Skip to main content
Springer Nature - PMC COVID-19 Collection logoLink to Springer Nature - PMC COVID-19 Collection
. 1997;14(1):19–35. doi: 10.1007/BF02740619

The effects of interferon-γ on the central nervous system

Brian Popko 1,2,3,, Joshua G Corbin 1, Kristine D Baerwald 1, Jeffrey Dupree 1, Annie M Garcia 1
PMCID: PMC7091409  PMID: 9170099

Abstract

Interferon-gamma (IFN-γ) is a pleotropic cytokine released by T-lymphocytes and natural killer cells. Normally, these cells do not traverse the blood-brain barrier at appreciable levels and, as such, IFN-γ is generally undetectable within the central nervous system (CNS). Nevertheless, in response to CNS infections, as well as during certain disorders in which the CNS is affected, T-cell traffic across the blood-brain barrier increases considerably, thereby exposing neuronal and glial cells to the potent effects of IFN-γ. A large portion of this article is devoted to the substantial circumstantial and experimental evidence that suggests that IFN-γ plays an important role in the pathogenesis of the demyelinating disorder multiple sclerosis (MS) and its animal model experimental allergic encephalomyelitis (EAE). Moreover, the biochemical and physiological effects of IFN-γ are discussed in the context of the potential consequences of such activities on the developing and mature nervous systems.

Index Entries: Cytokines, demyelination, neural development

References

  1. Agresti C., D'Urso D., Levi G. Reversible inhibitory effects of interferon-γ and tumouar necrosis factor-α on oligodendroglial lineage cell proliferation and differentiation in vitro. Eur. J. Neurosci. 1996;8:1106–1116. doi: 10.1111/j.1460-9568.1996.tb01278.x. [DOI] [PubMed] [Google Scholar]
  2. Aguet M., Dembic Z., Merlin G. Molecular cloning and expression of the human interferon-γ receptor. Cell. 1988;55:273–280. doi: 10.1016/0092-8674(88)90050-5. [DOI] [PubMed] [Google Scholar]
  3. Alvord E. C., Kies M. W., Suckling A. J. Experimental Allergic Encephalomyelitis: A Useful Model for Multiple Sclerosis. Totowa: Alan R. Liss; 1984. [Google Scholar]
  4. Bach E. A., Tanner J. W., Marsters S., Ashkenazi A., Aguet M., Shaw A. S., Schreiber R. D. Ligand-induced assembly and activation of the gamma interferon receptor in intact cells. Mol. Cell. Biol. 1996;16:3214–3221. doi: 10.1128/mcb.16.6.3214. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Balasingam V., Tejada-Berges T., Wright E., Bouckova R., Yong V. W. Reactive astrogliosis in the neonatal mouse brain and its modulation by cytokines. J. Neurosci. 1994;14:846–856. doi: 10.1523/JNEUROSCI.14-02-00846.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Barish M. E., Mansdorf N. B., Raissdana S. S. Gamma-interferon promotes differentiation of cultured cortical and hippocampal neurons. Dev. Biol. 1991;144:412–423. doi: 10.1016/0012-1606(91)90433-4. [DOI] [PubMed] [Google Scholar]
  7. Beck J., Rondot L., Catinot L., Falcoff E., Kirchner H., Wietzerbin J. Increased production of interferon gamma and tumor necrosis factor precedes clinical manifestation in multiple sclerosis: do cytokines trigger off exacerbations? Acta Neurol. Scand. 1988;78:318–323. doi: 10.1111/j.1600-0404.1988.tb03663.x. [DOI] [PubMed] [Google Scholar]
  8. Benveniste E. N. Inflammatory cytokines within the central nervous system: sources, function, and mechanism of action. Cell Physiol. 1992;32:C1–C16. doi: 10.1152/ajpcell.1992.263.1.C1. [DOI] [PubMed] [Google Scholar]
  9. Benveniste E. N., Benos D. J. TNF-α and IFN-γ-mediated signal transduction pathways: effects on glial cell gene expression and function. FASEB J. 1995;9:1577–1584. doi: 10.1096/fasebj.9.15.8529837. [DOI] [PubMed] [Google Scholar]
  10. Bergsteinsdottir K., Brennan A., Jessen K. R., Mirsky R. In the presence of dexamethasone, γ interferon induces rat oligodendrocytes to express major histocompatibility complex class II molecules. Proc. Natl. Acad. Sci. USA. 1992;89:9054–9058. doi: 10.1073/pnas.89.19.9054. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Billiau A., Heremans H., Vandekerckhove F., Dijkmans R., Sobis H., Meulepas E., Carton H. Enhancement of experimental allergic encephalomyelitis in mice by antibodies against IFN-γ. J. Immunol. 1988;140:1506–1510. [PubMed] [Google Scholar]
  12. Birdsall H. H. Induction of ICAM-1 on human neural cells and mechanisms of neutrophil-mediated injury. Am. J. Pathol. 1991;139:1341–1350. [PMC free article] [PubMed] [Google Scholar]
  13. Birmingham M. K., Sar M., Stumpf W. E. Localization of aldosterone and corticosterone in the central nervous system, assessed by quantitative autoradiography. Neurochem. Res. 1984;9:333–350. doi: 10.1007/BF00963982. [DOI] [PubMed] [Google Scholar]
