. 2004;32:e177. doi: 10.1093/nar/gnh175. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [115].Faulds K., Barbagallo R. P., Keer J. T., Smith W. E., Graham D. SERRS as a more sensitive technique for the detection of labelled oligonucleotides compared to fluorescence. Analyst. 2004;129:567–568. doi: 10.1039/b406423b. [DOI] [PubMed] [Google Scholar]
- [116].Van Lierop D., Larmour I. A., Faulds K., Graham D. SERS primers and their mode of action for pathogen DNA detection. Anal. Chem. 2013;85:1408–1414. doi: 10.1021/ac302254h. [DOI] [PubMed] [Google Scholar]
- [117].Cai M., Li F., Zhang Y., Wang Q. B. One-pot polymerase chain reaction with gold nanoparticles for rapid and ultrasensitive DNA detection. Nano Res. 2010;3:557–563. doi: 10.1007/s12274-010-0016-6. [DOI] [Google Scholar]
- [118].Deng H., Xu Y., Liu Y. H., Che Z. J., Guo H. L., Shan S. X., Sun Y., Liu X. F., Huang K. Y., Ma X. W., et al. Gold nanoparticles with asymmetric polymerase chain reaction for colorimetric detection of DNA sequence. Anal. Chem. 2012;84:1253–1258. doi: 10.1021/ac201713t. [DOI] [PubMed] [Google Scholar]
- [119].Li F., Li F. L., Yang G. T., Aguilar Z. P., Lai W. H., Xu H. Y. Asymmetric polymerase chain assay combined with propidium monoazide treatment and unmodified gold nanoparticles for colorimetric detection of viable emetic Bacillus cereus in milk. Sensor. Actuat. B: Chem. 2018;255:1455–1461. doi: 10.1016/j.snb.2017.08.154. [DOI] [Google Scholar]
- [120].Roche P. J. R., Beitel L. K., Khan R., Lumbroso R., Najih M., Cheung M. C. K., Thiemann J., Veerasubramanian V., Trifiro M., Chodavarapu V. P., et al. Demonstration of a plasmonic thermocycler for the amplification of human androgen receptor DNA. Analyst. 2012;137:4475–4481. doi: 10.1039/c2an35692a. [DOI] [PubMed] [Google Scholar]
- [121].Son J. H., Cho B., Hong S., Lee S. H., Hoxha O., Haack A. J., Lee L. P. Ultrafast photonic PCR. Light-Sci. Appl. 2015;4:e280. doi: 10.1038/lsa.2015.53. [DOI] [Google Scholar]
- [122].Lee J. H., Cheglakov Z., Yi J., Cronin T. M., Gibson K. J., Tian B. Z., Weizmann Y. Plasmonic photothermal gold bipyramid nanoreactors for ultrafast real-time bioassays. J. Am. Chem. Soc. 2017;139:8054–8057. doi: 10.1021/jacs.7b01779. [DOI] [PubMed] [Google Scholar]
- [123].Roche P. J. R., Najih M., Lee S. S., Beitel L. K., Carnevale M. L., Paliouras M., Kirk A. G., Trifiro M. A. Real time plasmonic qPCR: How fast is ultra-fast? 30 cycles in 54 seconds. Analyst. 2017;142:1746–1755. doi: 10.1039/C7AN00304H. [DOI] [PubMed] [Google Scholar]
- [124].Yu T., Dai P. P., Xu J. J., Chen H. Y. Highly sensitive colorimetric cancer cell detection based on dual signal amplification. ACS Appl. Mater. Interfaces. 2016;8:4434–4441. doi: 10.1021/acsami.5b12117. [DOI] [PubMed] [Google Scholar]
- [125].Zhang X. X., Xiao K. Y., Cheng L. W., Chen H., Liu B. H., Zhang S., Kong J. L. Visual and highly sensitive detection of cancer cells by a colorimetric aptasensor based on cell-triggered cyclic enzymatic signal amplification. Anal. Chem. 2014;86:5567–5572. doi: 10.1021/ac501068k. [DOI] [PubMed] [Google Scholar]
- [126].Xu W., Xue X. J., Li T. H., Zeng H. Q., Liu X. G. Ultrasensitive and selective colorimetric DNA detection by nicking endonuclease assisted nanoparticle amplification. Angew. Chem., Int. Ed. 2009;48:6849–6852. doi: 10.1002/anie.200901772. [DOI] [PubMed] [Google Scholar]
- [127].Wong J. K., Yip S. P., Lee T. M. H. Ultrasensitive and closed-tube colorimetric loop-mediated isothermal amplification assay using carboxyl-modified gold nanoparticles. Small. 2014;10:1495–1499. doi: 10.1002/smll.201302348. [DOI] [PubMed] [Google Scholar]
- [128].Bozorgmehr A., Yazdanparast R., Mollasalehi H. Noncrosslinking gold nanoprobe-LAMP for simple, colorimetric, and specific detection of Salmonella typhi. J. Nanopart. Res. 2016;18:351. doi: 10.1007/s11051-016-3657-x. [DOI] [Google Scholar]
- [129].Qin A. L., Fu L. T., Wong J. K. F., Chau L. Y., Yip S. P., Lee T. M. H. Precipitation of PEG/carboxyl-modified gold nanoparticles with magnesium pyrophosphate: A new platform for real-time monitoring of loop-mediated isothermal amplification. ACS Appl. Mater. Interfaces. 2017;9:10472–10480. doi: 10.1021/acsami.7b00046. [DOI] [PubMed] [Google Scholar]
