Skip to main content
Springer Nature - PMC COVID-19 Collection logoLink to Springer Nature - PMC COVID-19 Collection
. 2006;8(3):353–360. doi: 10.1385/NMM:8:3:353

Coexistence of angiotensin II type-1 receptor A1166C and angiotensin-converting enzyme D/D polymorphism suggests susceptibility for small-vessel-associated ischemic stroke

Zoltán Szolnoki 1,, Anita Maasz 2, Lili Magyari 2, Katalin Horvatovich 2, Bernadett Farago 2, Ferenc Somogyvari 3,4, Andras Kondacs 1, Mihaly Szabo 1, Lajos Fodor 3, Anita Bodor 5, Ferenc Hadarits 6, Bela Melegh 2,7
PMCID: PMC7091324  PMID: 16775386

Abstract

The renin-angiotensin system plays an important role in the maintenance of blood pressure homeostasis. The angiotensin-converting enzyme (ACE) converts angiotensin I into angiotensin II. Angiotensin II, which binds the angiotensin II type-1 receptor (AT1R), is a potent vasoconstrictor. On a pathophysiological basis, both ACE I/D and AT1R A1166C polymorphism lead to an enhanced activity of the angiotensin II-AT1R axis, thereby possibly contributing to circulatory disturbances. A mutually facilitatory effect may be presumed between the two polymorphisms. We examined whether this synergistic effect is involved in the evolution of different types of ischemic stroke. Genetic and clinical data on 308 consecutive patients with acutely developing ischemic stroke were analyzed. A total of 272 stroke and neuroimaging alteration-free subjects served as a control group. Univariate and logistic regression statistical approaches were used. The ACE D allele combined with the AT1R 1166C allele did not yield a risk of ischemic stroke. However, the co-occurrence of the homozygous ACE D/D and at least one AT1R 1166C allele was more frequent in the ischemic stroke group than in the control group (22.4 vs 11%, p<0.005, OR, 2.33; 95% CI, 1.46–3.7). After specific subgroup analysis, this synergistic association was even stronger for small-vessel ischemic stroke (OR, 3.44; 95% CI, 1.9–6.24; p<0.0005). Multivariate logistic regression analysis of the data confirmed this association (adjusted OR, 3.54, 95% CI, 1.88–7.16; p<0.0005). Our results demonstrate that ACE D/D and AT1R 1166C polymorphism were associated with the development of small-vessel ischemic stroke through a mutually facilitatory interplay between them. Genetic interactions might contribute to the altered functional network in renin-angiotensin system in vascular disorders.

Index Entries: ACEI/D, AT1RA1166C polymorphism, angiotensin, network, receptor, stroke