  14. Bö L., Dawson T. M., Wesselingh S., Mörk S., Choi S., Kong P. A., Hanley D., Trapp B. D. Induction of nitric oxide synthase in demyelinating regions of multiple sclerosis brains. Ann. Neurol. 1994;36:778–786. doi: 10.1002/ana.410360515. [DOI] [PubMed] [Google Scholar]
  15. Booss J., Esiri M. M., Tourtellotte W. W. Immunohistochemical analysis of T-lymphocyte subsets in the central nervous system in chronic progressive multiple sclerosis. J. Neurol. Sci. 1983;62:19–32. doi: 10.1016/0022-510X(83)90201-0. [DOI] [PubMed] [Google Scholar]
  16. Brosnan C. F., Litwak M. S., Schroeder C. E., Selmaj K., Raine C. S., Arezzo J. C. Preliminary studies of cytokine-induced functional effects on the visual pathways in the rabbit. J. Neuroimmunol. 1989;25:227–239. doi: 10.1016/0165-5728(89)90141-0. [DOI] [PubMed] [Google Scholar]
  17. Calder V. L., Wolswijk G., Noble M. The differentiation of 0–2A progenitor cells into oligodendrocytes is associated with a loss of inducibility of Ia antigens. Eur. J. Immunol. 1988;18:1195–1201. doi: 10.1002/eji.1830180808. [DOI] [PubMed] [Google Scholar]
  18. Chang J. Y., Martin D. P., Johnson E. M. Interferon suppresses sympathetic neuronal cell death caused by nerve growth factor deprivation. J. Neurochem. 1990;55:436–445. doi: 10.1111/j.1471-4159.1990.tb04155.x. [DOI] [PubMed] [Google Scholar]
  19. Chuong C. M. Differential roles of multiple adhesion molecules in cell migration: granule cell migration in cerebellum. Experientia. 1990;46:892–899. doi: 10.1007/BF01939381. [DOI] [PubMed] [Google Scholar]
  20. Collins A. R. Interferon g potentiates human coronavirus OC43 infection of neuronal cells by modulation of HLA class I expression. Immunol. Invest. 1995;24:977–986. doi: 10.3109/08820139509060722. [DOI] [PubMed] [Google Scholar]
  21. Corbin J. G., Kelly D., Rath E. M., Baerwald K. D., Suzuki K., Popko B. Targeted CNS expression of interferon-gamma in transgenic mice leads to hypomyelination, reactive gliosis, and abnormal cerebellar development. Mol. Cell. Neurosci. 1996;7:354–370. doi: 10.1006/mcne.1996.0026. [DOI] [PubMed] [Google Scholar]
  22. Crone C. The blood-brain barrier; a modified tight epithelium. In: Suckling A. J., Rumsby M. G., Bradbury M. W. B., editors. The Blood-Brain Barrier in Health and Disease. UK: Ellis Horwood; 1986. pp. 17–40. [Google Scholar]
  23. Dalton D. K., Pitts-Meek S., Keshav S., Figari I. S., Bradley A., Stewart T. A. Multiple defects of immune cell function in mice with disrupted interferon-γ genes. Science. 1993;259:1739–1742. doi: 10.1126/science.8456300. [DOI] [PubMed] [Google Scholar]
  24. Darnell J. E., Kerr I. M., Stark G. R. Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science. 1994;264:1415–1421. doi: 10.1126/science.8197455. [DOI] [PubMed] [Google Scholar]
  25. David M. Transcription factors in interferon signaling. Pharmacol. Ther. 1995;65:149–161. doi: 10.1016/0163-7258(94)00050-D. [DOI] [PubMed] [Google Scholar]
  26. Dighe A. S., Farrar M. A., Schreiber R. D. Inhibition of cellular responsiveness to interferon-γ (IFNγ) induced by overexpression of inactive forms of the IFNγ receptor. J. Biol. Chem. 1993;268:10,645–10,653. [PubMed] [Google Scholar]
  27. Dighe A. S., Campbell D., Hsieh C.-S., Clarke S., Greaves D. R., Gordon S., Murphy K. M., Schreiber R. D. Tissue-specific targeting of cytokine unresponsiveness in transgenic mice. Immunity. 1995;3:657–666. doi: 10.1016/1074-7613(95)90136-1. [DOI] [PubMed] [Google Scholar]
  28. Duong T. T., St. Louis J., Gilbert J. J., Finkelman F. D., Strejan G. H. Effect of anti-interferon-γ and anti-interleukin-w monoclonal anti-body treatment on the development of actively and passively induced experimental allergic encephalomyelitis in the SJL/J mouse. J. Neuroimmunol. 1992;36:105–115. doi: 10.1016/0165-5728(92)90042-J. [DOI] [PubMed] [Google Scholar]
  29. Duong T. T., Finkelman F. D., Singh B., Strejan G. H. Effect of anti-interferon-gamma monoclonal antibody treatment on the development of experimental allergic encephalomyelitis in resistant mouse strains. J. Neuroimmunol. 1994;53:101–107. doi: 10.1016/0165-5728(94)90069-8. [DOI] [PubMed] [Google Scholar]
  30. Ealick S. E., Cook W. J., Vijay-Kumar S., Carson M., Nagabhushan T. L., Trotta P. P., Bugg C. E. Three-dimensional structure of recombinant human IFN-γ. Science. 1991;252:698–702. doi: 10.1126/science.1902591. [DOI] [PubMed] [Google Scholar]
  31. Eng L. F. Regulation of glial intermediate filaments in astrogliosis. In: Norenberg M. D., Hertz L., Schousboe A., editors. The Biochemical Pathology of Astrocytes. Totowa: Liss; 1988. pp. 79–90. [Google Scholar]
  32. Erbe D. V., Collins J. E., Shen L., Graziano R. F., Fanger M. W. The effect of cytokines on the expression and function of FC receptors for IgG on human myeloid cells. Mol. Immunol. 1990;27:57–67. doi: 10.1016/0161-5890(90)90060-D. [DOI] [PubMed] [Google Scholar]