- [130].Li J. S., Deng T., Chu X., Yang R. H., Jiang J. H., Shen G. L., Yu R. Q. Rolling circle amplification combined with gold nanoparticle aggregates for highly sensitive identification of single-nucleotide polymorphisms. Anal. Chem. 2010;82:2811–2816. doi: 10.1021/ac100336n. [DOI] [PubMed] [Google Scholar]
- [131].Liu P., Yang X. H., Sun S., Wang Q., Wang K. M., Huang J., Liu J. B., He L. L. Enzyme-free colorimetric detection of DNA by using gold nanoparticles and hybridization chain reaction amplification. Anal. Chem. 2013;85:7689–7695. doi: 10.1021/ac4001157. [DOI] [PubMed] [Google Scholar]
- [132].Rana M., Balcioglu M., Kovach M., Hizir M. S., Robertson N. M., Khan I., Yigit M. V. Reprogrammable multiplexed detection of circulating oncomiRs using hybridization chain reaction. Chem. Commun. 2016;52:3524–3527. doi: 10.1039/C5CC09910B. [DOI] [PubMed] [Google Scholar]
- [133].Yun W., Jiang J. L., Cai D. Z., Zhao P. X., Liao J. S., Sang G. Ultrasensitive visual detection of DNA with tunable dynamic range by using unmodified gold nanoparticles and target catalyzed hairpin assembly amplification. Biosens. Bioelectron. 2016;77:421–427. doi: 10.1016/j.bios.2015.09.065. [DOI] [PubMed] [Google Scholar]
- [134].Kato D., Oishi M. Ultrasensitive detection of DNA and RNA based on enzyme-free click chemical ligation chain reaction on dispersed gold nanoparticles. ACS Nano. 2014;8:9988–9997. doi: 10.1021/nn503150w. [DOI] [PubMed] [Google Scholar]
- [135].Oishi M., Sugiyama S. An efficient particle-based DNA circuit system: Catalytic disassembly of DNA/PEG-modified gold nanoparticle-magnetic bead composites for colorimetric detection of miRNA. Small. 2016;12:5153–5158. doi: 10.1002/smll.201601741. [DOI] [PubMed] [Google Scholar]
- [136].Nawattanapaiboon K., Kiatpathomchai W., Santanirand P., Vongsakulyanon A., Amarit R., Somboonkaew A., Sutapun B., Srikhirin T. SPR-DNA array for detection of methicillin-resistant Staphylococcus aureus (MRSA) in combination with loop-mediated isothermal amplification. Biosens. Bioelectron. 2015;74:335–340. doi: 10.1016/j.bios.2015.06.038. [DOI] [PubMed] [Google Scholar]
- [137].He P., Qiao W. P., Liu L. J., Zhang S. S. A highly sensitive surface plasmon resonance sensor for the detection of DNA and cancer cells by a target-triggered multiple signal amplification strategy. Chem. Commun. 2014;50:10718–10721. doi: 10.1039/C4CC04776A. [DOI] [PubMed] [Google Scholar]
- [138].Zeng K., Li H. Y., Peng Y. Y. Gold nanoparticle enhanced surface plasmon resonance imaging of microRNA-155 using a functional nucleic acid-based amplification machine. Microchim. Acta. 2017;184:2637–2644. doi: 10.1007/s00604-017-2276-2. [DOI] [Google Scholar]
- [139].Sendroiu I. E., Gifford L. K., Lupták A., Corn R. M. Ultrasensitive DNA microarray biosensing via in situ RNA transcription-based amplification and nanoparticle-enhanced SPR imaging. J. Am. Chem. Soc. 2011;133:4271–4273. doi: 10.1021/ja2005576. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [140].Ding X. J., Cheng W., Li Y. J., Wu J. L., Li X. M., Cheng Q., Ding S. J. An enzyme-free surface plasmon resonance biosensing strategy for detection of DNA and small molecule based on nonlinear hybridization chain reaction. Biosens. Bioelectron. 2017;87:345–351. doi: 10.1016/j.bios.2016.08.077. [DOI] [PubMed] [Google Scholar]
- [141].Ding X. J., Yan Y. R., Li S. Q., Zhang Y., Cheng W., Cheng Q., Ding S. J. Surface plasmon resonance biosensor for highly sensitive detection of microRNA based on DNA super-sandwich assemblies and streptavidin signal amplification. Anal. Chim. Acta. 2015;874:59–65. doi: 10.1016/j.aca.2015.03.021. [DOI] [PubMed] [Google Scholar]
- [142].Guo B., Cheng W., Xu Y. J., Zhou X. Y., Li X. M., Ding X. J., Ding S. J. A simple surface plasmon resonance biosensor for detection of PML/RARα based on heterogeneous fusion gene-triggered nonlinear hybridization chain reaction. Sci. Rep. 2017;7:14037. doi: 10.1038/s41598-017-14361-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [143].Yao G. H., Liang R. P., Yu X. D., Huang C. F., Zhang L., Qiu J. D. Target-triggering multiple-cycle amplification strategy for ultrasensitive detection of adenosine based on surface plasma resonance techniques. Anal. Chem. 2015;87:929–936. doi: 10.1021/ac503016f. [DOI] [PubMed] [Google Scholar]
