Skip to main content
Springer Nature - PMC COVID-19 Collection logoLink to Springer Nature - PMC COVID-19 Collection
. 2018 May 23;94(1):120–126. doi: 10.1016/j.mambio.2018.05.010

Effect of sex and reproductive status on the immunity of the temperate bat Myotis daubentonii

Sara Ruoss 117, Nina I Becker 217, Matthias S Otto 117, Gábor Á Czirják 317, Jorge A Encarnação 117,217,
PMCID: PMC7091572  PMID: 32218715

Abstract

Studies of immunity in bat species are rare. However, it is important to determine immunological variations to identify factors influencing the health status of these endangered mammals from an evolutionary, ecological, conservation, and public health point of view. Immunity is highly variable and can be influenced by both internal (e.g. hormone levels, energy demand) and external factors (e.g. pathogens, climate). As bats have some peculiar ecological, energetic, and putative immunological characteristics, they are outstanding study organisms for ecoimmunological studies. We tested if (i) female bats have a higher immunity than males similar to most other mammalian species and (ii) individuals differ according to their energy demand (e.g. reproductive status). To study these questions, we sampled female and male Myotis daubentonii with different reproductive states and estimated their bacterial killing activity, hemolysis/hemagglutination titer, immunoglobulin G (IgG) concentration, and total and differential white blood cell counts. These methods characterize the cellular and humoral branches of both the adaptive and the innate immune responses of these individuals. Reproductively active males had lower cellular immunity compared to non-reproductive individuals. Pregnant females had increased IgG concentrations while hemolysis was enhanced during lactation. No clear trade-off between immunity and reproduction was found; instead immunity of males and female bats seems to be modulated differently due to varying hormonal and energetic states. Our data suggest that both adaptive and innate immunity as well as individual differences (i.e. sex and reproductive state) need to be considered to get a comprehensive overall picture of immunity in wild mammals.

Keywords: Immunity, Chiroptera, Immunoglobulins, Leukocyte counts, Trade-off

References

  1. Adamo SA. How should behavioural ecologists interpret measurements of immunity? Anim. Behav. 2004;68:1443–1449. doi: 10.1016/j.anbehav.2004.05.005. [DOI] [Google Scholar]
  2. Al-Afaleq A, Homeida A. Effects of low doses of oestradiol, testosterone and dihydrotestosterone on the immune response of broiler chicks. Immunopharmacol. Immunotoxicol. 1998;20:315–327. doi: 10.3109/08923979809038547. [DOI] [PubMed] [Google Scholar]
  3. Alexander J, Stimson WH. Sex hormones and the course of parasitic infection. Parasitol. 1988;4:189–193. [Google Scholar]
  4. Allen LC, Turmelle AS, Mendonça MT, Navara KJ, Kunz TH, McCracken GF. Roosting ecology and variation in adaptive and innate immune system function in the Brazilian free-tailed bat (Tadarida brasiliensis) J. Comp. Physiol. B. 2009;179:315–323. doi: 10.1007/s00360-008-0315-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Anthony EL. Age determination in bats. In: Kunz TH, editor. Ecological and behavioral methods for the study of bats. Washington D.C.: Smithsonian Institution Press; 1988. pp. 1–28. [Google Scholar]
