Skip to main content
Springer Nature - PMC COVID-19 Collection logoLink to Springer Nature - PMC COVID-19 Collection
. 2005;29(3):255–271. doi: 10.1385/MB:29:3:255

Overview of vaccines and vaccination

Gordon Ada 1,
PMCID: PMC7091467  PMID: 15767703

Abstract

Of the 80-plus known infectious agents pathogenic for humans, there are now more than 30 vaccines against 26 mainly viral and bacterial infections and these greatly minimize subsequent disease and prevent death after exposure to those agents. This article describes the nature of the vaccines, from live attenuated agents to subunits, their efficacy and safety, and the kind of the immune responses generated by those vaccines, which are so effective. To date, all licensed vaccines generate especially specific antibodies, which attach to the infectious agent and therefore can very largely prevent infection. These vaccines have been so effective in developed countries in preventing mortality after a subsequent infection that attempts are being made to develop vaccines against many of the remaining infectious agents. Many of the latter are difficult to manipulate; they can cause persisting infections or show great antigenic variation. A range of new approaches to improve selected immune responses, such as immunization with DNA or chimeric live vectors, viral or bacterial, are under intense scrutiny, as well as genomic analysis of the agent.

Index Entries: Vaccines, vaccination, infectious agents, immune responses, emerging diseases