- [144].Yao G. H., Liang R. P., Huang C. F., Zhang L., Qiu J. D. Enzyme-free surface plasmon resonance aptasensor for amplified detection of adenosine via target-triggering strand displacement cycle and Au nanoparticles. Anal. Chim. Acta. 2015;871:28–34. doi: 10.1016/j.aca.2015.02.028. [DOI] [PubMed] [Google Scholar]
- [145].Wang Q., Liu R. J., Yang X. H., Wang K. M., Zhu J. Q., He L. L., Li Q. Surface plasmon resonance biosensor for enzyme-free amplified microRNA detection based on gold nanoparticles and DNA supersandwich. Sensor. Actuat. B: Chem. 2016;223:613–620. doi: 10.1016/j.snb.2015.09.152. [DOI] [Google Scholar]
- [146].Diao W., Tang M., Ding S. J., Li X. M., Cheng W. B., Mo F., Yan X. Y., Ma H. M., Yan Y. R. Highly sensitive surface plasmon resonance biosensor for the detection of HIV-related DNA based on dynamic and structural DNA nanodevices. Biosens. Bioelectron. 2018;100:228–234. doi: 10.1016/j.bios.2017.08.042. [DOI] [PubMed] [Google Scholar]
- [147].Yin F. F., Liu H. Q., Li Q., Gao X., Yin Y. M., Liu D. B. Trace microRNA quantification by means of plasmonenhanced hybridization chain reaction. Anal. Chem. 2016;88:4600–4604. doi: 10.1021/acs.analchem.6b00772. [DOI] [PubMed] [Google Scholar]
- [148].Hu J., Zhang C. Y. Sensitive detection of nucleic acids with rolling circle amplification and surface-enhanced Raman scattering spectroscopy. Anal. Chem. 2010;82:8991–8997. doi: 10.1021/ac1019599. [DOI] [PubMed] [Google Scholar]
- [149].Li Y., Lei C. C., Zeng Y., Ji X. T., Zhang S. S. Sensitive SERS detection of DNA and lysozyme based on polymerase assisted cross strand-displacement amplification. Chem. Commun. 2012;48:10892–10894. doi: 10.1039/c2cc35688k. [DOI] [PubMed] [Google Scholar]
- [150].Wang S. Y., Yang H. W., Zhang H. T., Yang F. H., Zhou M. S., Jia C. W., Lan Y. L., Ma Y. M., Zhou L. Y., Tian S., et al. A surface plasmon resonance-based system to genotype human papillomavirus. Cancer Genet. Cytogenet. 2010;200:100–105. doi: 10.1016/j.cancergencyto.2010.04.003. [DOI] [PubMed] [Google Scholar]
- [151].Qu S., Huang J., Zhao J., Zhao X., Deng H., Yang H., Chen W., Liu L., Zhang L., Gao S. A comparison of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and surface plasmon resonance for genotyping of high-risk human papillomaviruses. Intervirology. 2011;54:326–332. doi: 10.1159/000322722. [DOI] [PubMed] [Google Scholar]
- [152].Okumura S., Kuroda R., Inouye K. Single nucleotide polymorphism typing with a surface plasmon resonancebased sensor using hybridization enhancement blockers. Appl. Biochem. Biotechnol. 2014;174:494–505. doi: 10.1007/s12010-014-1072-2. [DOI] [PubMed] [Google Scholar]
- [153].Mariani S., Scarano S., Carrai M., Barale R., Minunni M. Direct genotyping of C3435T single nucleotide polymorphism in unamplified human MDR1 gene using a surface plasmon resonance imaging DNA sensor. Anal. Bioanal. Chem. 2015;407:4023–4028. doi: 10.1007/s00216-014-8424-1. [DOI] [PubMed] [Google Scholar]
- [154].Zhong X. B., Reynolds R., Kidd J. R., Kidd K. K., Jenison R., Marlar R. A., Ward D. C. Single-nucleotide polymorphism genotyping on optical thin-film biosensor chips. Proc. Natl. Acad. Sci. USA. 2003;100:11559–11564. doi: 10.1073/pnas.1934783100. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [155].Li Y., Wark A. W., Lee H. J., Corn R. M. Singlenucleotide polymorphism genotyping by nanoparticleenhanced surface plasmon resonance imaging measurements of surface ligation reactions. Anal. Chem. 2006;78:3158–3164. doi: 10.1021/ac0600151. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [156].Hibbitts S., White P. L., Green J., McNay G., Graham D., Stevenson R. Human papilloma virus genotyping by surface-enhanced Raman scattering. Anal. Methods. 2014;6:1288–1290. doi: 10.1039/C4AY00155A. [DOI] [Google Scholar]