  33. Fabry Z., Raine C. S., Hart M. N. Nervous tissue as an immune compartment: the dialect of the immune response in the CNS. Immunol. Today. 1994;15:219–224. doi: 10.1016/0167-5699(94)90247-X. [DOI] [PubMed] [Google Scholar]
  34. Farrar M. A., Schreiber R. D. The molecular cell biology of interferon-γ and its receptor. Annu. Rev. Immunol. 1993;11:571–611. doi: 10.1146/annurev.iy.11.040193.003035. [DOI] [PubMed] [Google Scholar]
  35. Ferber I. A., Brocke S., Taylor-Edwards C., Ridgway W., Dinisco C., Steinman L., Dalton D., Fathman C. G. Mice with a disrupted interferon-γ gene are susceptible to the induction of experimental autoimmune encephalomyelitis (EAE) J. Immunol. 1996;156:5–7. [PubMed] [Google Scholar]
  36. Ferm M. T., Soderstrom K., Jindal S., Gronberg A., Ivanyi J., Young R., Kiessling R. Induction of human hsp60 expression in monocytic cell lines. Intl. Immunol. 1992;4:305–311. doi: 10.1093/intimm/4.3.305. [DOI] [PubMed] [Google Scholar]
  37. Fierz W., Endler B., Reske K., Wekerle H., Fontana A. Astrocytes as antigen-presenting cells. I. Induction of Ia antigen expression on astrocytes by T cells via immune interferon and its effect on antigen presentation. J. Immunol. 1985;134:3785–3793. [PubMed] [Google Scholar]
  38. Fontana A., Fierz W., Wekerle H. Astrocytes present myelin basic protein to encephalitogenic T-cell lines. Nature. 1984;307:273–276. doi: 10.1038/307273a0. [DOI] [PubMed] [Google Scholar]
  39. Fountoulakis M., Zulauf M., Lustig A., Garotta G. Stoichiometry of interaction between interferon γ and its receptor. Eur. J. Biochem. 1992;208:781–787. doi: 10.1111/j.1432-1033.1992.tb17248.x. [DOI] [PubMed] [Google Scholar]
  40. Frohman E. M., Frohman T. C., Dustin M. L., Vayuvegula B., Choi B., van den Noort S., Gupta S. The induction of intercellular adhesion molecule 1 (ICAM-1) expression on human fetal astrocytes by interferon-gamma, tumor necrosis factor alpha, lymphotoxin, and interleukin-1: relevance to intracerebral antigen presentation. J. Neuroimmunol. 1989;23:117–124. doi: 10.1016/0165-5728(89)90030-1. [DOI] [PubMed] [Google Scholar]
  41. Gajewski T. F., Schell S. R., Nau G., Fitch F. W. Regulation of T-cell activation: differences among T cell subsets. Immunol. Rev. 1989;111:79–110. doi: 10.1111/j.1600-065X.1989.tb00543.x. [DOI] [PubMed] [Google Scholar]
  42. Gao Y. L., Brosnan C. F., Raine C. S. Experimental autoimmune encephalomyelitis. Qualitative and semiquantitative differences in heat shock protein 60 expression in the central nervous system. J. Immunol. 1995;154:3548–3556. [PubMed] [Google Scholar]
  43. Gray P. W., Goeddel D. V. Structure of the human immune interferon gene. Nature. 1982;298:859–863. doi: 10.1038/298859a0. [DOI] [PubMed] [Google Scholar]
  44. Gray P. W., Goeddel D. V. Cloning and expression of murine immune interferon cDNA. Proc. Natl. Acad. Sci. USA. 1983;80:5842–5846. doi: 10.1073/pnas.80.19.5842. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Gray P. W., Leung D. W., Pennica D., Yelverton E., Najarian R., Simonsen C. C., Derynck R., Sherwood P. J., Wallace D. M., Berger S. L., Levinson A. D., Goeddel D. V. Expression of human immune interferon cDNA inE. coli and monkey cells. Nature. 1982;295:503–508. doi: 10.1038/295503a0. [DOI] [PubMed] [Google Scholar]
  46. Greenlund A. C., Schreiber R. D., Goeddel D. V., Pennica D. Interferon-γ induces receptor dimerization in solution and on cells. J. Biol. Chem. 1993;268:18,103–18,110. [PubMed] [Google Scholar]
  47. Hartung H.-P., Jung S., Stoll G., Zielasek J., Schmidt B., Archelos J. J., Toyka K. V. Inflammatory mediators in demyelinating disorders of the CNS and PNS. J. Neuroimmunol. 1992;40:197–210. doi: 10.1016/0165-5728(92)90134-7. [DOI] [PubMed] [Google Scholar]
  48. Hayes C., Kelly D., Murayama S., Komiyama A., Suzuki K., Popko B. Expression of theneu oncogene under the transcriptional control of the myelin basic protein gene in transgenic mice: generation of transformed glial cells. J. Neurosci. Res. 1992;31:175–187. doi: 10.1002/jnr.490310123. [DOI] [PubMed] [Google Scholar]
  49. Hemmi S., Böhni R., Stark G., Di Marco F., Aguet M. A novel member of the interferon receptor family complements functionality of the murine interferon γ receptor in human cells. Cell. 1994;76:803–810. doi: 10.1016/0092-8674(94)90355-7. [DOI] [PubMed] [Google Scholar]
  50. Hickey W. F. Migration of hematogenous cells through the blood-brain barrier and the initiation of CNS inflammation. Brain Pathol. 1991;1:97–105. doi: 10.1111/j.1750-3639.1991.tb00646.x. [DOI] [PubMed] [Google Scholar]
  51. Huynh H. K., Dorovini-Zis Z. K. Effects of interferon-gamma on primary cultures of human brain microvessel endothelial cells. Am. J. Pathol. 1993;142:1265–1278. [PMC free article] [PubMed] [Google Scholar]