References

  1. Agacnan B., Isbir T., Yilmaz H., Akoglu E. Angiotensin converting enzymeI/D, angiotensinogen T174M-M235T and angiotensin II type 1 receptor A1166C gene polymorphisms in Turkish hypertensive patients. Exp. Mol. Med. 2003;35:545–549. doi: 10.1038/emm.2003.71. [DOI] [PubMed] [Google Scholar]
  2. Brenner D., Labreuche J., Poirier O., et al. Renin-angiotensin-aldosterone system in brain infarcsion and vascular death. Ann. Neurol. 2005;58:131–138. doi: 10.1002/ana.20537. [DOI] [PubMed] [Google Scholar]
  3. De Ciuceis C., Amiri F., Brassard P., et al. Reduced vascular remodeling, endothelial dysfunction, and oxidative stress in resistance arteries of angiotens in II-infused macrophage colony-stimulating factor-deficient mice: evidence for a role in inflammation in angiotensin-induced vascular injury. Arterioscler. Thromb. Vasc. Biol. 2005;25:2106–2113. doi: 10.1161/01.ATV.0000181743.28028.57. [DOI] [PubMed] [Google Scholar]
  4. De Gennaro Colonna V., Rigamonti A., Fioretti S., et al. Angiotensin-converting enzyme inhibition and angiotensin AT1-receptor antagonism equally improve endothelial vasodilator function in L-NAME-induced hypertensive rats. Eur. J. Pharmacol. 2005;516:253–259. doi: 10.1016/j.ejphar.2005.04.004. [DOI] [PubMed] [Google Scholar]
  5. Fukazawa R., Sonobe T., Hamamoto K., et al. Possible synergic effect of angiotensin-I converting enzyme gene insertion/deletion polymorphism and angiotensin-IItype-1 receptor 1166A/C gene polymorphism on ischemic heart disease in patients with Kawasaki disease. Pediatr. Res. 2004;56:597–601. doi: 10.1203/01.PDR.0000139426.16381.C8. [DOI] [PubMed] [Google Scholar]
  6. Henderson S. O., Haiman C. A., Mack W. Multiple polymorphisms in the renin-angiotensin-aldosterone system (ACE, CYP11B2, AGTR1) and their contribution to hypertension in African Americans and Latinos in the multiethnic cohort. Am. J. Med. Sci. 2004;328:266–273. doi: 10.1097/00000441-200411000-00006. [DOI] [PubMed] [Google Scholar]
  7. Higashi Y., Chayama K., Yoshizumi M. Angiotensin II type I receptor blocker and endothelial function in humans: role of nitric oxide and oxidative stress. Curr. Med. Chem. Cardiovasc. Hematol. Agents. 2005;3:133–148. doi: 10.2174/1568016053544363. [DOI] [PubMed] [Google Scholar]
  8. Imai Y., Kuba K., Rao S., et al. Angiotensin-converting enzyme 2 protects from severe acute lung failure. Nature. 2005;436:112–116. doi: 10.1038/nature03712. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Jones A., Dhamrait S. S., Payne J. R., et al. Genetic variants of angiotensin II receptors and cardiovascular risk in hypertension. Hypertension. 2003;42:500–506. doi: 10.1161/01.HYP.0000088853.27673.D0. [DOI] [PubMed] [Google Scholar]
  10. Kuba K., Imai Y., Rao S., et al. A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus-induced lung injury. Nat. Med. 2005;11:875–879. doi: 10.1038/nm1267. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Larose E., Ganz P. Statins and endothelial dysfunction. Semin. Vasc. Med. 2004;4:333–346. doi: 10.1055/s-2004-869590. [DOI] [PubMed] [Google Scholar]
  12. Malik F. S., Lavie C. J., Mehra M. R., et al. Renin-angiotensin system: genes to bedside. Am. Heart J. 1997;134:514–526. doi: 10.1016/S0002-8703(97)70089-9. [DOI] [PubMed] [Google Scholar]
  13. Miller J. A., Scholey J. W. The impact of renin-angiotensin system polymorphisms on physiological and pathophysiological processes in humans. Curr. Opin. Nephrol. Hypertens. 2004;13:101–106. doi: 10.1097/00041552-200401000-00014. [DOI] [PubMed] [Google Scholar]
  14. Miller S. A., Dykes D. D., Polesky H. F. A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res. 1988;16:1215–1215. doi: 10.1093/nar/16.3.1215. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Nicholls J., Peiris M. Good ACE, bad ACE do battle in lung injury, SARS. Nat. Med. 2005;11:821–821. doi: 10.1038/nm0805-821. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Rubattu S., DiAngelantonio E., Stanzione R., et al. Gene polymorphisms of the renin-angiotens in-aldosterone system and the risk of ischemic stroke: a role of the A1166C/AT1 gene variant. J. Hypertens. 2004;22:2129–2134. doi: 10.1097/00004872-200411000-00015. [DOI] [PubMed] [Google Scholar]
  17. Saavedra J. M. Brain angiotensin II: new developments, unanswered questions and therapeutic opportunities. Cell Mol. Neurobiol. 2005;25:485–512. doi: 10.1007/s10571-005-4011-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Schmieder R. E. Mechanisms for the clinical benefits of angiotensin II receptor blockers. Am. J. Hypertens. 2005;18:720–730. doi: 10.1016/j.amjhyper.2004.11.032. [DOI] [PubMed] [Google Scholar]
  19. Somogyvári F., Szolnoki Z., Márki-Zay J., et al. Real-time PCRassay with fluorescent hybridization probes for exact and rapid genotyping of the angiotensin-converting enzyme gene insertion/deletion polymorphism. Clin. Chem. 2001;47:1728–1729. [PubMed] [Google Scholar]
  20. Szolnoki Z., Somogyvari F., Kondacs A., et al. Evaluation of the interactions of common genetic mutations in stroke subtypes. J. Neurol. 2002;249:1391–1397. doi: 10.1007/s00415-002-0848-4. [DOI] [PubMed] [Google Scholar]
  21. Szolnoki Z., Somogyvari F., Kondacs A., et al. Evaluation of the modifying effects of unfavourable genotypes on classical clinical risk factors for ischemic stroke. J. Neurol. Neurosurg. Psychiatry. 2003;74:1615–1620. doi: 10.1136/jnnp.74.12.1615. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Szolnoki Z., Somogyvari F., Kondacs A., et al. Specific APOE genotypes in combination with the ACE D/D or MTHFR 677 TT mutation yield an independent genetic risk of leukoaraiosis. Acta Neurol. Scand. 2004;109:222–227. doi: 10.1046/j.1600-0404.2003.00218.x. [DOI] [PubMed] [Google Scholar]
  23. Van Geel P. P., Pinto Y. M., Voors A. A., et al. Angiotenin II type 1 receptor A1166C gene polymorphism is associated with an increased response to angiotensin II in human arteries. Hypertension. 2000;35:717–721. doi: 10.1161/01.hyp.35.3.717. [DOI] [PubMed] [Google Scholar]
  24. Watanabe S., Tagawa T., Yamakawa K., et al. Inhibition of the renin-angiotensin system prevents free fatty acid-induced acute endothelial dysfunction in humans. Arterioscler. Thromb. Vasc. Biol. 2005;25:2376–2380. doi: 10.1161/01.ATV.0000187465.55507.85. [DOI] [PubMed] [Google Scholar]
  25. World Health Organization (1985) Report on diabetes mellitus. WHO Tech. Rep. Ser. 727. [PubMed]
  26. Zhou J., Ando H., Macova M., et al. Angiotensin IIAT1 receptor blockade abolishes brain microvascular inflammation and heat shock protein responses in hypertensive rats. J. Cereb. Blood Flow Metab. 2005;25:878–886. doi: 10.1038/sj.jcbfm.9600082. [DOI] [PubMed] [Google Scholar]

Articles from Neuromolecular Medicine are provided here courtesy of Nature Publishing Group

RESOURCES