- [157].Lowe A. J., Huh Y. S., Strickland A. D., Erickson D., Batt C. A. Multiplex single nucleotide polymorphism genotyping utilizing ligase detection reaction coupled surface enhanced Raman spectroscopy. Anal. Chem. 2010;82:5810–5814. doi: 10.1021/ac100921b. [DOI] [PubMed] [Google Scholar]
- [158].Shendure J., Ji H. Next-generation DNA sequencing. Nat. Biotechnol. 2008;26:1135–1145. doi: 10.1038/nbt1486. [DOI] [PubMed] [Google Scholar]
- [159].Metzker M. L. Sequencing technologies—the next generation. Nat. Rev. Genet. 2010;11:31–46. doi: 10.1038/nrg2626. [DOI] [PubMed] [Google Scholar]
- [160].Mardis E. R. DNA sequencing technologies: 2006–2016. Nat. Protoc. 2017;12:213–218. doi: 10.1038/nprot.2016.182. [DOI] [PubMed] [Google Scholar]
- [161].Goodwin S., McPherson J. D., McCombie W. R. Coming of age: Ten years of next-generation sequencing technologies. Nat. Rev. Genet. 2016;17:333–351. doi: 10.1038/nrg.2016.49. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [162].Rothberg J. M., Hinz W., Rearick T. M., Schultz J., Mileski W., Davey M., Leamon J. H., Johnson K., Milgrew M. J., Edwards M., et al. An integrated semiconductor device enabling non-optical genome sequencing. Nature. 2011;475:348–352. doi: 10.1038/nature10242. [DOI] [PubMed] [Google Scholar]
- [163].Ashton P. M., Nair S., Dallman T., Rubino S., Rabsch W., Mwaigwisya S., Wain J., O’Grady J. MinION nanopore sequencing identifies the position and structure of a bacterial antibiotic resistance island. Nat. Biotechnol. 2015;33:296–300. doi: 10.1038/nbt.3103. [DOI] [PubMed] [Google Scholar]
- [164].Eif J., Fehr A., Gray J., Luong K., Lyle J., Otto G., Peluso P., Rank D., Baybayan P., Bettman B., et al. Real-time DNA sequencing from single polymerase molecules. Science. 2009;323:133–138. doi: 10.1126/science.1162986. [DOI] [PubMed] [Google Scholar]
- [165].Flusberg B. A., Webster D. R., Lee J. H., Travers K. J., Olivares E. C., Clark T. A., Korlach J., Turner S. W. Direct detection of DNA methylation during single-molecule, real-time sequencing. Nat. Methods. 2010;7:461–465. doi: 10.1038/nmeth.1459. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [166].Levene M. J., Korlach J., Turner S. W., Foquet M., Craighead H. G., Webb W. W. Zero-mode waveguides for single-molecule analysis at high concentrations. Science. 2003;299:682–686. doi: 10.1126/science.1079700. [DOI] [PubMed] [Google Scholar]
- [167].Bailo E., Deckert V. Tip-enhanced Raman spectroscopy of single RNA strands: Towards a novel direct-sequencing method. Angew. Chem., Int. Ed. 2008;47:1658–1661. doi: 10.1002/anie.200704054. [DOI] [PubMed] [Google Scholar]
- [168].Palla M., Guo W. J., Shi S. D., Li Z. M., Wu J., Jockusch S., Guo C., Russo J. J., Turro N. J., Ju J. Y. DNA sequencing by synthesis using 3’-O-azidomethyl nucleotide reversible terminators and surface-enhanced Raman spectroscopic detection. RSC Adv. 2014;4:49342–49346. doi: 10.1039/C4RA08398A. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [169].Fotouhi B., Ahmadi V., Faramarzi V. Nano-plasmonicbased structures for DNA sequencing. Opt. Lett. 2016;41:4229–4232. doi: 10.1364/OL.41.004229. [DOI] [PubMed] [Google Scholar]
- [170].Schmieder S., Weißpflog J., Danz N., Hübner M., Kreth S., Klotzbach U., Sonntag F. Ultrasensitive SPR detection of miRNA-93 using antibody-enhanced and enzymatic signal amplification. Eng. Life Sci. 2017;17:1264–1270. doi: 10.1002/elsc.201700104. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [171].Tokel O., Yildiz U. H., Inci F., Durmus N. G., Ekiz O. O., Turker B., Cetin C., Rao S., Sridhar K., Natarajan N., et al. Portable microfluidic integrated plasmonic platform for pathogen detection. Sci. Rep. 2015;5:9152. doi: 10.1038/srep09152. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [172].Aćimović S. S., Ortega M. A., Sanz V., Berthelot J., Garcia-Cordero J. L., Renger J., Maerkl S. J., Kreuzer M. P., Quidant R. LSPR chip for parallel, rapid, and sensitive detection of cancer markers in serum. Nano Lett. 2014;14:2636–2641. doi: 10.1021/nl500574n. [DOI] [PubMed] [Google Scholar]
- [173].Wang C., Yu C. X. Analytical characterization using surface-enhanced Raman scattering (SERS) and microfluidic sampling. Nanotechnology. 2015;26:092001. doi: 10.1088/0957-4484/26/9/092001. [DOI] [PubMed] [Google Scholar]