  52. Improta T., Salvatore A. M., Di Luzio A., Romeo G., Coccia E. M., Calissano P. IFN-gamma facilitates NGF-induced neuronal differentiation in PC12 cells. Exp. Cell Res. 1988;179:1–9. doi: 10.1016/0014-4827(88)90342-4. [DOI] [PubMed] [Google Scholar]
  53. Jindal S. Heat shock proteins: applications in health and disease. Trends Biotechnol. 1996;14:17–20. doi: 10.1016/0167-7799(96)80909-7. [DOI] [PubMed] [Google Scholar]
  54. Joly E., Oldstone M. B. Neuronal cells are deficient in loading peptides onto MHC class I molecules. Neuron. 1992;8:1185–1190. doi: 10.1016/0896-6273(92)90138-4. [DOI] [PubMed] [Google Scholar]
  55. Joly W., Mucke L., Oldstone M. B. Viral persistence in neurons explained by lack of major histocompatibility class I expression. Science. 1991;253:1283–1285. doi: 10.1126/science.1891717. [DOI] [PubMed] [Google Scholar]
  56. Kelker H. C., Yip U. K., Anderson P., Vilcek J. Effects of glycosidase treatment on the physicochemical properties and biological activity of human interferon-γ. J. Biol. Chem. 1983;258:8010–8013. [PubMed] [Google Scholar]
  57. Koprowski H., Zheng Y. M., Heber-Katz E., Fraser N., Rorke L., Fu Z. F., Hanlon C., Dietzschold B. In vivo expression of inducible nitric oxide synthase in experimentally induced neurologic diseases. Proc. Natl. Acad. Sci. USA. 1993;90:3024–3027. doi: 10.1073/pnas.90.7.3024. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Kumar S., Cole R., Chiapelli F., de Vellis J. Differential regulation of oligodendrocyte markers by glucocorticoids: post-transcriptional regulation of both proteolipid protein and myelin basic protein and transcriptional regulation of glycerol phosphate dehydrogenase. Proc. Natl. Acad. Sci. USA. 1989;86:6807–6811. doi: 10.1073/pnas.86.17.6807. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Li Y., Atashi J., Hayes C., Reap E., Hunt D., Popko B. Morphological and molecular response of the MOCH-1 oligodendrocyte cell line to serum and interferon-γ: possible implications for demyelinating disorders. J. Neurosci. Res. 1995;40:189–198. doi: 10.1002/jnr.490400207. [DOI] [PubMed] [Google Scholar]
  60. Martin R., McFarland H. F. Immunological aspects of experimental allergic encephalomyelitis and multiple sclerosis. Crit. Rev. Clin. Lab. Sci. 1995;32:121–182. doi: 10.3109/10408369509084683. [DOI] [PubMed] [Google Scholar]
  61. Martin R., McFarland H. F., McFarlin D. E. Immunological aspects of demyelinating diseases. Annu. Rev. Immunol. 1992;10:153–187. doi: 10.1146/annurev.iy.10.040192.001101. [DOI] [PubMed] [Google Scholar]
  62. Massa P. T., Ozato K., McFarlin D. E. Cell type-specific regulation of major histocompatibility complex (MHC) class I gene expression in astrocytes, oligodendrocytes, and neurons. Glia. 1993;8:201–207. doi: 10.1002/glia.440080307. [DOI] [PubMed] [Google Scholar]
  63. Mauerhoff T., Pujol-Borrell R., Mirakian R., Bottazzo G. F. Differential expression and regulation of major histocompatibility complex (MHC) products in neural and glial cells of the human fetal brain. J. Neuroimmunol. 1988;18:271–289. doi: 10.1016/0165-5728(88)90049-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  64. McMillian M., Kong L. Y., Sawin S. M., Wilson B., Das K., Hudson P., Hong J. S., Bing G. Selective killing of cholinergic neurons by microglial activation in basal forebrain mixed neuronal/glial cultures. Biochem. Biophys. Res. Commun. 1995;215:572–577. doi: 10.1006/bbrc.1995.2503. [DOI] [PubMed] [Google Scholar]
  65. McCarron R. M., Wang L., Racke M. K., McFarlin D. E., Spatz M. Cytokine-regulated adhesion between encephalitogenic T lymphocytes and cerebrovascular endothelial cells. J. Neuroimmunol. 1993;43:23–30. doi: 10.1016/0165-5728(93)90071-6. [DOI] [PubMed] [Google Scholar]
  66. McRae B. L., Kennedy M. K., Tan L.-J., Dal Canto M. C., Picha K. S., Miller S. D. Induction of active and adoptive relapsing experimental autoimmune encephalomyelitis (EAE) using an encephalitogenic epitope of proteolipid protein. J. Neuroimmunol. 1992;38:229–240. doi: 10.1016/0165-5728(92)90016-E. [DOI] [PubMed] [Google Scholar]
  67. Meda L., Cassatella M. A., Szendrei G. I., Otvos L., Baron P., Villalba M., Ferrari D., Rossi F. Activation of microglial cells by beta-amyloid protein and interferon-gamma. Nature. 1995;374:647–650. doi: 10.1038/374647a0. [DOI] [PubMed] [Google Scholar]
  68. Merrill J. E., Ignarro L. J., Sherman M. P., Melinek J., Lane T. E. Microglial cell cytotoxicity of oligodendrocytes is mediated through nitric oxide. J. Immunol. 1993;151:2132–2141. [PubMed] [Google Scholar]
  69. Miller S. D., McRae B. L., Vanderlugt C. L., Nikcevich K. M., Pope J. G., Pope L., Karpus W. J. Evolution of the T-cell repertoire during the course of experimental immune-mediated demyelinating diseases. Immunol. Rev. 1995;144:225–244. doi: 10.1111/j.1600-065X.1995.tb00071.x. [DOI] [PubMed] [Google Scholar]
