Skip to main content
Springer Nature - PMC COVID-19 Collection logoLink to Springer Nature - PMC COVID-19 Collection
. 2016 Apr 1;64(2):115–130. doi: 10.1346/CCMN.2016.0640204

Review of Clay-Drug Hybrid Materials for Biomedical Applications: Administration Routes

Myung Hun Kim 14,24, Goeun Choi 14, Ahmed Elzatahry 34,44, Ajayan Vinu 54, Young Bin Choy 24,64, Jin-Ho Choy 14,54,
PMCID: PMC7091641  PMID: 32218609

Abstract

Focus here is placed on the pharmaceutical and biomedical applications of novel clay-drug hybrid materials categorized by methods of administration. Clay minerals have been used for many years as pharmaceutical and medicinal ingredients for therapeutic purposes. A number of studies have attempted to explore clay-drug hybrid materials for biomedical applications with desired functions, such as sustained release, increased solubility, enhanced adsorption, mucoadhesion, biocompatibility, targeting, etc. The present review attempts not only to summarize the state-of-the-art of clay-drug hybrid materials and their advantages, depending on the methods of administration, but also to deal with challenges and future perspectives of clay mineral-based hybrids for biomedical applications.

Key Words: Administration Methods, Biocompatibility, Biomedical Applications, Clay-drug Hybrid, Mucoadhesion, Pharmaceutical Applications, Sustained Release, Targeting

References

  1. Abdel-Mohsen M, Mohamed H, Wadood H. Study of the effect of montmorillonite and florite on the dissociation constant, release and local anaesthetic activity of lidocaine. STP Pharma Sciences. 2001;11:295–300. [Google Scholar]
  2. Abend S, Lagaly G. Sol-gel transitions of sodium montmorillonite dispersions. Applied Clay Science. 2000;16:201–227. [Google Scholar]
  3. Aguzzi C, Cerezo P, Viseras C, Caramella C. Use of clays as drug delivery systems: Possibilities and limitations. Applied Clay Science. 2007;36:22–36. [Google Scholar]
  4. Alavi M, Totonchi A, Okhovat MA, Motazedian M, Rezaei P, Atefi M. The effect of a new impregnated gauze containing bentonite and halloysite minerals on blood coagulation and wound healing. Blood Coagulation & Fibrinolysis. 2014;25:856–859. doi: 10.1097/MBC.0000000000000172. [DOI] [PubMed] [Google Scholar]
  5. Albert K, DeSante K, Welch R, DiSanto A. Pharmacokinetic evaluation of a drug interaction between kaolin pectin and clindamycin. Journal of Pharmaceutical Sciences. 1978;67:1579–1582. doi: 10.1002/jps.2600671120. [DOI] [PubMed] [Google Scholar]
  6. Alestig K, Trollfors B, Stenqvist K. Acute nonspecific diarrhoea: Studies on the use of charcoal, kaolinpectin and diphenoxylate. The Practitioner. 1979;222:859–862. [PubMed] [Google Scholar]
  7. Almeida, J. (2013) Identification of mechanisms of beneficial effects of dietary clays in pigs and chicks during an enteric infection. PhD thesis, University of Illinois at Urbana-Champaign, Illinois, USA, 103 pp.