- [174].Choi N., Lee J., Ko J., Jeon J. H., Rhie G. E., de Mello A. J., Choo J. Integrated SERS-based microdroplet platform for the automated immunoassay of F1 antigens in Yersinia pestis. Anal. Chem. 2017;89:8413–8420. doi: 10.1021/acs.analchem.7b01822. [DOI] [PubMed] [Google Scholar]
- [175].Kim D. J., Jeon T. Y., Park S. G., Han H. J., Im S. H., Kim D. H., Kim S. H. Uniform microgels containing agglomerates of silver nanocubes for molecular sizeselectivity and high SERS activity. Small. 2017;13:1604048. doi: 10.1002/smll.201604048. [DOI] [PubMed] [Google Scholar]
- [176].Kurita R., Yanagisawa H., Yoshioka K., Niwa O. On-chip sequence-specific immunochemical epigenomic analysis utilizing outward-turned cytosine in a DNA bulge with handheld surface plasmon resonance equipment. Anal. Chem. 2015;87:11581–11586. doi: 10.1021/acs.analchem.5b03520. [DOI] [PubMed] [Google Scholar]
- [177].Wang H. S., Wang C., He Y. K., Xiao F. N., Bao W. J., Xia X. H., Zhou G. J. Core-shell Ag@SiO2 nanoparticles concentrated on a micro/nanofluidic device for surface plasmon resonance-enhanced fluorescent detection of highly reactive oxygen species. Anal. Chem. 2014;86:3013–3019. doi: 10.1021/ac4037075. [DOI] [PubMed] [Google Scholar]
- [178].Li J., Skeete Z., Shan S. Y., Yan S., Kurzatkowska K., Zhao W., Ngo Q. M., Holubovska P., Luo J., Hepel M., et al. Surface enhanced Raman scattering detection of cancer biomarkers with bifunctional nanocomposite probes. Anal. Chem. 2015;87:10698–10702. doi: 10.1021/acs.analchem.5b03456. [DOI] [PubMed] [Google Scholar]
- [179].Yamada K., Shibata H., Suzuki K., Citterio D. Toward practical application of paper-based microfluidics for medical diagnostics: State-of-the-art and challenges. Lab Chip. 2017;17:1206–1249. doi: 10.1039/C6LC01577H. [DOI] [PubMed] [Google Scholar]
- [180].Akyazi T., Basabe-Desmonts L., Benito-Lopez F. Review on microfluidic paper-based analytical devices towards commercialisation. Anal. Chim. Acta. 2018;1001:1–17. doi: 10.1016/j.aca.2017.11.010. [DOI] [PubMed] [Google Scholar]
- [181].Yetisen A. K., Akram M. S., Lowe C. R. Paper-based microfluidic point-of-care diagnostic devices. Lab Chip. 2013;13:2210–2251. doi: 10.1039/c3lc50169h. [DOI] [PubMed] [Google Scholar]
- [182].Yen C. W., de Puig H., Tam J. O., Gómez-Márquez J., Bosch I., Hamad-Schifferli K., Gehrke L. Multicolored silver nanoparticles for multiplexed disease diagnostics: Distinguishing dengue, yellow fever, and Ebola viruses. Lab Chip. 2015;15:1638–1641. doi: 10.1039/C5LC00055F. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [183].Mosley G. L., Nguyen P., Wu B. M., Kamei D. T. Development of quantitative radioactive methodologies on paper to determine important lateral-flow immunoassay parameters. Lab Chip. 2016;16:2871–2881. doi: 10.1039/C6LC00518G. [DOI] [PubMed] [Google Scholar]
- [184].OraQuick In-Home HIV Test. https://www.fda.gov/BiologicsBloodVaccines/BloodBloodProducts/ApprovedP roducts/PremarketApprovalsPMAs/ucm310436.htm (accessed May 7, 2018).
- [185].Choi J. R., Tang R. H., Wang S. Q., Wan Abas W. A. B., Pingguan-Murphy B., Xu F. Paper-based sample-to-answer molecular diagnostic platform for point-of-care diagnostics. Biosens. Bioelectron. 2015;74:427–439. doi: 10.1016/j.bios.2015.06.065. [DOI] [PubMed] [Google Scholar]
- [186].Zhan L., Guo S. Z., Song F. Y., Gong Y., Xu F., Boulware D. R., McAlpine M. C., Chan W. C. W., Bischof J. C. The role of nanoparticle design in determining analytical performance of lateral flow immunoassays. Nano Lett. 2017;17:7207–7212. doi: 10.1021/acs.nanolett.7b02302. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [187].Gao Z. Q., Ye H. H., Tang D. Y., Tao J., Habibi S., Minerick A., Tang D. P., Xia X. H. Platinum-decorated gold nanoparticles with dual functionalities for ultrasensitive colorimetric in vitro diagnostics. Nano Lett. 2017;17:5572–5579. doi: 10.1021/acs.nanolett.7b02385. [DOI] [PubMed] [Google Scholar]
- [188].BioReady Nanoparticles for Lateral Flow. https://nanocomposix.com/collectionsbioready-nanoparticles (accessed May 7, 2018).