  70. Mitrovic B., Ignarro L. J., Vinters H. V., Akers M. A., Schmid I., Uittenbogaart C., Merrill J. E. Nitric oxide induces necrotic but not apoptotic cell death in oligodendrocytes. Neuroscience. 1995;65:531–539. doi: 10.1016/0306-4522(94)00491-M. [DOI] [PubMed] [Google Scholar]
  71. Momburg F., Koch N., Moller P., Moldenhauer G., Hutcher G. W., Hammerling G. J. Differential expression of Ia and Ia-associated invariant chain in mouse tissue after in vivo treatment of IFN-γ. Immunol. 1986;136:940–948. [PubMed] [Google Scholar]
  72. Morange M., Dubois M. F., Bensaude O., Lebon P. Interferon pretreatment lowers the threshold for maximal heat-shock response in mouse cells. J. Cell. Physiol. 1986;127:417–422. doi: 10.1002/jcp.1041270310. [DOI] [PubMed] [Google Scholar]
  73. Muller M., Briscoe J., Laxton C., Guschin D., Ziemiecki A., Silvennoinen O., Harpur A. G., Barbieri G., Witthuhn B. A., Schindler C., et al. The protein tyrosine kinase JAK1 complements defects in interferon-alpha/beta and— gamma signal transduction. Nature. 1993;366:129–135. doi: 10.1038/366129a0. [DOI] [PubMed] [Google Scholar]
  74. Neumann H., Cavalie A., Janne D. E., Wekerle H. Induction of MHC class I genes in neurons. Science. 1995;269:549–552. doi: 10.1126/science.7624779. [DOI] [PubMed] [Google Scholar]
  75. Olsson T. Cytokines in neuroinflammatory disease: role of myelin autoreactive T cell production of interferon-gamma. J. Neuroimmunol. 1992;40:211–218. doi: 10.1016/0165-5728(92)90135-8. [DOI] [PubMed] [Google Scholar]
  76. Olsson T., Zhi W. W., Höjeberg B., Kostulas V., Jian Y. P., Anderson G., Ekre H.-P., Link H. Autoreactive T lymphocytes in multiple sclerosis determined by antigen induced secretion of interferon-gamma. J. Clin. Invest. 1990;86:981–985. doi: 10.1172/JCI114800. [DOI] [PMC free article] [PubMed] [Google Scholar]
  77. Panitch H. S. Interferons in multiple sclerosis. Drugs. 1992;44:946–962. doi: 10.2165/00003495-199244060-00004. [DOI] [PubMed] [Google Scholar]
  78. Panitch H. S., Hirsch R. L., Schindler J., Johnson K. P. Treatment of multiple sclerosis with gamma interferon: exacerbations associated with activation of the immune system. Neurology. 1987;37:1097–1102. doi: 10.1212/wnl.37.7.1097. [DOI] [PubMed] [Google Scholar]
  79. Paul W. E., Seder R. A. Lymphocyte responses and cytokines. Cell. 1994;76:241–251. doi: 10.1016/0092-8674(94)90332-8. [DOI] [PubMed] [Google Scholar]
  80. Popko B., Hayes C., Li Y., Kelly D., Murayama S., Suzuki K. MOCH-1 cells: an oligodendrocyte cell line generated using a transgenic approach. In: Salvati S., editor. A Multidisciplinary Approach to Myelin Diseases. Totowa: Plenum; 1994. pp. 103–113. [Google Scholar]
  81. Poser C. M. Trauma and multiple sclerosis. J. Neurol. 1987;234:155–159. doi: 10.1007/BF00314135. [DOI] [PubMed] [Google Scholar]
  82. Poser C. M. The pathogenesis of multiple sclerosis. Additional considerations. J. Neurol. Sci. 1993;115:S3–S15. doi: 10.1016/0022-510X(93)90203-B. [DOI] [PMC free article] [PubMed] [Google Scholar]
  83. Power C., Kong P.-A., Trapp B. D. Major histocompatibility complex class I expression in oligodendrocytes induces hypomyelination in transgenic mice. J. Neurosci. Res. 1996;44:165–173. doi: 10.1002/(SICI)1097-4547(19960415)44:2<165::AID-JNR9>3.0.CO;2-B. [DOI] [PubMed] [Google Scholar]
  84. Prabhaker S., Kurien E., Gupta R. S., Zielinski S., Freedman M. S. Heat shock protein immunoreactivity in CSF: correlation with oligoclonal banding and demyelinating disease. Neurology. 1994;44:1644–1648. doi: 10.1212/wnl.44.9.1644. [DOI] [PubMed] [Google Scholar]
  85. Pulver M., Carrel S., Mach J. P., de Tribolet N. Cultured human fetal astrocytes can be induced by interferon-gamma to express HLADR. J. Neuroimmunol. 1987;14:123–133. doi: 10.1016/0165-5728(87)90047-6. [DOI] [PubMed] [Google Scholar]
  86. Raine C. S. The Dale E. McFarlin memorial lecture: the immunology of the multiple sclerosis lesion. Ann. Neurol. 1994;36:S61–S72. doi: 10.1002/ana.410360716. [DOI] [PubMed] [Google Scholar]
  87. Raine C. S. Presidential address: multiple sclerosis: immune system molecule expression in the central nervous system. J. Neuropathol. Exp. Neurol. 1994;53:328–337. doi: 10.1097/00005072-199407000-00002. [DOI] [PubMed] [Google Scholar]
  88. Ransohoff R. M., Benveniste E. N. Cytokines and the CNS. Boca Raton, FL: CRC; 1996. [Google Scholar]
  89. Reiner S. L., Seder R. A. T helper cell differentiation in immune response. Curr. Opinion Immunol. 1995;7:360–366. doi: 10.1016/0952-7915(95)80111-1. [DOI] [PubMed] [Google Scholar]
  90. Renno T., Lin J. Y., Piccirillo C., Antel J., Owens T. Cytokine production by cells in cerebrospinal fluid during experimental allergic encephalomyelitis in SJL/J mice. J. Neuroimmunol. 1994;49:1–7. doi: 10.1016/0165-5728(94)90174-0. [DOI] [PubMed] [Google Scholar]