References

  • 1.Plotkin S. A., Orenstein W. A., editors. Vaccines. 4th ed. Philadelphia, PA: W. B. Saunders; 2004. [Google Scholar]
  • 2.Ada G. Advances in immunology: vaccines and vaccination. N. Engl. J. Med. 2001;345:1042–1053. doi: 10.1056/NEJMra011223. [DOI] [PubMed] [Google Scholar]
  • 3.Offit P. A., Glass R. I., Clark H. F., Ward R. I. Rotavirus vaccine. In: Plotkin S. A., Orenstein W. A., editors. Vaccine. 4th ed. Philadelphia, PA: W. B. Saunders; 2004. pp. 1327–1347. [Google Scholar]
  • 4.Pringle C. R. Temperature sensitive mutant vaccines. In: Robinson A., Hudson M. J., Cranage M. P., editors. Methods in Molecular Medicine, Vol. 87: Vaccine Protocols, 2. Totowa, NJ: Humana; 2003. pp. 19–36. [DOI] [PubMed] [Google Scholar]
  • 5.Belshe R. B., Maassab H. F., Mendelman H. F. Influenza vaccine—live. In: Plotkin S. A., Orenstein W. A., editors. Vaccine. 4th ed. Philadelphia, PA: W. B. Saunders; 2004. pp. 371–388. [Google Scholar]
  • 6.Belshe R. B. Current status of live, attenuated influenza virus in the US. Virus Res. 2004;103:177–185. doi: 10.1016/j.virusres.2004.02.031. [DOI] [PubMed] [Google Scholar]
  • 7.Van Cott J. L., Chatfield S. N., Roberts M., et al. Regulation of host immune responses by modification of Salmonella virulence genes. Nat. Med. 1998;4:1247–1252. doi: 10.1038/3227. [DOI] [PubMed] [Google Scholar]
  • 8.Saunders N. J., Butcher S. The use of complete genome sequences in vaccine design. In: Robinson A., Hudson M. J., Cranage M. P., editors. Methods in Molecular Medicine, Vol. 87: Vaccine Protocols, 19. Totawa, NJ: Humana; 2003. pp. 301–312. [DOI] [PubMed] [Google Scholar]
  • 9.Tartaglia J., Perkus M. E., Taylor J. NYVAC, a highly attenuated strain of vaccinia virus. Virology. 1992;188:217–232. doi: 10.1016/0042-6822(92)90752-B. [DOI] [PubMed] [Google Scholar]
  • 10.Daly J. M., Wood J. M., Robertson J. S. Cocirculation and divergence of human influenza viruses. In: Nicholson K. G., Webster R. G., Hay A. J., editors. Textbook of Influenza. Oxford, UK: Blackwell Science; 1998. pp. 168–180. [Google Scholar]
  • 11.Edwards K. M., Decker M. D. Pertussis vaccine. In: Plotkin S. A., Orenstein W. A., editors. Vaccine. 4th ed. Philadelphia, PA: W. B. Saunders; 2004. pp. 471–528. [Google Scholar]
  • 12.Avery O. T., Goebel W. F. Chemoimmunological studies on conjugated carbohydrate proteins. 11. Immunological specificity of synthetic sugar-protein antigen. J. Exp. Med. 1929;50:533–550. doi: 10.1084/jem.50.4.533. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Peeters C. C. A. M., Lagerman P. R., de Weers O., et al. Preparation of polysaccharide-conjugate vaccines. In: Robinson A., Hudson M. J., Cranage M. P., et al., editors. Methods in Molecular Medicine, Vol. 87: Vaccine Protocols, 10. Totowa, NJ: Humana; 2003. pp. 153–174. [DOI] [PubMed] [Google Scholar]
  • 14.Pizza M., Fontana M. R., Scarlato V., Rappuoli R. Genetic detoxification of bacterial toxins. In: Robinson A., Hudson M. J., Cranage M. P., editors. Methods in Molecular Medicine, Vol. 87: Vaccine Protocols, 9. Totowa, NJ: Humana; 2003. pp. 133–152. [DOI] [PubMed] [Google Scholar]
  • 15.Hilleman M. R. Vaccine perspectives from the vantage of hepatitis B. Vaccine Res. 1992;1:1–15. [Google Scholar]
  • 16.Egea E., Iglesias A., Salazar J. R., et al. The cellular basis for the lack of antibody responses to hepatitis B vaccine in humans. J. Exp. Med. 1991;173:531–542. doi: 10.1084/jem.173.3.531. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Griffiths E., Knezevic I. Assuring the quality and safety of vaccines. Regulatory expectations for licensing and batch release. In: Robinson A., Hudson M. J., Cranage M. P., editors. Methods in Molecular Medicine, Vol. 87: Vaccine Protocols, 22. Totowa, NJ: Humana; 2003. pp. 353–376. [DOI] [PubMed] [Google Scholar]
  • 18.Farrington P., Miller E. Clinical trials. In: Robinson A., Hudson M. J., Cranage M. P., editors. Methods in Molecular Medicine, Vol. 87: Vaccine Protocols, 21. Totowa, NJ: Humana; 2002. pp. 335–352. [DOI] [PubMed] [Google Scholar]