- [189].Saha A., Jana N. R. Paper-based microfluidic approach for surface-enhanced Raman spectroscopy and highly reproducible detection of proteins beyond picomolar concentration. ACS. Appl. Mater. Interfaces. 2015;7:996–1003. doi: 10.1021/am508123x. [DOI] [PubMed] [Google Scholar]
- [190].Li Y. X., Zhang K., Zhao J. J., Ji J., Ji C., Liu B. H. A three-dimensional silver nanoparticles decorated plasmonic paper strip for SERS detection of low-abundance molecules. Talanta. 2016;147:493–500. doi: 10.1016/j.talanta.2015.10.025. [DOI] [PubMed] [Google Scholar]
- [191].Gao X. F., Zheng P., Kasani S., Wu S., Yang F., Lewis S., Nayeem S., Engler-Chiurazzi E. B., Wigginton J. G., Simpkins J. W., et al. Paper-based surface-enhanced Raman scattering lateral flow strip for detection of neuronspecific enolase in blood plasma. Anal. Chem. 2017;89:10104–10110. doi: 10.1021/acs.analchem.7b03015. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [192].Sánchez-Purrà M., Carré-Camps M., de Puig H., Bosch I., Gehrke L., Hamad-Schifferli K. Surface-enhanced Raman spectroscopy-based sandwich immunoassays for multiplexed detection of Zika and Dengue viral biomarkers. ACS Infect. Dis. 2017;3:767–776. doi: 10.1021/acsinfecdis.7b00110. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [193].Zhang Y. S., Chang J. B., Alvarez M. M., de Trujillo- Santiago G., Aleman J., Batzaya B., Krishnadoss V., Ramanujam A. A., Kazemzadeh-Narbat M., Chen F., et al. Hybrid microscopy: Enabling inexpensive highperformance imaging through combined physical and optical magnifications. Sci. Rep. 2016;6:22691. doi: 10.1038/srep22691. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [194].Zhang Y. S., Ribas J., Nadhman A., Aleman J., Selimović S., Lesher-Perez S. C., Wang T., Manoharan V., Shin S. R., Damilano A., et al. A cost-effective fluorescence mini-microscope for biomedical applications. Lab Chip. 2015;15:3661–3669. doi: 10.1039/C5LC00666J. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [195].Zhang Y. S., de Trujillo- Santiago G., Alvarez M. M., Schiff S. J., Boyden E. S., Khademhosseini A. Expansion mini-microscopy: An enabling alternative in point-of-care diagnostics. Curr. Opin. Biomed. Eng. 2017;1:45–53. doi: 10.1016/j.cobme.2017.03.001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [196].McLeod E., Ozcan A. Microscopy without lenses. Phys. Today. 2017;70:50–56. doi: 10.1063/PT.3.3693. [DOI] [Google Scholar]
- [197].Ghosh K. K., Burns L. D., Cocker E. D., Nimmerjahn A., Ziv Y., El Gamal A., Schnitzer M. J. Miniaturized integration of a fluorescence microscope. Nat. Methods. 2011;8:871–878. doi: 10.1038/nmeth.1694. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [198].Singh N. K., Chacko J. V., Sreenivasan V. K. A., Nag S., Maiti S. Ultracompact alignment-free single molecule fluorescence device with a foldable light path. J. Biomed. Opt. 2011;16:025004. doi: 10.1117/1.3548311. [DOI] [PubMed] [Google Scholar]
- [199].Cetin A. E., Coskun A. F., Galarreta B. C., Huang M., Herman D., Ozcan A., Altug H. Handheld high-throughput plasmonic biosensor using computational on-chip imaging. Light-Sci. Appl. 2014;3:e122. doi: 10.1038/lsa.2014.3. [DOI] [Google Scholar]
- [200].Coskun A. F., Cetin A. E., Galarreta B. C., Alvarez D. A., Altug H., Ozcan A. Lensfree optofluidic plasmonic sensor for real-time and label-free monitoring of molecular binding events over a wide field-of-view. Sci. Rep. 2014;4:6789. doi: 10.1038/srep06789. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [201].Ballard Z. S., Shir D., Bhardwaj A., Bazargan S., Sathianathan S., Ozcan A. Computational sensing using low-cost and mobile plasmonic readers designed by machine learning. ACS Nano. 2017;11:2266–2274. doi: 10.1021/acsnano.7b00105. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [202].Taton T. A., Mirkin C. A., Letsinger R. L. Scanometric DNA array detection with nanoparticle probes. Science. 2000;289:1757–1760. doi: 10.1126/science.289.5485.1757. [DOI] [PubMed] [Google Scholar]
- [203].Verigene® Warfarin Metabolism Nucleic Acid Test. Nanosphere Inc. https://www.accessdata.fda.gov/cdrh_docs/pdf7/k070804.pdf (accessed May 7, 2018).