  91. Rodriguez M., Scheithauer B. Ultrastructure of multiple sclerosis. Ultrastructural Pathol. 1994;18:3–13. doi: 10.3109/01913129409016267. [DOI] [PubMed] [Google Scholar]
  92. Rosenman S. J., Shrikant P., Dubb L., Benveniste E. N., Ransohoff R. M. Cytokine-induced expression of vascular cell adhesion molecule-1 (VCAM-1) by astrocytes and astrocytoma cell lines. J. Immunol. 1995;154:1888–1899. [PubMed] [Google Scholar]
  93. Rubio N., de Felipe C. Demonstration of the presence of a specific interferon-γ receptor on murine astrocyte cell surface. J. Neuroimmunol. 1991;35:111–117. doi: 10.1016/0165-5728(91)90166-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  94. Ryder E. F., Snyder E. Y., Cepko C. L. Establishment and characterization of multipotent neural cell lines using retrovirus vector-mediated oncogene transfer. J. Neurobiol. 1990;21:356–375. doi: 10.1002/neu.480210209. [DOI] [PubMed] [Google Scholar]
  95. Sadowski H. B., Shuai K., Darnell J. E., Gilman M. Z. A common nuclear signal transduction pathway activated by growth factor and cytokine receptors. Science. 1993;261:1739–1744. doi: 10.1126/science.8397445. [DOI] [PubMed] [Google Scholar]
  96. Sakatsume M., Igarashi K.-I., Winestock K. D., Garotta G., Larner A. C., Finbloom D. S. The Jak kinases differentially associate with the α and β (accessory factor) chains of the interferon γ receptor to form a functional receptor unit capable of activating STAT transcription factors. J. Biol. Chem. 1995;270:17,528–17,534. doi: 10.1074/jbc.270.29.17528. [DOI] [PubMed] [Google Scholar]
  97. Satoh J., Kastrukoff L. F., Kim S. U. cytokine-induced expression of intercellular adhesion molecule-1 (ICAM-1) in cultured human oligodendrocytes and astrocytes. J. Neuropathol. Exp. Neurol. 1991;50:215–226. doi: 10.1097/00005072-199105000-00004. [DOI] [PubMed] [Google Scholar]
  98. Satoh J., Kim S. U., Kastrukoff L. F., Takei F. Expression and induction of intercellular adhesion molecules (ICAMs) and major histocompatibility complex (MHC) antigens on cultured murine oligodendrocytes and astrocytes. J. Neurosci. Res. 1991;29:1–12. doi: 10.1002/jnr.490290102. [DOI] [PubMed] [Google Scholar]
  99. Schindler C. Cytokine signal transduction. Receptor. 1995;5:51–62. [PubMed] [Google Scholar]
  100. Schreiber R. D., Celada A. Molecular characterization of interferon gamma as a macrophage activating factor. Lymphokines. 1985;11:87–118. [Google Scholar]
  101. Seder R. A., Paul W. E. Acquisition of lymphokine-producing phenotype by CD4+ T cells. Annu. Rev. Immunol. 1994;12:635–673. doi: 10.1146/annurev.iy.12.040194.003223. [DOI] [PubMed] [Google Scholar]
  102. Selmaj K., Raine C. S., Farooq M., Norton W. T., Brosnan C. F. Cytokine cytotoxicity against oligodendrocytes. Apoptosis induced by lymphotoxin. J. Immunol. 1991;147:1522–1529. [PubMed] [Google Scholar]
  103. Selmaj K., Brosnan C. F., Raine C. S. Expression of heat shock protein-65 by oligodendrocytes in vivo and in vitro: Implications for multiple sclerosis. Neurology. 1992;42:795–800. doi: 10.1212/wnl.42.4.795. [DOI] [PubMed] [Google Scholar]
  104. Sethna M. P., Lampson L. A. Immune modulation within the brain: recruitment of inflammatory cells and increased major histo-compatibility antigen expression following intracerebral injection of interferon-gamma. J. Neuroimmunol. 1991;34:121–132. doi: 10.1016/0165-5728(91)90121-M. [DOI] [PubMed] [Google Scholar]
  105. Shaw G., Kamen R. A conserved AU sequence from the 3′ untranslated region of GMCSF mRNA mediates selective mRNA degradation. Cell. 1986;46:659–667. doi: 10.1016/0092-8674(86)90341-7. [DOI] [PubMed] [Google Scholar]
  106. Shuai K. Interferon-activated signal transduction to the nucleus. Curr. Opinion Cell Biol. 1994;6:253–259. doi: 10.1016/0955-0674(94)90144-9. [DOI] [PubMed] [Google Scholar]
  107. Shuai K., Stark G. R., Kerr I. M., Darnell J. E. A single phosphotyrosine residue of Stat91 required for gene activation by interferongamma. Science. 1993;261:1744–1746. doi: 10.1126/science.7690989. [DOI] [PubMed] [Google Scholar]
  108. Simmons R. D., Willenborg D. O. Direct injection of cytokines into the spinal cord causes autoimmune encephalomyelitis-like inflammation. J. Neurol. Sci. 1990;100:37–42. doi: 10.1016/0022-510X(90)90010-K. [DOI] [PubMed] [Google Scholar]
  109. Skias D. D., Kim D. K., Reder A. T., Antel J. P., Lancki D. W., Fitch F. W. Susceptibility of astrocytes to class I MHC antigen-specific cytotoxicity. J. Immunol. 1987;138:3254–3258. [PubMed] [Google Scholar]
  110. Snapper C. M., Paul W. E. Interferon-gamma and B cell stimulatory factor-1 reciprocally regulate Ig isotype production. Science. 1987;236:944–947. doi: 10.1126/science.3107127. [DOI] [PubMed] [Google Scholar]