  6. Anthony ELP, Kunz TH. Feeding strategies of the little brown bat, Myotis lucifugus, in southern New Hampshire. Ecology. 1977;58:775–786. doi: 10.2307/1936213. [DOI] [Google Scholar]
  7. Anthony ELP, Stack MH, Kunz TH. Night roosting and the nocturnal time budget of the little brown bat, Myotis lucifugus: effects of reproductive status, prey density, and environmental conditions. Oecologia. 1981;51:151–156. doi: 10.1007/BF00540593. [DOI] [PubMed] [Google Scholar]
  8. Apanius V. Stress and immune defense. Adv. Study Behav. 1998;27:133–153. doi: 10.1016/S0065-3454(08)60363-0. [DOI] [Google Scholar]
  9. Bain BJ, England JM. Normal haematological values: sex difference in neutrophil count. Br. Med. J. 1975;1:306–309. doi: 10.1136/bmj.1.5953.306. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Barclay RMR. Population atructure of temperate zone insectivorous bats in relation to foraging behaviour and energy demand. J. Anim. Ecol. 1991;60:165–178. doi: 10.2307/5452. [DOI] [Google Scholar]
  11. Barclay RMR, Harder LD. Life histories of bats: life in the slow lane. In: Kunz TH, Fenton MB, editors. Bat Ecology. Chicago: The University of Chicago Press; 2003. pp. 209–253. [Google Scholar]
  12. Becker DJ, Chumchal MM, Bentz AB, Platt SG, Czirják G, Rainwater TR, Altizer S, Streicker DG. Predictors and immunological correlates of sublethal mercury exposure in vampire bats. R. Soc. Open Sci. 2017;4:170073. doi: 10.1098/rsos.170073. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Becker DJ, Czirják G, Volokhov DV, Bentz AB, Carrera JE, Camus MS, Navara KJ, Chizhikov VE, Brock Fenton M, Simmons NB, Recuenco SE, Gilbert AT, Altizer S, Streicker DG. Livestock abundance predicts vampire bat demography, immune profiles and bacterial infection risk. Philos. Trans. R. Soc. Lond. B: Biol. Sci. 2018;373:20170089. doi: 10.1098/rstb.2017.0089. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Becker NI, Encarnação JA, Tschapka M, Kalko EKV. Energetics and life-history of bats in comparison to small mammals. Ecol. Res. 2013;28:249–258. doi: 10.1007/s11284-012-1010-0. [DOI] [Google Scholar]
  15. Becker NI, Tschapka M, Kalko EKV, Encarnação JA. Balancing the energy budget in free-ranging male Myotis daubentonii bats. Physiol. Biochem. Zool. 2013;86:361–369. doi: 10.1086/670527. [DOI] [PubMed] [Google Scholar]
  16. Boonstra R, McColl CJ, Karels TJ. Reproduction at all costs: the adaptive stress response of male arctic ground squirrels. Ecology. 2001;82:1930–1946. doi: 10.1890/0012-9658(2001)082[1930:RAACTA]2.0.CO;2. [DOI] [Google Scholar]
  17. Borghesi J, Mario LC, Nogueira MR, Favaron PO, Miglino MA. Immunoglobulin transport during gestation in domestic animals and humans—a review. Open J. Anim. Sci. 2014;4:323. doi: 10.4236/ojas.2014.45041. [DOI] [Google Scholar]
  18. Bouma HR, Carey HV, Kroese FGM. Hibernation: the immune system at rest? J. Leukoc. Biol. 2010;88:619–624. doi: 10.1189/jlb.0310174. [DOI] [PubMed] [Google Scholar]
  19. Bouman A, Heineman MJ, Faas MM. Sex hormones and the immune response in humans. Hum. Reprod. 2005;11:411–423. doi: 10.1093/humupd/dmi008. [DOI] [PubMed] [Google Scholar]
  20. Buchanan K, Evans M, Goldsmith A. Testosterone, dominance signalling and immunosuppression in the house sparrow, Passer domesticus. Behav. Ecol. Sociobiol. 2003;55:50–59. doi: 10.1007/s00265-003-0682-4. [DOI] [Google Scholar]