  8. Ambrogi V, Nocchetti M, Latterini L. Promethazine-montmorillonite inclusion complex to enhance drug photostability. Langmuir. 2014;30:14612–14620. doi: 10.1021/la5033898. [DOI] [PubMed] [Google Scholar]
  9. Barral S, Villa-García M, Rendueles M, Diaz M. Interactions between whey proteins and kaolinite surfaces. Acta Materialia. 2008;56:2784–2790. [Google Scholar]
  10. Bergaya F, Lagaly G e, editors. Handbook of Clay Science. Amsterdam: Elsevier; 2013. [Google Scholar]
  11. Bhattarai N, Gunn J, Zhang M. Chitosan-based hydrogels for controlled, localized drug delivery. Advanced Drug Delivery Reviews. 2010;62:83–99. doi: 10.1016/j.addr.2009.07.019. [DOI] [PubMed] [Google Scholar]
  12. Bolger R. Industrial minerals in pharmaceuticals. Industrial Minerals. 1995;1:52–63. [Google Scholar]
  13. Bonina F, Giannossi M, Medici L, Puglia C, Summa V, Tateo F. Adsorption of salicylic acid on bentonite and kaolin and release experiments. Applied Clay Science. 2007;36:77–85. [Google Scholar]
  14. Byrne R, Deasy P. Use of porous aluminosilicate pellets for drug delivery. Journal of Microencapsulation. 2005;22:423–437. doi: 10.1080/02652040500100196. [DOI] [PubMed] [Google Scholar]
  15. Cara S, Carcangiu G, Padalino G, Palomba M, Tamanini M. The bentonites in pelotherapy: Chemical, mineralogical and technological properties of materials from Sardinia deposits (Italy) Applied Clay Science. 2000;16:117–124. [Google Scholar]
  16. Cara S, Carcangiu G, Padalino G, Palomba M, Tamanini M. The bentonites in pelotherapy: Thermal properties of clay pastes from Sardinia (Italy) Applied Clay Science. 2000;16:125–132. [Google Scholar]
  17. Carretero MI. Clay minerals and their beneficial effects upon human health. A review. Applied Clay Science. 2002;21:155–163. [Google Scholar]
  18. Carretero MI, Pozo M. Clay and non-clay minerals in the pharmaceutical and cosmetic industries part II. Active ingredients. Applied Clay Science. 2010;47:171–181. [Google Scholar]
  19. Chang FY, Lu CL, Chen CY, Luo JC. Efficacy of dioctahedral smectite in treating patients of diarrhea predominant irritable bowel syndrome. Journal of Gastroenterology and Hepatology. 2007;22:2266–2272. doi: 10.1111/j.1440-1746.2007.04895.x. [DOI] [PubMed] [Google Scholar]
  20. Choy J-H, Kwak S-Y, Park J-S, Jeong Y-J, Portier J. Intercalative nanohybrids of nucleoside monophosphates and DNA in layered metal hydroxide. Journal of the American Chemical Society. 1999;121:1399–1400. [Google Scholar]
  21. Choy J-H, Kwak S-Y, Jeong Y-J, Park J-S. Inorganic layered double hydroxides as nonviral vectors. Angewandte Chemie. 2000;39:4041–4045. doi: 10.1002/1521-3773(20001117)39:22<4041::aid-anie4041>3.0.co;2-c. [DOI] [PubMed] [Google Scholar]
  22. Choy J-H, Park M, Oh J-M. Bio-nanohybrids based on layered double hydroxide. Current Nanoscience. 2006;2:275–281. [Google Scholar]
  23. Choy J-H, Choi S-J, Oh J-M, Park T. Clay minerals and layered double hydroxides for novel biological applications. Applied Clay Science. 2007;36:122–132. [Google Scholar]
  24. Clark K, Sarr A, Grant P, Phillips T, Woode G. In vitro studies on the use of clay, clay minerals and charcoal to adsorb bovine rotavirus and bovine coronavirus. Veterinary Microbiology. 1998;63:137–146. doi: 10.1016/S0378-1135(98)00241-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Classen J, Hoffmann W, Meisner C, Freitag E-M, Souchon R, Feyerabend T, Hehr T, Bamberg M. 941 prophylactic use of smectite (ST) significantly reduces the incidence of acute diarrhoea for patients undergoing radio-chemotherapy (RT-CX) for rectal cancer: Results of a double-blind phase III trial. European Journal of Cancer Supplements. 2003;1:S283. [Google Scholar]
  26. Cypes SH, Saltzman WM, Giannelis EP. Organosilicate-polymer drug delivery systems: Controlled release and enhanced mechanical properties. Journal of Controlled Release. 2003;90:163–169. doi: 10.1016/s0168-3659(03)00133-0. [DOI] [PubMed] [Google Scholar]
  27. Da Silva GR, Ayres E, Orefice RL, Moura SAL, Cara DC, Cunha ADS., Jr Controlled release of dexamethasone acetate from biodegradable and biocompatible polyurethane and polyurethane nanocomposite. Journal of Drug Targeting. 2009;17:374–383. doi: 10.1080/10611860902839510. [DOI] [PubMed] [Google Scholar]
  28. Da Silva GR d S-C ^A, Behar-Cohen F, Ayres E, Orefice RL. Biodegradable polyurethane nanocomposites containing dexamethasone for ocular route. Materials Science and Engineering: C. 2011;31:414–422. [Google Scholar]
  29. de Sousa Rodrigues LA, Figueiras A, Veiga F, de Freitas RM, Nunes LCC, da Silva Filho EC, da Silva Leite CM. The systems containing clays and clay minerals from modified drug release: A review. Colloids and Surfaces B: Biointerfaces. 2013;103:642–651. doi: 10.1016/j.colsurfb.2012.10.068. [DOI] [PubMed] [Google Scholar]