  111. Soh J., Donnelly R. J., Kotenko S., Mariano T. M., Cook J. R., Wany N., Emanuel S., Schwartz B., Miki T., Pestka S. Identification and sequence of an accessory factor required for activation of the human interferon γ receptor. Cell. 1994;76:793–802. doi: 10.1016/0092-8674(94)90354-9. [DOI] [PubMed] [Google Scholar]
  112. Steffen B. J., Butcher E. C., Engelhardt B. Evidence for involvement of ICAM-1 and VCAM-1 in lymphocyte interaction with endothelium in experimental autoimmune encephalomyelitis in the central nervous system in the SJL/J mouse. Am. J. Pathol. 1994;145:189–201. [PMC free article] [PubMed] [Google Scholar]
  113. Steiniger B., van der Meide P. H. Rat ependyma and microglia cells express class II MHC antigens after intravenous infusion of recombinant gamma interferon. J. Neuroimmunol. 1988;19:111–118. doi: 10.1016/0165-5728(88)90040-9. [DOI] [PubMed] [Google Scholar]
  114. Suzumura A., Silberberg D. H., Lisak R. P. The expression of MHC antigens on oligodendrocytes: induction of polymorphic H-2 expression by lymphokines. J. Neuroimmunol. 1986;11:179–190. doi: 10.1016/0165-5728(86)90002-0. [DOI] [PubMed] [Google Scholar]
  115. Swain S. L., Bradley L. M., Croft M., Tonkonogy S., Atkins G., Weinberg A. D., Duncan D. D., Hedrick S. M., Dutton R. W., Huston G. Helper T-cell subsets: phenotype, function and the role of lymphokines in regulating their development. Immunol. Rev. 1991;123:115–144. doi: 10.1111/j.1600-065X.1991.tb00608.x. [DOI] [PubMed] [Google Scholar]
  116. Tamura K., Shimizu K., Yamada M., Okamoto Y., Matsui Y., Park K.-C., Mabuchi E., Moriuchi S., Mogami H. Expression of major histocompatibility complex on human medulloblastoma cells with neuronal differentiation. Cancer Res. 1989;49:5380–5384. [PubMed] [Google Scholar]
  117. Tjuvajev J., Gansbacher B., Desai R., Beattie B., Kaplitt M., Matei C., Koutcher J., Gilboa E., Blasberg R. RG-2 glioma growth attenuation and severe brain edema caused by local production of interleukin-2 and interferon-gamma. Cancer Res. 1995;55:1902–1910. [PubMed] [Google Scholar]
  118. Torres C., Aránguez I., Rubio N. Expression of interferon-γ receptors on murine oligo-dendrocytes and its regulation by cytokines and mitogens. Immunology. 1995;86:250–255. [PMC free article] [PubMed] [Google Scholar]
  119. Traugott U., Lebon P. Demonstration of α, β, and γ interferon in active chronic multiple sclerosis lesions. Ann. NY Acad. Sci. 1988;540:309–311. doi: 10.1111/j.1749-6632.1988.tb27083.x. [DOI] [PubMed] [Google Scholar]
  120. Traugott U., Reinherz E. L., Raine C. S. Multiple sclerosis: distribution of T-cell subsets within active chronic lesions. Science. 1983;219:308–310. doi: 10.1126/science.6217550. [DOI] [PubMed] [Google Scholar]
  121. Trinchieri G., Perussia B. Immune interferon: a pleiotropic lymphokine with multiple effects. Immunol. Today. 1985;6:131–131. doi: 10.1016/0167-5699(85)90080-5. [DOI] [PubMed] [Google Scholar]
  122. Tuohy V. K., Sobel R. A., Lees M. B. Myelin proteolipid protein-induced experimental allergic encephalomyelitis. J. Immunol. 1988;140:1868–1873. [PubMed] [Google Scholar]
  123. Tuohy V. K., Lu Z., Sobel R. A., Laursen R. A., Lees M. B. A synthetic peptide from myelin proteolipid protein induces experimental allergic encephalomyelitis. J. Immunol. 1988;141:1126–1130. [PubMed] [Google Scholar]
  124. Tuohy V. K., Lu Z., Sobel R. A., Laursen R. A., Lees M. B. Identification of an encephalitogenic determinant of myelin proteolipid protein for SJL mice. J. Immunol. 1989;142:1523–1527. [PubMed] [Google Scholar]
  125. Tuohy V. K., Sobel R. A., Lu Z., Laursen R. A., Lees M. B. Myelin proteolipid protein: minimum sequence requirements for active induction of autoimmune encephalomyelitis in SWR/J and SJL/J mice. J. Neuroimmunol. 1992;39:67–74. doi: 10.1016/0165-5728(92)90175-K. [DOI] [PubMed] [Google Scholar]
  126. Turnley A. M., Morahan G. Dysmyelination in class I MHC transgenic mice. Microsci. Res. Tech. 1995;32:286–294. doi: 10.1002/jemt.1070320403. [DOI] [PubMed] [Google Scholar]
  127. Turnley A. M., Miller J. F. A. P., Bartlett P. F. Regulation of MHC molecules on MBP positive oligodendrocytes in mice by IFN-γ and TNF-α. Neurosci. Lett. 1991;123:45–48. doi: 10.1016/0304-3940(91)90154-L. [DOI] [PubMed] [Google Scholar]
  128. Turnley A. M., Morahan G., Okano H., Bernard O., Mikoshiba K., Allison J., Bartlett P. F., Miller J. F. A. P. Dysmyelination in transgenic mice resulting from expression of class I histocompatibility molecules in oligodendrocytes. Nature (Lond.) 1991;353:566–568. doi: 10.1038/353566a0. [DOI] [PubMed] [Google Scholar]
  129. Utz U., McFarland H. F. The role of T cells in multiple sclerosis: implications for therapies targeting the T cell receptor. J. Neuropathol. Exp. Neurol. 1994;53:351–358. doi: 10.1097/00005072-199407000-00005. [DOI] [PubMed] [Google Scholar]