  21. Butterworth M, McClellan B, Aklansmith M. Influence of sex on immunoglobulin levels. Nature. 1967;214:1224–1225. doi: 10.1038/2141224a0. [DOI] [PubMed] [Google Scholar]
  22. Christe P, Giorgi MS, Vogel P, Arlettaz R. Variation in intensity of a parasitic mite (Spinturnix myoti) in relation to the reproductive cycle and immunocompetence of its bat host (Myotis myotis) Ecol. Lett. 2000;3:207–212. doi: 10.1046/j.1461-0248.2000.00142.x. [DOI] [Google Scholar]
  23. Da Silva JAP. Sex hormones and glucocorticoids: interactions with the immune system. Ann. N.Y.Acad. Sci. 1999;876:102–118. doi: 10.1111/j.1749-6632.1999.tb07628.x. [DOI] [PubMed] [Google Scholar]
  24. Demas GE, Greives T, Chester E, French S. The energetics of immunity. In: Demas GE, Nelson RJ, editors. Ecoimmunology. New York: Oxford University Press; 2012. pp. 259–296. [Google Scholar]
  25. Demas GE, Zysling DA, Beechler BR, Muehlenbein MP, French SS. Beyond phytohaemagglutinin: assessing vertebrate immune function across ecological contexts. J. Anim. Ecol. 2011;80:710–730. doi: 10.1111/j.1365-2656.2011.01813.x. [DOI] [PubMed] [Google Scholar]
  26. Dempster G, Grodums EI, Spencer WA. Experimental coxsackie B-3 virus infection in Citellus lateralis. J. Cell. Physiol. 1966;67:443–453. doi: 10.1002/jcp.1040670309. [DOI] [PubMed] [Google Scholar]
  27. Dietz C, Nill D, von Helversen O. Bats of Britain, Europe and Northwest Africa. London: A & C Black; 2009. [Google Scholar]
  28. Drazen DL, Trasy A, Nelson RJ. Photoperiod differentially affects energetics of immunity in pregnant and lactating Siberian hamsters (Phodopus sungorus) Can. J. Zool. 2003;81:1406–1413. doi: 10.1139/z03-120. [DOI] [Google Scholar]
  29. Drexler JF, Corman VM, Wegner T, Tateno AF, Zerbinati RM, Gloza-Rausch F, Seebens A, Müller MA, Drosten C. Amplification of emerging viruses in a bat colony. Emerg. Infect. Dis. 2011;17:449–456. doi: 10.3201/eid1703.100526. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Duffy DL, Bentley GE, Drazen DL, Ball GF. Effects of testosterone on cell-mediated and humoral immunity in non-breeding adult European starlings. Behav. Ecol. 2000;11:654–662. doi: 10.1093/beheco/11.6.654. [DOI] [Google Scholar]
  31. Ellison PT. Energetics and reproductive effort. Am. J. Hum. Biol. 2003;15:342–351. doi: 10.1002/ajhb.10152. [DOI] [PubMed] [Google Scholar]
  32. Encarnação JA. Spatiotemporal pattern of local sexual segregation in a tree-dwelling temperate bat Myotis daubentonii. J. Ethol. 2012;30:271–278. doi: 10.1007/s10164-011-0323-8. [DOI] [Google Scholar]
  33. Encarnação JA, Dietz M. Estimation of food intake and ingested energy in Daubenton’s bats (Myotis daubentonii) during pregnancy and spermatogenesis. Eur. J. Wildl. Res. 2006;52:221–227. doi: 10.1007/s10344-006-0046-2. [DOI] [Google Scholar]
  34. Encarnação JA, Dietz M, Kierdorf U. Reproductive condition and activity pattern of male Daubenton’s bats (Myotis daubentonii) in the summer habitat. Mamm. Biol. 2004;69:163–172. doi: 10.1078/1616-5047-00131. [DOI] [Google Scholar]
  35. Epstein JH, Baker ML, Zambrana-Torrelio C, Middleton D, Barr JA, DuBovi E, Boyd V, Pope B, Todd S, Crameri G. Duration of maternal antibodies against canine distemper virus and Hendra virus in pteropid bats. PLoS One. 2013;8:e67584. doi: 10.1371/journal.pone.0067584. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Fokidis BH, Greiner EC, Deviche P. Interspecific variation in avian blood parasites and haematology associated with urbanization in a desert habitat. J. Avian Biol. 2008;39:300–310. doi: 10.1111/j.0908-8857.2008.04248.x. [DOI] [Google Scholar]