  • 19.Langmuir I. D., Bregman D. J., Kurland L., et al. An epidemiological and clinical evaluation of Guillain-Barre syndrome reported in association with the administration of swine influenza virus vaccine. J. Epidemiol. 1984;119:841–879. doi: 10.1093/oxfordjournals.aje.a113809. [DOI] [PubMed] [Google Scholar]
  • 20.Weibel R. E., Casuta V., Bessor D. E., et al. Acute encephalopathy followed by permanent brain injury or death associated with further attenuated measles vaccines. Pediatrics. 1998;101:383–387. doi: 10.1542/peds.101.3.383. [DOI] [PubMed] [Google Scholar]
  • 21.Levin A. Vaccines today. Ann. Intern. Med. 2000;133:661–664. doi: 10.7326/0003-4819-133-8-200010170-00102. [DOI] [PubMed] [Google Scholar]
  • 22.Stratton K. R., Howe C. J., Johnston R. B. Adverse Events Associated with Childhood Vaccination. Evidence Bearing on Causality. Washington, D.C.: Institute of Medicine, National Academy Press; 1994. pp. 1–464. [PubMed] [Google Scholar]
  • 23.Galaska A. M., Lauer B. A., Henderson R. H., Keja J. Indications and contraindications for vaccines used in the expanded programme of immunization. Bull. WHO. 1984;62:357–366. [PMC free article] [PubMed] [Google Scholar]
  • 24.Halsey N. A. Increased mortality following high titer measles vaccines: too much of a good thing. Pediatr. Infect. Dis. 1993;12:462–463. doi: 10.1097/00006454-199306000-00002. [DOI] [PubMed] [Google Scholar]
  • 25.Murphy T. V., Gargiullo P. M., Nassoudi M. S., et al. Intussusception among infants given an oral rotavirus vaccine. N. Engl. J. Med. 2001;344:564–572. doi: 10.1056/NEJM200102223440804. [DOI] [PubMed] [Google Scholar]
  • 26.Amin J., Wong M. Measles, mumps, rubella immunization, autism, and inflammatory bowel disease: an update. Communicable Disease Intelligence. 1999;23:222–222. [PubMed] [Google Scholar]
  • 27.Elliman D., Bedford H. MMR vaccine: the continuing saga. Br. Med. J. 2001;322:183–184. doi: 10.1136/bmj.322.7280.183. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28.Fenner F., Henderson D. A., Ariota I., Jesek Z., Ladnyi I. D. Smallpox and its Eradication. Geneva: World Health Organization; 1988. [Google Scholar]
  • 29.World Health Organization . New polio cases confirmed in Guinea, Mali and Sudan. Cases reported as Kano, Nigeria, resumes immunizations. Geneva: World Health Organization; 2004. [Google Scholar]
  • 30.de Quadros C. A. Is global measles eradication feasible? In: de Quadros C. A., editor. Vaccines: Preventing Disease, Protecting Health. Washington, D.C.: Pan American Health Organization; 2004. pp. 35–42. [Google Scholar]
  • 31.Dowdle W. R. Perspectives for the elimination/eradication of diseases with vaccines. In: de Quadros C. A., editor. Vaccines: Preventing Disease, Protecting Health. Washington, D.C.: Pan American Health Organization; 2004. pp. 354–362. [Google Scholar]
  • 32.Saphire E. O., Parren P. W., Pantophlet R., et al. Crystal structure of a neutralizing human IgG against HIV-1: a template for vaccine design. Science. 2001;293:1155–1159. doi: 10.1126/science.1061692. [DOI] [PubMed] [Google Scholar]
  • 33.Tam J. P. Synthetic peptide vaccine design: synthesis and properties of a high density multiple antigenic peptide system. Proc. Natl. Acad. Sci. U.S.A. 1988;85:5409–5413. doi: 10.1073/pnas.85.15.5409. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34.D’Aessandro U., Leach A., Diakeley C. J., et al. Efficacy trial of a malaria vaccine SPf66 in Gambian infants. Lancet. 1995;346:462–467. doi: 10.1016/S0140-6736(95)91321-1. [DOI] [PubMed] [Google Scholar]
  • 35.Pruksakorn S., Currie B., Brandt E., et al. Towards a vaccine for rheumatic fever: identification of a conserved target epitope on M protein of group A streptococci. Lancet. 1994;344:639–642. doi: 10.1016/S0140-6736(94)92083-4. [DOI] [PubMed] [Google Scholar]