- [204].Wei Q. S., Acuna G., Kim S., Vietz C., Tseng D., Chae J., Shir D., Luo W., Tinnefeld P., Ozcan A. Plasmonics enhanced smartphone fluorescence microscopy. Sci. Rep. 2017;7:2124. doi: 10.1038/s41598-017-02395-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [205].Ozcan A. Mobile phones democratize and cultivate next-generation imaging, diagnostics and measurement tools. Lab Chip. 2014;14:3187–3194. doi: 10.1039/C4LC00010B. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [206].Erickson D., O’Dell D., Jiang L., Oncescu V., Gumus A., Lee S., Mancuso M., Mehta S. Smartphone technology can be transformative to the deployment of lab-on-chip diagnostics. Lab Chip. 2014;14:3159–3164. doi: 10.1039/C4LC00142G. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [207].Contreras-Naranjo J. C., Wei Q. S., Ozcan A. Mobile phone-based microscopy, sensing, and diagnostics. IEEE J. Sel. Top. Quant. 2016;22:7100414. doi: 10.1109/JSTQE.2015.2478657. [DOI] [Google Scholar]
- [208].Breslauer D. N., Maamari R. N., Switz N. A., Lam W. A., Fletcher D. A. Mobile phone based clinical microscopy for global health applications. PLoS One. 2009;4:e6320. doi: 10.1371/journal.pone.0006320. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [209].Smith Z. J., Chu K. Q., Espenson A. R., Rahimzadeh M., Gryshuk A., Molinaro M., Dwyre D. M., Lane S., Matthews D., Wachsmann-Hogiu S. Cell-phone-based platform for biomedical device development and education applications. PLoS One. 2011;6:e17150. doi: 10.1371/journal.pone.0017150. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [210].Mudanyali O., Dimitrov S., Sikora U., Padmanabhan S., Navruz I., Ozcan A. Integrated rapid-diagnostic-test reader platform on a cellphone. Lab Chip. 2012;12:2678–2686. doi: 10.1039/c2lc40235a. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [211].Zhu H. Y., Yaglidere O., Su T. W., Tseng D., Ozcan A. Cost-effective and compact wide-field fluorescent imaging on a cell-phone. Lab Chip. 2011;11:315–322. doi: 10.1039/C0LC00358A. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [212].Wei Q. S., Qi H. F., Luo W., Tseng D., Ki S. J., Wan Z., Göröcs Z., Bentolila L. A., Wu T. T., Sun R., et al. Fluorescent imaging of single nanoparticles and viruses on a smart phone. ACS Nano. 2013;7:9147–9155. doi: 10.1021/nn4037706. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [213].Wei Q. S., Luo W., Chiang S., Kappel T., Mejia C., Tseng D., Chan R. Y. L., Yan E., Qi H. F., Shabbir F., et al. Imaging and sizing of single DNA molecules on a mobile phone. ACS Nano. 2014;8:12725–12733. doi: 10.1021/nn505821y. [DOI] [PubMed] [Google Scholar]
- [214].Liu Z. G., Zhang Y. L., Xu S. J., Zhang H., Tan Y. X., Ma C. M., Song R., Jiang L. L., Yi C. Q. A 3D printed smartphone optosensing platform for point-of-need food safety inspection. Anal. Chim. Acta. 2017;966:81–89. doi: 10.1016/j.aca.2017.02.022. [DOI] [PubMed] [Google Scholar]
- [215].Fu Q. Q., Wu Z., Xu F. X., Li X. Q., Yao C. Z., Xu M., Sheng L. R., Yu S. T., Tang Y. A portable smart phone-based plasmonic nanosensor readout platform that measures transmitted light intensities of nanosubstrates using an ambient light sensor. Lab Chip. 2016;16:1927–1933. doi: 10.1039/C6LC00083E. [DOI] [PubMed] [Google Scholar]
- [216].Amirjani A., Fatmehsari D. H. Colorimetric detection of ammonia using smartphones based on localized surface plasmon resonance of silver nanoparticles. Talanta. 2018;176:242–246. doi: 10.1016/j.talanta.2017.08.022. [DOI] [PubMed] [Google Scholar]
- [217].Cellmic. http://www.cellmic.com/content (accessed May 7, 2018).