  37. Folstad I, Karter AJ. Parasites, bright males, and the immunocompetence handicap. Am. Nat. 1992;139:603–622. doi: 10.1086/285346. [DOI] [Google Scholar]
  38. French SS, DeNardo DF, Moore MC. Trade-offs between the reproductive and immune systems: facultative responses to resources or obligate responses to reproduction? Am. Nat. 2007;170:79–89. doi: 10.1086/518569. [DOI] [PubMed] [Google Scholar]
  39. French SS, Neuman-Lee LA. Improved ex vivo method for microbiocidal activity across vertebrate species. Biol. Open. 2012;1:482–487. doi: 10.1242/bio.2012919. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Geiser F. Metabolic rate and body temperature reduction during hibernation and daily torpor. Annu. Rev. Physiol. 2004;66:239–274. doi: 10.1146/annurev.physiol.66.032102.115105. [DOI] [PubMed] [Google Scholar]
  41. George DB, Webb CT, Farnsworth ML, O’Shea TJ, Bowen RA, Smith DL, Stanley TR, Ellison LE, Rupprecht CE. Host and viral ecology determine bat rabies seasonality and maintenance. Proc. Natl. Acad. Sci. U. S. A. 2011;108:10208–10213. doi: 10.1073/pnas.1010875108. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Gittleman JL, Thompson SD. Energy allocation in mammalian reproduction. Integr. Comp. Biol. 1988;28:863–875. [Google Scholar]
  43. Gloza-Rausch F, Ipsen A, Seebens A, Göttsche M, Panning M, Drexler JF, Petersen N, Annan A, Grywna K, Müller M. Detection and prevalence patterns of group I coronaviruses in bats, northern Germany. Emerg. Infect. Dis. 2008;14:626–631. doi: 10.3201/eid1404.071439. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Greiner S, Stefanski V, Dehnhard M, Voigt CC. Plasma testosterone levels decrease after activation of skin immune system in a free-ranging mammal. Gen. Comp. Endocrinol. 2010;168:466–473. doi: 10.1016/j.ygcen.2010.06.008. [DOI] [PubMed] [Google Scholar]
  45. Grindstaff JL. Maternal antibodies reduce costs of an immune response during development. J. Exp. Biol. 2008;211:654–660. doi: 10.1242/jeb.012344. [DOI] [PubMed] [Google Scholar]
  46. Hammond KA, Diamond J. Maximal sustained energy budgets in humans and animals. Nature. 1997;386:457–462. doi: 10.1038/386457a0. [DOI] [PubMed] [Google Scholar]
  47. Hayman D, Bowen R, Cryan P, McCracken GF, O’shea T, Peel AJ, Gilbert A, Webb C, Wood J. Ecology of zoonotic infectious diseases in bats: current knowledge and future directions. Zoonoses Public Health. 2013;60:2–21. doi: 10.1111/zph.12000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Heinrich SK, Hofer H, Courtiol A, Melzheimer J, Dehnhard M, Czirják G, Wachter B. Cheetahs have a stronger constitutive innate immunity than leopards. Sci. Rep. 2017;7:44837. doi: 10.1038/srep44837. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Heinrich SK, Wachter B, Aschenborn OHK, Thalwitzer S, Melzheimer J, Hofer H, Czirják G. Feliform carnivoes have a distinguished constitutive innate immune response. Biol. Open. 2016;5:550–555. doi: 10.1242/bio.014902. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Hsieh MM, Everhart JE, Byrd-Holt DD, Tisdale JF, Rodgers GP. Prevalence of neutropenia in the U.S. population: age, sex, smoking status, and ethnic differences. Ann. Intern. Med. 2007;146:486–492. doi: 10.7326/0003-4819-146-7-200704030-00004. [DOI] [PubMed] [Google Scholar]