  • 36.Brandt E. R., Sriprakash K. S., Hobb R. I., et al. New multi-determinant strategy for group A streptococcal vaccine designed for the Australian aboriginal population. Nat. Med. 2000;6:455–459. doi: 10.1038/74719. [DOI] [PubMed] [Google Scholar]
  • 37.Staib C., Sutter G. Live viral vectors: vaccinia virus. In: Robinson A., Hudson M. J., Cranage M. P., editors. Methods in Molecular Medicine, Vol. 87: Vaccine Protocols, 2. Ed. 4. Totowa, NJ: Humana; 2003. pp. 51–68. [DOI] [PubMed] [Google Scholar]
  • 38.Fooks A. R. Live viral vectors: construction of a replication-deficient recombinant adenovirus. In: Robinson A., Hudson M. J., Cranage M. P., editors. Methods in Molecular Medicine, Vol. 87: Vaccine Protocols, 2. Ed. 4. Totowa, NJ: Humana; 2003. pp. 37–50. [DOI] [PubMed] [Google Scholar]
  • 39.Tartaglia J., Gettig R., Paoletti E. Vectores, animal viruses. In: Webster R. G., Granoff A., editors. Encyclopedia of Virology. New York: Academic; 1994. pp. 1528–1536. [Google Scholar]
  • 40.Bowe F., Pickard D. J., Anderson R. J., et al. Development of attenuated Salmonella strains that express heterologous antigens. In: Robinson A., Hudson M. J., Cranage M. P., et al., editors. Methods in Molecular Medicine, Vol. 87: Vaccine Protocols, 2. ed. 6. Totowa, NJ: Humana; 2003. pp. 83–100. [DOI] [PubMed] [Google Scholar]
  • 41.Jackson R. J., Ramsay A. J., Christensen C. D., et al. Expression of mouse interleukin-4 by a recombinant ectromelia virus suppresses cytolytic lymphocyte responses and overcomes genetic resistance to mousepox. J. Virol. 2001;75:1205–1210. doi: 10.1128/JVI.75.3.1205-1210.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 42.McDonnell W. M., Askari F. K. Molecular medicine; DNA vaccines. N. Engl. J. Med. 1995;324:42–45. doi: 10.1056/NEJM199601043340110. [DOI] [PubMed] [Google Scholar]
  • 43.Lowrie D. B. DNA vaccination: an update. In: Robinson A., Hudson M. J., Cranage M. P., editors. Methods in Molecular Medicine, Vol. 87: Vaccine Protocols, 2. Ed. 23. Totowa, NJ: Humana; 2003. pp. 377–390. [DOI] [PubMed] [Google Scholar]
  • 44.Delves P. J., Roitt I. M. The immune system. N. Engl. J. Med. 2000;343:37–49. doi: 10.1056/NEJM200007063430107. [DOI] [PubMed] [Google Scholar]
  • 45.Jackson D. C., Ada G. I., Tha Lha R. Cytotoxic T cells recognise very early, minor changes in ectromelia-infected target cells. Aust. J. Exp. Biol. Med. Sci. 1976;54:349–363. doi: 10.1038/icb.1976.35. [DOI] [PubMed] [Google Scholar]
  • 46.Geisow M. J. Unravelling the mysteries of molecular audit: MHC class I restriction. Tibtech. 1991;9:403–404. doi: 10.1016/0167-7799(91)90137-7. [DOI] [PubMed] [Google Scholar]
  • 47.Ada G. L. The immunology of vaccination. In: Plotkin S. A., Orenstein W. A., editors. Vaccines. 4th ed. Philadelphia, PA: W. B. Saunders; 2004. pp. 31–46. [Google Scholar]
  • 48.Taylor G. The role of antibody in controlling and/or clearing virus infections. In: Ada G. L., editor. Strategies in Vaccine Design. Austin, TX: Landes; 1994. pp. 17–34. [Google Scholar]
  • 49.Ramshaw I. R., Ruby J., Ramsay A., et al. Expression of cytokines by recombinant vaccinia viruses: a model for studying cytokines in virus infections in vivo. Immunol. Rev. 1992;127:157–182. doi: 10.1111/j.1600-065X.1992.tb01413.x. [DOI] [PubMed] [Google Scholar]
  • 50.Ada G. L. The immune response to antigens; the immunological principles of vaccination. Lancet. 1990;335:52–56. doi: 10.1016/0140-6736(90)90748-T. [DOI] [PubMed] [Google Scholar]
  • 51.Alfonso I. C. C., Scharton T. M., Vieira L. Q., et al. The adjuvant effect of IL-12 in a vaccine against Leishmaniasis major. Science. 1994;263:235–237. doi: 10.1126/science.7904381. [DOI] [PubMed] [Google Scholar]
  • 52.Sharma D. P., Ramsay A. J., Maguire D. J., et al. Interleukin 4 mediates down regulation of antiviral cytokine expression and cytotoxic T lymphocyte responses and exacerbates vaccinia virus infection in vivo. J. Virol. 1996;70:7103–7107. doi: 10.1128/jvi.70.10.7103-7107.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 53.Stewart-Tull D. E. S. Adjuvant formulations for experimental vaccines. In: Robinson A., Hudson M. J., Cranage M. P., editors. Methods in Molecular Medicine, Vol. 87: Vaccine Protocols, 2. ed. 11. Totowa, NJ: Humana; 2003. pp. 175–194. [DOI] [PubMed] [Google Scholar]