  130. van Noort J. M., van Sechel A. C., Bajramovic J. J., el Ouagmiri M., Polman C. H., Lassmann H., Ravid R. The small heat-shock protein alpha B-crystalline as candidate autoantigen in multiple sclerosis. Nature. 1995;375:739–740. doi: 10.1038/375798a0. [DOI] [PubMed] [Google Scholar]
  131. Vartanian T., Li Y., Zhao M., Stefansson K. Interferon-γ-induced oligodondrocyte cell death: implications for the pathogenesis of multiple sclerosis. Mol. Med. 1995;1:732–743. [PMC free article] [PubMed] [Google Scholar]
  132. Vass K., Heininger K., Schafer B., Linington C., Lassmann H. Interferon-γ potentiates antibody-mediated demyelination in vivo. Ann. Neurol. 1992;32:198–206. doi: 10.1002/ana.410320212. [DOI] [PubMed] [Google Scholar]
  133. Vilcek J., Oliveira I. Recent progress in the elucidation of interferon-gamma actions: molecular biology and biological functions. Int. Arch. Allergy Immunol. 1994;104:311–316. doi: 10.1159/000236685. [DOI] [PubMed] [Google Scholar]
  134. Vilcek J., Gray P. W., Rinderknecht E., Sevastopoulos C. G. Interferon gamma: a lymphokine for all seasons. Lymphokines. 1985;11:1–32. [Google Scholar]
  135. Voorthuis J. A. C., Uitdehaag B. M. J., de Groot C. J. A., Goede P. H., van der Meide P. H., Dijkstra C. D. Suppression of experimental allergic encephalomyelitis by intraventricular administration of interferon-gamma in Lewis rats. Clin. Exp. Immunol. 1990;81:183–188. doi: 10.1111/j.1365-2249.1990.tb03315.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  136. Voskuhl R. R., Martin R., Bergman C., Calal M., Ruddle N. H., mcFarland H. F. T helper 1 (TH1) functional phenotype of human myelin basic protein-specific T lymphocytes. Autoimmunity. 1993;15:137–143. doi: 10.3109/08916939309043888. [DOI] [PubMed] [Google Scholar]
  137. Walter M. R., Windsor W. T., Nagabhushan T. L., Lundell D. J., Lunn C. A., Zauodny P. J., Narula S. K. Crystal structure of a complex between interferon-gamma and its soluble high-affinity receptor. Nature. 1995;376:217–217. doi: 10.1038/376217a0. [DOI] [PubMed] [Google Scholar]
  138. Watling D., Guschin D., Müller M., Silvennoinen O., Witthuhn B. A., Quelle F. W., Rogers N. C., Schindler C., Stark G. R., Ihle J. N., et al. Complementation by the protein tyrosine kinase JAK2 of a mutant cell line defective in the inteferon-gamma signal transduction pathway. Nature. 1993;366:166–170. doi: 10.1038/366166a0. [DOI] [PubMed] [Google Scholar]
  139. Wheelock E. F. Interferon-like virus-inhibitor induced in human leukocytes by phytohemagglutinin. Science. 1965;149:310–310. doi: 10.1126/science.149.3681.310. [DOI] [PubMed] [Google Scholar]
  140. Willenborg D. O., Fordham S. A., Cowden W. B., Ramshaw I. A. Cytokines and murine autoimmune encephalomyelitis: inhibition or enhancement of disease with antibodies to select cytokines, or by delivery of exogenous cytokines using a recombinant vaccinia virus system. Scand. J. Immunol. 1995;41:31–41. doi: 10.1111/j.1365-3083.1995.tb03530.x. [DOI] [PubMed] [Google Scholar]
  141. Wong G. H., Bartlett P. F., Clark-Lewis I., Battye F., Schrader J. W. Inducible expression of H-2 and Ia antigens on brain cells. Nature. 1984;310:688–691. doi: 10.1038/310688a0. [DOI] [PubMed] [Google Scholar]
  142. Wong G. H., Bartlett P. F., Clark-Lewis I., McKimm-Breschkin J. L., Schrader J. W. Interferon-gamma induces the expression of H-2 and Ia antigens on brain cells. J. Neuroimmunol. 1985;7:255–278. doi: 10.1016/S0165-5728(84)80026-0. [DOI] [PubMed] [Google Scholar]
  143. Yong V. W., Moumdjian R., Yong F. P., Ruijs T. C. G., Freedman M. S., Cashman N., Antel J. P. γ-Interferon promotes proliferation of adult human astrocytes in vitro and reactive gliosis in the adult mouse brain in vivo. Proc. Natl. Acad. Sci. USA. 1991;88:7016–7020. doi: 10.1073/pnas.88.16.7016. [DOI] [PMC free article] [PubMed] [Google Scholar]
  144. Yong V. W., Tejada-Berges T., Goodyer C. G., Antel J. P., Yong F. P. Differential proliferative response of human and mouse astrocytes to gamma-interferon. Glia. 1992;6:269–280. doi: 10.1002/glia.440060405. [DOI] [PubMed] [Google Scholar]
  145. Yoshioka T., Feigenbaum L., Jay G. Transgenic mouse model for central nervous system demyelination. Mol. Cell. Biol. 1991;11:5479–5486. doi: 10.1128/mcb.11.11.5479. [DOI] [PMC free article] [PubMed] [Google Scholar]
  146. Young H. A., Hardy K. J. Role of interferon-γ in immune cell regulation. J. Leukocyte Biol. 1995;58:373–381. [PubMed] [Google Scholar]
  147. Zamvil S. S., Steinman L. The T lymphocyte in experimental allergic encephalomyelitis. Annu. Rev. Immunol. 1990;8:579–621. doi: 10.1146/annurev.iy.08.040190.003051. [DOI] [PubMed] [Google Scholar]

Articles from Molecular Neurobiology are provided here courtesy of Nature Publishing Group

RESOURCES