  51. Klein SL. The effects of hormones on sex differences in infection: from genes to behavior. Neurosci. Biobehav. Rev. 2000;24:627–638. doi: 10.1016/S0149-7634(00)00027-0. [DOI] [PubMed] [Google Scholar]
  52. Krutzsch PH. Anatomy, physiology and cyclicity of the male reproductive tract. In: Crichton EG, Krutzsch PH, editors. Reproductive Biology of Bats. London: Academic Press; 2000. pp. 92–137. [Google Scholar]
  53. Kunz TH, Pierson ED. Bats of the world: an introduction. In: Nowak RM, editor. Bats of the World. Baltimore: John Hopkins University; 1994. pp. 1–46. [Google Scholar]
  54. Kunz TH, Wrazen JA, Burnett CD. Changes in body mass and fat reserves in pre-hibernating little brown bats (Myotis lucifugus) Ecoscience. 1998;5:8–17. doi: 10.1080/11956860.1998.11682443. [DOI] [Google Scholar]
  55. Lee KA. Linking immune defenses and life history at the levels of the individual and the species. Integr. Comp. Biol. 2006;46:1000–1015. doi: 10.1093/icb/icl049. [DOI] [PubMed] [Google Scholar]
  56. Lemke H, Hansen H, Lange H. Non-genetic inheritable potential of maternal antibodies. Vaccine. 2003;21:3428–3431. doi: 10.1016/S0264-410X(03)00394-3. [DOI] [PubMed] [Google Scholar]
  57. Lochmiller RL, Deerenberg C. Trade-offs in evolutionary immunology: just what is the cost of immunity? Oikos. 2000;88:87–98. doi: 10.1034/j.1600-0706.2000.880110.x. [DOI] [Google Scholar]
  58. Love OP, Salvante KG, Dale J, Williams TD. Sex-specific variability in the immune system across life-history stages. Am. Nat. 2008;172:E99–112. doi: 10.1086/589521. [DOI] [PubMed] [Google Scholar]
  59. Lucan RK, Hanák V, Horáček I. Long-term re-use of tree roosts by European forest bats. For. Ecol. Manag. 2009;258:1301–1306. doi: 10.1016/j.foreco.2009.06.032. [DOI] [Google Scholar]
  60. Martin L, Bernhard RTF. Endocrine regulation of reproduction in bats: the role of circulating gonadal hormones. In: Crichton EG, Krutzsch PH, editors. Reproductive Biology of Bats. San Diego: Academic Press; 2000. pp. 27–64. [Google Scholar]
  61. Martin LB, Weil ZM, Nelson RJ. Seasonal changes in vertebrate immune activity: mediation by physiological trade-offs. Philos. Trans. R. Soc. Lond. B: Biol. Sci. 2008;363:321–339. doi: 10.1098/rstb.2007.2142. [DOI] [PMC free article] [PubMed] [Google Scholar]
  62. Matson KD, Cohen AA, Klasing KC, Ricklefs RE, Scheuerlein A. No simple answers for ecological immunology: relationships among immune indices at the individual level break down at the species level in waterfowl. Proc. R. Soc. Lond. B: Biol. Sci. 2006;273:815–822. doi: 10.1098/rspb.2005.3376. [DOI] [PMC free article] [PubMed] [Google Scholar]
  63. Matson KD, Ricklefs RE, Klasing KC. A hemolysis-hemagglutination assay for characterizing constitutive innate humoral immunity in wild and domestic birds. Dev. Comp. Immunol. 2005;29:275–286. doi: 10.1016/j.dci.2004.07.006. [DOI] [PubMed] [Google Scholar]
  64. Millet S, Bennett J, Lee KA, Hau M, Klasing KC. Quantifying and comparing constitutive immunity across avian species. Dev. Comp. Immunol. 2007;31:188–201. doi: 10.1016/j.dci.2006.05.013. [DOI] [PubMed] [Google Scholar]
  65. Moore IT, Hopkins WA. Interactions and trade-offs among physiological determinants of performance and reproductive success. Integr. Comp. Biol. 2009;49:441–451. doi: 10.1093/icb/icp081. [DOI] [PubMed] [Google Scholar]