  30. Dobrozsi, D.J. (2003) Oral liquid mucoadhesive compositions. US Patent 6,638,521. Date Issued: 28 Oct.
  31. Dong Y, Feng S-S. Poly (d, l-lactide-coglycolide)/montmorillonite nanoparticles for oral delivery of anticancer drugs. Biomaterials. 2005;26:6068–6076. doi: 10.1016/j.biomaterials.2005.03.021. [DOI] [PubMed] [Google Scholar]
  32. Dornelas CB, Silva AM, Dantas CB, Rodrigues CR, Coutinho SS, Sathler PC, Castro HC, Dias LRS, Sousa VP, Cabral LM. Preparation and evaluation of a new nano pharmaceutical excipients and drug delivery system based in polyvinylpyrrolidone and silicates. Journal of Pharmacy & Pharmaceutical Sciences. 2011;14:17–35. doi: 10.18433/j3hc72. [DOI] [PubMed] [Google Scholar]
  33. El-Nahhal Y, Nir S, Margulies L, Rubin B. Reduction of photodegradation and volatilization of herbicides in organo-clay formulations. Applied Clay Science. 1999;14:105–119. [Google Scholar]
  34. Feng S-S, Mei L, Anitha P, Gan CW, Zhou W. Poly (lactide)-vitamin E derivative/montmorillonite nanoparticle formulations for the oral delivery of docetaxel. Biomaterials. 2009;30:3297–3306. doi: 10.1016/j.biomaterials.2009.02.045. [DOI] [PubMed] [Google Scholar]
  35. Ferrand T, Yvon J. Thermal properties of clay pastes for pelotherapy. Applied Clay Science. 1991;6:21–38. [Google Scholar]
  36. Forsgren J, Jámstorp E, Bredenberg S, Engqvist H, Strømme M. A ceramic drug delivery vehicle for oral administration of highly potent opioids. Journal of Pharmaceutical Sciences. 2010;99:219–226. doi: 10.1002/jps.21814. [DOI] [PubMed] [Google Scholar]
  37. Górner T, Gref R, Michenot D, Sommer F, Tran M, Dellacherie E. Lidocaine-loaded biodegradable nanospheres. I. Optimization of the drug incorporation into the polymer matrix. Journal of Controlled Release. 1999;57:259–268. doi: 10.1016/s0168-3659(98)00121-7. [DOI] [PubMed] [Google Scholar]
  38. Galán E. Properties and applications of palygorskitesepiolite clays. Clay Minerals. 1996;31:443–454. [Google Scholar]
  39. Gamiz E, Linares J, Delgado R. Assessment of two Spanish bentonites for pharmaceutical uses. Applied Clay Science. 1992;6:359–368. [Google Scholar]
  40. Ghadiri M, Chrzanowski W, Rohanizadeh R. Biomedical applications of cationic clay minerals. RSC Advances. 2015;5:29467–29481. [Google Scholar]
  41. Gupte, A. and Bogardus, R. (1987) Dry aerosol foam containing zeolite, for use in cosmetics and pharmaceuticals. Europe Patent 247,608, Date Issued: 2 Dec.