- [218].Wei Q. S., Nagi R., Sadeghi K., Feng S., Yan E., Ki S. J., Caire R., Tseng D., Ozcan A. Detection and spatial mapping of mercury contamination in water samples using a smart-phone. ACS Nano. 2014;8:1121–1129. doi: 10.1021/nn406571t. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [219].Preechaburana P., Gonzalez M. C., Suska A., Filippini D. Surface plasmon resonance chemical sensing on cell phones. Angew. Chem., Int. Ed. 2012;51:11585–11588. doi: 10.1002/anie.201206804. [DOI] [PubMed] [Google Scholar]
- [220].Liu Y., Liu Q., Chen S. M., Cheng F., Wang H. Q., Peng W. Surface plasmon resonance biosensor based on smart phone platforms. Sci. Rep. 2015;5:12864. doi: 10.1038/srep12864. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [221].Bremer K., Roth B. Fibre optic surface plasmon resonance sensor system designed for smartphones. Opt. Express. 2015;23:17179–17184. doi: 10.1364/OE.23.017179. [DOI] [PubMed] [Google Scholar]
- [222].Zhang J. L., Khan I., Zhang Q. W., Liu X. H., Dostalek J., Liedberg B., Wang Y. Lipopolysaccharides detection on a grating-coupled surface plasmon resonance smartphone biosensor. Biosens. Bioelectron. 2018;99:312–317. doi: 10.1016/j.bios.2017.07.048. [DOI] [PubMed] [Google Scholar]
- [223].Wang X. H., Chang T. W., Lin G. H., Gartia M. R., Liu G. L. Self-referenced smartphone-based nanoplasmonic imaging platform for colorimetric biochemical sensing. Anal. Chem. 2017;89:611–615. doi: 10.1021/acs.analchem.6b02484. [DOI] [PubMed] [Google Scholar]
- [224].Guner H., Ozgur E., Kokturk G., Celik M., Esen E., Topal A. E., Ayas S., Uludag Y., Elbuken C., Dana A. A smartphone based surface plasmon resonance imaging (SPRi) platform for on-site biodetection. Sensor. Actuat. B: Chem. 2017;239:571–577. doi: 10.1016/j.snb.2016.08.061. [DOI] [Google Scholar]
- [225].Bandodkar A. J., Wang J. Non-invasive wearable electrochemical sensors: A review. Trends Biotechnol. 2014;32:363–371. doi: 10.1016/j.tibtech.2014.04.005. [DOI] [PubMed] [Google Scholar]
- [226].Zhong J. W., Zhang Y., Zhong Q. Z., Hu Q. Y., Hu B., Wang Z. L., Zhou J. Fiber-based generator for wearable electronics and mobile medication. ACS Nano. 2014;8:6273–6280. doi: 10.1021/nn501732z. [DOI] [PubMed] [Google Scholar]
- [227].Wang X. W., Gu Y., Xiong Z. P., Cui Z., Zhang T. Silk-molded flexible, ultrasensitive, and highly stable electronic skin for monitoring human physiological signals. Adv. Mater. 2014;26:1336–1342. doi: 10.1002/adma.201304248. [DOI] [PubMed] [Google Scholar]
- [228].Xu S., Zhang Y. H., Jia L., Mathewson K. E., Jang K. I., Kim J., Fu H. R., Huang X., Chava P., Wang R. H., et al. Soft microfluidic assemblies of sensors, circuits, and radios for the skin. Science. 2014;344:70–74. doi: 10.1126/science.1250169. [DOI] [PubMed] [Google Scholar]
- [229].Feng D., Zhang H., Xu S. Y., Tian L. M., Song N. F. Stretchable array of metal nanodisks on a 3D sinusoidal wavy elastomeric substrate for frequency tunable plasmonics. Nanotechnology. 2017;28:115703. doi: 10.1088/1361-6528/aa5af0. [DOI] [PubMed] [Google Scholar]
- [230].Wei Z. Q., Zhou Z. K., Li Q. Y., Xue J. C., Di Falco A., Yang Z. J., Zhou J. H., Wang X. H. Flexible nanowire cluster as a wearable colorimetric humidity sensor. Small. 2017;13:1700109. doi: 10.1002/smll.201700109. [DOI] [PubMed] [Google Scholar]
- [231].Yan H. G., Low T., Zhu W. J., Wu Y. Q., Freitag M., Li X. S., Guinea F., Avouris P., Xia F. N. Damping pathways of mid-infrared plasmons in graphene nanostructures. Nat. Photonics. 2013;7:394–399. doi: 10.1038/nphoton.2013.57. [DOI] [Google Scholar]
- [232].Yan H. G., Li X. S., Chandra B., Tulevski G., Wu Y. Q., Freitag M., Zhu W. J., Avouris P., Xia F. N. Tunable infrared plasmonic devices using graphene/insulator stacks. Nat. Nanotechnol. 2012;7:330–334. doi: 10.1038/nnano.2012.59. [DOI] [PubMed] [Google Scholar]
- [233].Leem J., Wang M. C., Kang P., Nam S. Mechanically self-assembled, three-dimensional graphene-gold hybrid nanostructures for advanced nanoplasmonic sensors. Nano Lett. 2015;15:7684–7690. doi: 10.1021/acs.nanolett.5b03672. [DOI] [PubMed] [Google Scholar]
- [234].Hinman S. S., McKeating K. S., Cheng Q. Plasmonic sensing with 3D printed optics. Anal. Chem. 2017;89:12626–12630. doi: 10.1021/acs.analchem.7b03967. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [235].Pandey S., Gupta B., Nahata A. Terahertz plasmonic waveguides created via 3D printing. Opt. Express. 2013;21:24422–24430. doi: 10.1364/OE.21.024422. [DOI] [PubMed] [Google Scholar]