  66. Moore MS, Reichard JD, Murtha TD, Zahedi B, Fallier RM, Kunz TK. Specific alterations in complement protein activity of little brown myotis (Myotis lucifugus) hibernating in white-nose syndrome affected sites. PLoS One. 2011;6:e27430. doi: 10.1371/journal.pone.0027430. [DOI] [PMC free article] [PubMed] [Google Scholar]
  67. Mühldorfer K, Speck S, Kurth A, Lesnik R, Freuling C, Müller T, Kramer-Schadt S, Wibbelt G. Diseases and causes of death in European bats: dynamics in disease susceptibility and infection rates. PLoS One. 2011;6:e29773. doi: 10.1371/journal.pone.0029773. [DOI] [PMC free article] [PubMed] [Google Scholar]
  68. Nelson RJ, Demas GE, Klein SL, Kriegsfeld LJ. Seasonal patterns of stress, immune function, and disease. New York: Cambridge University Press; 2002. [Google Scholar]
  69. Norris K, Evans MR. Ecological immunology: life history trade-offs and immune defense in birds. Behav. Ecol. 2000;11:19–26. doi: 10.1093/beheco/11.1.19. [DOI] [Google Scholar]
  70. O’Shea TJ, Cryan PM, Cunningham AA, Fooks AR, Hayman DTS, Luis AD, Peel AJ, Plowright RK, Wood JLN. Bat flight and zoonotic viruses. Emerg. Infect. Dis. 2014;20:741. doi: 10.3201/eid2005.130539. [DOI] [PMC free article] [PubMed] [Google Scholar]
  71. Ochsenbein AF, Fehr T, Lutz C, Suter M, Brombacher F, Hengartner H, Zinkernagel RM. Control of early viral and bacterial distribution and disease by natural antibodies. Science. 1999;286:2156–2159. doi: 10.1126/science.286.5447.2156. [DOI] [PubMed] [Google Scholar]
  72. Otto MS, Becker NI, Encarnação JA. Cool gleaners: thermoregulation in sympatric bat species. Mamm. Biol. 2013;78:212–215. doi: 10.1016/j.mambio.2012.07.156. [DOI] [Google Scholar]
  73. Pap PL, Czirják G, Vágási CI, Barta Z, Hasselquist D. Sexual dimorphism in immune function changes during the annual cycle in house sparrows. Naturwissenschaften. 2010;97:891–901. doi: 10.1007/s00114-010-0706-7. [DOI] [PubMed] [Google Scholar]
  74. Plowright RK, Field HE, Smith C, Divljan A, Palmer C, Tabor G, Daszak P, Foley JE. Reproduction and nutritional stress are risk factors for Hendra virus infection in little red flying foxes (Pteropus scapulatus) Proc. R. Soc. Lond. B: Biol. Sci. 2008;275:861–869. doi: 10.1098/rspb.2007.1260. [DOI] [PMC free article] [PubMed] [Google Scholar]
  75. Prendergast BJ, Freeman DA, Zucker I, Nelson RJ. Periodic arousal from hibernation is necessary for initiation of immune responses in ground squirrels. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2002;282:R1054–R1062. doi: 10.1152/ajpregu.00562.2001. [DOI] [PubMed] [Google Scholar]
  76. Racey PA. Reproductive assessment of bats. In: Kunz TH, Parsons S, editors. Ecological and Behavioral Methods for the Study of Bats. Baltimore, MD: The John Hopkins University Press; 2009. [Google Scholar]
  77. Roberts ML, Buchanan KL, Evans M. Testing the immunocompetence handicap hypothesis: a review of the evidence. Anim. Behav. 2004;68:227–239. doi: 10.1016/j.anbehav.2004.05.001. [DOI] [Google Scholar]
  78. Schneeberger K, Czirják G, Voigt CC. Inflammatory challenge increases measures of oxidative stress in a free-ranging, long-lived mammal. J. Exp. Biol. 2013;216:4514–4519. doi: 10.1242/jeb.090837. [DOI] [PubMed] [Google Scholar]
