Skip to main content
Springer Nature - PMC COVID-19 Collection logoLink to Springer Nature - PMC COVID-19 Collection
. 2010 Feb 11;2(2):149–160. doi: 10.1007/s12293-009-0030-y

Manifold construction based on local distance invariance

Wei-Chen Cheng 1, Cheng-Yuan Liou 1,
PMCID: PMC7091362  PMID: 32218874

Abstract

This paper presents a distance invariant manifold that preserves the neighborhood relations among data patterns. All patterns have their corresponding cells in the manifold space. The constellation of neighborhood cells closely resembles that of patterns. The manifold is invariant under the translation, rotation and scale of the pattern coordinates. The neighborhood relations among cells are adjusted and improved in each iteration according to the reduction of the distance preservation energy.

Keywords: Information visualization, Self-organizing map, Manifold construction, Horizontal gene transfer, Economic state, Phylogenetic tree, Influenza A virus

References

  • 1.Aranha C, Iba H. The memetic tree-based genetic algorithm and its application to portfolio optimization. Memetic Comput. 2009;1:139–151. doi: 10.1007/s12293-009-0010-2. [DOI] [Google Scholar]
  • 2.Bao Y, Bolotov P, et al. The influenza virus resource at the national center for biotechnology information. J Virol. 2008;82:596–601. doi: 10.1128/JVI.02005-07. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3.Case SM. Biochemical systematics of members of the genus Rana native to western north America. Syst Zool. 1978;27:299–311. doi: 10.2307/2412881. [DOI] [Google Scholar]
  • 4.de Silva V, Tenenbaum JB. Global versus local methods in nonlinear dimensionality reduction. Adv Neur Inf Process Syst. 2002;15:705–712. [Google Scholar]
  • 5.Deboeck G, Kohonen T. Visual explorations in finance: with self-organizing maps. Berlin: Springer; 1998. [Google Scholar]
  • 6.Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32:1792–1797. doi: 10.1093/nar/gkh340. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Erwin E, Obermayer K, Schulten K. Self-organizing maps: ordering, convergence properties and energy functions. Biol Cybern. 1992;67:47–55. doi: 10.1007/BF00201801. [DOI] [PubMed] [Google Scholar]
  • 8.Farris JS. Estimating phylogenetic trees from distance matrices. Am Nat. 1972;106:645–668. doi: 10.1086/282802. [DOI] [Google Scholar]
  • 9.Johnson SC. Hierarchical clustering schemes. Psychometrika. 1967;32(3):241–254. doi: 10.1007/BF02289588. [DOI] [PubMed] [Google Scholar]
  • 10.Kohonen T. Self-organized formation of topologically correct feature maps. Biol Cybern. 1982;43:59–69. doi: 10.1007/BF00337288. [DOI] [Google Scholar]
  • 11.Kohonen T. Self-organization and associative memory. 2. Berlin: Springer; 1988. [Google Scholar]
  • 12.Kohonen T. Comparison of SOM point densities based on different criteria. Neural Comput. 1999;11:2081–2095. doi: 10.1162/089976699300016098. [DOI] [PubMed] [Google Scholar]
  • 13.Kohonen T. Self-organizing maps. Berlin: Springer; 2001. [Google Scholar]
  • 14.Kohonen T, Somervuo P. Self-organizing maps of symbol strings. Neurocomputing. 1998;21:19–30. doi: 10.1016/S0925-2312(98)00031-9. [DOI] [Google Scholar]
  • 15.Larkin MA, Blackshields G, Brown NP, et al. Clustal W and Clustal X version 2.0. Bioinformatics. 2007;23:2947–2948. doi: 10.1093/bioinformatics/btm404. [DOI] [PubMed] [Google Scholar]
  • 16.Liou C-Y, Chen H-T, Huang J-C (2000) Separation of internal representations of the hidden layer. In: Proceedings of the international computer symposium, workshop on artificial intelligence, pp 26–34