  • 54.Allsopp C. E. M., Plebanski M., Gilbert S., et al. Comparison of numerous delivery systems for the induction of cytotoxic T lymphocytes by immunization. Eur. J. Immunol. 1996;26:1951–1959. doi: 10.1002/eji.1830260841. [DOI] [PubMed] [Google Scholar]
  • 55.Hammond J., McGarvey P., Yusibov B. Plant biotechnology: new procedures and applications. Curr. Top. Microbiol. Immunol. 1999;240:1–196. [Google Scholar]
  • 56.Arntzen C. J. Oral vaccines derived from transgenic plants. In: de Quadros C. A., editor. Vaccines, Preventing Disease, Protecting Health. Washington, D.C.: Pan American Health Organization; 2004. pp. 256–262. [Google Scholar]
  • 57.Vermig P. Edible vaccines not ready for main course. Nat. Med. 2004;10:881–881. doi: 10.1038/nm0904-881. [DOI] [PubMed] [Google Scholar]
  • 58.Glenn G. M., Taylor D. N., Li X., et al. Transcutaneous immunization: a human vaccine delivery strategy using a patch. Nat. Med. 2000;6:1403–406. doi: 10.1038/82225. [DOI] [PubMed] [Google Scholar]
  • 59.Beadle J. The Powderjet particle-mediated epidermal delivery of DNA vaccines. A new technology. In: de Quadros C. A., editor. Vaccines. Preventing Disease, Protecting Health. Washington, D.C.: Pan American Health Organization; 2004. pp. 273–280. [Google Scholar]
  • 60.Graham B. S., Matthews T. J., Belshe R. B., et al. Augmentation of human immunodeficiency virus type-1 neutralizing antibody by priming with gp160 recombinant vaccinia and boosting with rgp160 in vaccinia-naive adults. J. Inf. Dis. 1993;167:533–537. doi: 10.1093/infdis/167.3.533. [DOI] [PubMed] [Google Scholar]
  • 61.Leong K. H., Ramsay A. J., Morin M. J. Generation of enhanced immune responses by consecutive immunization with DNA and recombinant fowlpox virus. In: Brown F., Chanock R., Ginsberg H., Norrby E., editors. Vaccines, ’95. NY: Cold Spring Harbor Laboratory; 1995. pp. 327–331. [Google Scholar]
  • 62.AIDS Vaccines HIV dodges one-two punch. Science. 2004;305:1545–1545. doi: 10.1126/science.305.5690.1545. [DOI] [PubMed] [Google Scholar]
  • 63.Saunders N. J., Butcher S. The use of complete genome sequences in vaccine design. In: Robinson A., Hudson M. J., Cranage M. P., editors. Methods in Molecular Medicine. Vaccine Protocols. 2 ed. Totowa, NJ: Humana; 2004. pp. 301–312. [DOI] [PubMed] [Google Scholar]
  • 64.Wizemann T. M., Heinrichs J. H., Adamou J., et al. Use of a whole genome approach to identify vaccine molecules affording protection against Streptococcus pneumoniae infection. Infect. Immunol. 2001;69:1593–1598. doi: 10.1128/IAI.69.3.1593-1598.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 65.Diamond J. Guns, Germs and Steel. A Short History of Everybody for the past 13,000 Years. London: Vintage, UK, Random House; 1997. [Google Scholar]
  • 66.Doherty P. C., Zinkernagel R. M. A biological role for the major histocompatibility antigens. Lancet. 1975;i:1406–1409. doi: 10.1016/S0140-6736(75)92610-0. [DOI] [PubMed] [Google Scholar]
  • 67.Bjorkman P. J., Saper M. A., Samraoui B., et al. The foreign antigen-binding site and T cell recognition regions of class 1 histocompatibility antigens. Nature. 1987;329:512–518. doi: 10.1038/329512a0. [DOI] [PubMed] [Google Scholar]
  • 68.Morens D. M., Folkers G. K., Fauci A. S. The challenge of emerging and re-emerging infectious diseases. Nature. 2004;430:242–249. doi: 10.1038/nature02759. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 69.Kobasa D., Takada A., Shinya K., et al. Enhanced virulence of influenza A viruses with the haemagglutinin of the 1918 pandemic virus. Nature. 2004;431:703–707. doi: 10.1038/nature02951. [DOI] [PubMed] [Google Scholar]

Articles from Molecular Biotechnology are provided here courtesy of Nature Publishing Group

RESOURCES