  42. Ha JU, Xanthos M. Drug release characteristics from nanoclay hybrids and their dispersions in organic polymers. International Journal of Pharmaceutics. 2011;414:321–331. doi: 10.1016/j.ijpharm.2011.05.028. [DOI] [PubMed] [Google Scholar]
  43. Hsu S-h, Wang M-C, Lin J-J. Biocompatibility and antimicrobial evaluation of montmorillonite/chitosan nanocomposites. Applied Clay Science. 2012;56:53–62. [Google Scholar]
  44. Hua S, Yang H, Wang W, Wang A. Controlled release of ofloxacin from chitosan-montmorillonite hydrogel. Applied Clay Science. 2010;50:112–117. [Google Scholar]
  45. Hubbell JA. Hydrogel systems for barriers and local drug delivery in the control of wound healing. Journal of Controlled Release. 1996;39:305–313. [Google Scholar]
  46. Ippoliti C. Antidiarrheal agents for the management of treatment-related diarrhea in cancer patients. American Journal of Health-System Pharmacy. 1998;55:1573–1580. doi: 10.1093/ajhp/55.15.1573. [DOI] [PubMed] [Google Scholar]
  47. Irmukhametova G, Shaikhutdinov E, Rakhmetullayeva R, Yermukhambetova B, Ishanova A, Temirkhanova G, Mun G. Nanostructured hydrogel dressings on base of crosslinked polyvinylpyrrolidone for biomedical application. Advanced Materials Research. 2014;875:1467–1471. [Google Scholar]
  48. Isayev AI, Palsule S. Encyclopedia of Polymer Blends, Volume 2: Processing. Weinheim, Germany: Wiley-VCH; 2011. [Google Scholar]
  49. Ito T, Sugafuji T, Maruyama M, Ohwa Y, Takahashi T. Skin penetration by indomethacin is enhanced by use of an indomethacin/smectite complex. Journal of Supramolecular Chemistry. 2001;1:217–219. [Google Scholar]
  50. Jadhav N, Paradkar A, Salunkhe N, Karade R, Mane G. Talc: A versatile pharmaceutical excipient. World Journal of Pharmacy and Pharmacutical Sciences. 2013;2:4639–4660. [Google Scholar]
  51. Jin X, Hu X, Wang Q, Wang K, Yao Q, Tang G, Chu PK. Multifunctional cationic polymer decorated and drug intercalated layered silicate (NLS) for early gastric cancer prevention. Biomaterials. 2014;35:3298–3308. doi: 10.1016/j.biomaterials.2013.12.040. [DOI] [PubMed] [Google Scholar]
  52. Jo, J.H., Lee, E.M., Han, Y.S., and Jung, G.Y. (2006) Transdermal composition comprising piroxicam-inorganic material complex and patch system comprising the same. US Patent 20,080,279,914. Date Issued: 13 Nov.
  53. Joshi GV, Kevadiya BD, Patel HA, Bajaj HC, Jasra RV. Montmorillonite as a drug delivery system: Intercalation and in vitro release of timolol maleate. International Journal of Pharmaceutics. 2009;374:53–57. doi: 10.1016/j.ijpharm.2009.03.004. [DOI] [PubMed] [Google Scholar]
  54. Jung H, Kim H-M, Choy YB, Hwang S-J, Choy J- H. Itraconazole-laponite: Kinetics and mechanism of drug release. Applied Clay Science. 2008;40:99–107. [Google Scholar]
  55. Jung H, Kim H-M, Choy YB, Hwang S-J, Choy J-H. Laponite-based nanohybrid for enhanced solubility and controlled release of itraconazole. International Journal of Pharmaceutics. 2008;349:283–290. doi: 10.1016/j.ijpharm.2007.08.008. [DOI] [PubMed] [Google Scholar]
  56. Kelly H, Deasy P, Ziaka E, Claffey N. Formulation and preliminary in vivo dog studies of a novel drug delivery system for the treatment of periodontitis. International Journal of Pharmaceutics. 2004;274:167–183. doi: 10.1016/j.ijpharm.2004.01.019. [DOI] [PubMed] [Google Scholar]
  57. Kevadiya BD, Patel TA, Jhala DD, Thumbar RP, Brahmbhatt H, Pandya MP, Rajkumar S, Jena PK, Joshi GV, Gadhia PK. Layered inorganic nanocomposites: A promising carrier for 5-fluorouracil (5-FU) European Journal of Pharmaceutics and Biopharmaceutics. 2012;81:91–101. doi: 10.1016/j.ejpb.2012.01.004. [DOI] [PubMed] [Google Scholar]