  79. Schneeberger K, Czirják G, Voigt CC. Measures of the constitutive immune system are linked to diet and roosting habits of neotropical bats. PLoS One. 2013;8:e54023. doi: 10.1371/journal.pone.0054023. [DOI] [PMC free article] [PubMed] [Google Scholar]
  80. Schneeberger K, Courtiol A, Czirják G, Voigt CC. Immune profile predicts survival and reflects senescence in a small, long-lived mammal, the greater sac-winged bat (Saccopteryx bilineata) PLoS One. 2014;9:e108268. doi: 10.1371/journal.pone.0108268. [DOI] [PMC free article] [PubMed] [Google Scholar]
  81. Schuurs AHWM, Verheul HAM. Effects of gender and sex steroids on the immune response. J. Steroid Biochem. Mol. Biol. 1990;35:157–172. doi: 10.1016/0022-4731(90)90270-3. [DOI] [PubMed] [Google Scholar]
  82. Seltmann, A., Czirják, G.Á., Courtiol, A., Bernhard, H., Struebig, M.J., Voigt, C.C., 2017. Habitat disturbance results in chronic stress and impaired health status in forest-dwelling paleotropical bats. Conserv. Physiol. 5, cox020. [DOI] [PMC free article] [PubMed]
  83. Sparkman AM, Palacios MG. A test of life-history theories of immune defence in two ecotypes of the garter snake, Thamnophis elegans. J. Anim. Ecol. 2009;78:1242–1248. doi: 10.1111/j.1365-2656.2009.01587.x. [DOI] [PubMed] [Google Scholar]
  84. Speakman JR. The physiological costs of reproduction in small mammals. Philos. Trans. R. Soc. Lond. B: Biol. Sci. 2008;363:375–398. doi: 10.1098/rstb.2007.2145. [DOI] [PMC free article] [PubMed] [Google Scholar]
  85. Strobel S, Becker NI, Encarnação JA. No short-term effect of handling and capture stress on immune responses of bats assessed by bacterial killing assay. Mamm. Biol. 2015;80:312–315. doi: 10.1016/j.mambio.2015.02.005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  86. Stubbe M, Ariunbold J, Buuveibaatar V, Dorjderem S, Monkhzul T, Otgonbaatar M, Tsogbadrakh M, Hutson AM, Spitzenberger F, Aulagnier S, Juste J, Coroiu I, Paunovic M, Karatas A. Myotis daubentonii. 2008. [Google Scholar]
  87. Telfer S, Bennett M, Bown K, Carslake D, Cavanagh R, Hazel S, Jones T, Begon M. Infection with cowpox virus decreases female maturation rates in wild populations of woodland rodents. Oikos. 2005;109:317–322. doi: 10.1111/j.0030-1299.2005.13734.x. [DOI] [Google Scholar]
  88. Thompson SD. Gestation and lactation in small mammals: basal metabolic rate and the limits of energy use. In: Tomasi TE, Horton TH, editors. Mammalian Energetics: Interdisciplinary Views of Metabolism and Reproduction. Ithaca, New York: Cornell University; 1993. pp. 213–260. [Google Scholar]
  89. Valdimarsson H, Mulholland C, Fridriksdottir V, Coleman D. A longitudinal study of leucocyte blood counts and lymphocyte responses in pregnancy: a marked early increase of monocyte-lymphocyte ratio. Clin. Exp. Immunol. 1983;53:437. [PMC free article] [PubMed] [Google Scholar]
  90. Zipfel PF. Complement and immune defense: from innate immunity to human diseases. Immunol. Lett. 2009;126:1–7. doi: 10.1016/j.imlet.2009.07.005. [DOI] [PubMed] [Google Scholar]
  91. Zuk M, McKean KA. Sex differences in parasite infections: patterns and processes. Int. J. Parasitol. 1996;26:1009–1023. doi: 10.1016/S0020-7519(96)80001-4. [DOI] [PubMed] [Google Scholar]
  92. Zuk M, Stoehr AM. Immune defense and host life history. Am. Nat. 2002;160:9–22. doi: 10.1086/342131. [DOI] [PubMed] [Google Scholar]

Articles from Mammalian Biology = Zeitschrift Fur Saugetierkunde are provided here courtesy of Nature Publishing Group

RESOURCES