  • 17.Liou C-Y, Cheng W-C (2008) Manifold construction by local neighborhood preservation. In: Lecture notes in computer science, vol 4985, pp 683–692
  • 18.Liou C-Y, Kuo Y-T (2002) Economic state indicator on neuronic map. In: International conference on neural information processing, vol 2, pp 787–791
  • 19.Liou C-Y, Musicus BR. Separable cross-entropy approach to power spectrum estimation. IEEE T Acoust Speech. 1990;38:105–113. doi: 10.1109/29.45622. [DOI] [Google Scholar]
  • 20.Liou C-Y, Tai W-P. Conformal self-organization for continuity on a feature map. Neural Netw. 1999;12:893–905. doi: 10.1016/S0893-6080(99)00034-9. [DOI] [PubMed] [Google Scholar]
  • 21.Liou C-Y, Tai W-P. Conformality in the self-organization network. Artif Intell. 2000;116:265–286. doi: 10.1016/S0004-3702(99)00093-4. [DOI] [Google Scholar]
  • 22.Liou C-Y, Yang H-C. Handprinted character recognition based on spatial topology distance measurement. IEEE T Pattern Anal. 1996;18(9):941–945. doi: 10.1109/34.537349. [DOI] [Google Scholar]
  • 23.Luttrell S. Code vector density in topographic mappings: scalar case. IEEE T Neural Netw. 1991;2:427–436. doi: 10.1109/72.88162. [DOI] [PubMed] [Google Scholar]
  • 24.Marra MA, Jones SJ, et al. The genome sequence of the SARS-associated coronavirus. Science. 2003;300(5624):1399–1404. doi: 10.1126/science.1085953. [DOI] [PubMed] [Google Scholar]
  • 25.Meuth R, Lim M-H, Ong Y-S, Wunsch II DC. A proposition on memes and meta-memes in computing for higher-order learning. Memetic Comput. 2009;1:85–100. doi: 10.1007/s12293-009-0011-1. [DOI] [Google Scholar]
  • 26.Rota PA, Oberste MS, et al. Characterization of a novel coronavirus associated with severe acute respiratory syndrome. Science. 2003;300:1394–1399. doi: 10.1126/science.1085952. [DOI] [PubMed] [Google Scholar]
  • 27.Roweis ST, Saul LK. Nonlinear dimensionality reduction by locally linear embedding. Science. 2000;290:2323–2326. doi: 10.1126/science.290.5500.2323. [DOI] [PubMed] [Google Scholar]
  • 28.Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987;4:406–425. doi: 10.1093/oxfordjournals.molbev.a040454. [DOI] [PubMed] [Google Scholar]
  • 29.Sattath S, Tversky A. Additive similarity trees. Psychometrika. 1977;42:319–345. doi: 10.1007/BF02293654. [DOI] [Google Scholar]
  • 30.Sokal RR, Sneath PHA. Principles of numerical taxonomy. San Francisco: W. H. Freeman; 1963. [Google Scholar]
  • 31.Tenenbaum J, de Silva V, Langford JC. A global geometric framework for nonlinear dimensionality reduction. Science. 2000;290:2319–2323. doi: 10.1126/science.290.5500.2319. [DOI] [PubMed] [Google Scholar]
  • 32.Torgerson WS. Multidimensional scaling I: theory and method. Psychometrika. 1952;17:401–419. doi: 10.1007/BF02288916. [DOI] [Google Scholar]
  • 33.WHO (2009) Epidemic and pandemic alert and response (EPR) http://www.who.int/csr/disease/avian_influenza/country/cases_table_2009_12_11/en/index.html
  • 34.Wu J-M, Lin Z-H, Hsu PH. Function approximation using generalized adalines. IEEE T Neural Netw. 2006;17:541–558. doi: 10.1109/TNN.2006.873284. [DOI] [PubMed] [Google Scholar]
  • 35.Wu J-M, Lu C-Y, Liou C-Y (2005) Independent component analysis of correlated neuronal responses in area MT. In: Proceedings of the international conference on neural information processing, pp 639–642

Articles from Memetic Computing are provided here courtesy of Nature Publishing Group

RESOURCES