  58. Khang G, Rhee JM, Jeong JK, Lee JS, Kim MS, Cho SH, Lee HB. Local drug delivery system using biodegradable polymers. Macromolecular Research. 2003;11:207–223. [Google Scholar]
  59. Kim J, Kim HS, Lee N, Kim T, Kim H, Yu T, Song IC, Moon WK, Hyeon T. Multifunctional uniform nanoparticles composed of a magnetite nanocrystal core and a mesoporous silica shell for magnetic resonance and fluorescence imaging and for drug delivery. Angewandte Chemie International Edition. 2008;47:8438–8441. doi: 10.1002/anie.200802469. [DOI] [PubMed] [Google Scholar]
  60. Kim MH, Park D-H, Yang J-H, Choy YB, Choy J-H. Drug-inorganic-polymer nanohybrid for transdermal delivery. International Journal of Pharmaceutics. 2013;444:120–127. doi: 10.1016/j.ijpharm.2012.12.043. [DOI] [PubMed] [Google Scholar]
  61. Krisanapiboon A, Buranapanitkit B, Oungbho K. Biocompatability of hydroxyapatite composite as a local drug delivery system. Journal of Orthopaedic Surgery. 2006;14:315–318. doi: 10.1177/230949900601400315. [DOI] [PubMed] [Google Scholar]
  62. Lee J-H, Choi G, Oh Y-J, Park JW, Choy YB, Park MC, Yoon YJ, Lee HJ, Chang HC, Choy J-H. A nanohybrid system for taste masking of sildenafil. International Journal of Nanomedicine. 2012;7:1635–1649. doi: 10.2147/IJN.S28264. [DOI] [PMC free article] [PubMed] [Google Scholar]
  63. Levis S, Deasy P. Use of coated microtubular halloysite for the sustained release of diltiazem hydrochloride and propranolol hydrochloride. International Journal of Pharmaceutics. 2003;253:145–157. doi: 10.1016/s0378-5173(02)00702-0. [DOI] [PubMed] [Google Scholar]
  64. Li Y, Li H, Xiao L, Zhou L, Shentu J, Zhang X, Fan J. Hemostatic efficiency and wound healing properties of natural zeolite granules in a lethal rabbit model of complex groin injury. Materials. 2012;5:2586–2596. [Google Scholar]
  65. Lim EK, Huh YM, Yang J, Lee K, Suh JS, Haam S. pH triggered drug releasing magnetic nanoparticles for cancer therapy guided by molecular imaging by MRI. Advanced Materials. 2011;23:2436–2442. doi: 10.1002/adma.201100351. [DOI] [PubMed] [Google Scholar]
  66. Lin F-H, Lee Y-H, Jian C-H, Wong J-M, Shieh M-J, Wang C-Y. A study of purified montmorillonite intercalated with 5-fluorouracil as drug carrier. Biomaterials. 2002;23:1981–1987. doi: 10.1016/s0142-9612(01)00325-8. [DOI] [PubMed] [Google Scholar]
  67. López-Galindo A, Viseras C. Proceedings of the 1st Latin American Clay Conference, Funchal, Madeira, Associacção Portuguesa de Argilas (APA) 2000. Pharmaceutical applications of fibrous clays (sepiolite and palygorskite) from some circum-Mediterranean deposits; pp. 258–270. [Google Scholar]
  68. López-Galindo A, Viseras C. Pharmaceutical and cosmetic applications of clays. Interface Science and Technology. 2004;1:267–289. [Google Scholar]
  69. López-Galindo A, Viseras C, Cerezo P. Compositional, technical and safety specifications of clays to be used as pharmaceutical and cosmetic products. Applied Clay Science. 2007;36:51–63. [Google Scholar]
  70. Lvov YM, Shchukin DG, Mohwald H, Price RR. Halloysite clay nanotubes for controlled release of protective agents. ACS Nano. 2008;2:814–820. doi: 10.1021/nn800259q. [DOI] [PubMed] [Google Scholar]
  71. Meng N, Zhou N-L, Zhang S-Q, Shen J. Controlled release and antibacterial activity chlorhexidine acetate (ca) intercalated in montmorillonite. International Journal of Pharmaceutics. 2009;382:45–49. doi: 10.1016/j.ijpharm.2009.08.004. [DOI] [PubMed] [Google Scholar]
  72. Mostafavi A, Emami J, Varshosaz J, Davies NM, Rezazadeh M. Development of a prolonged-release gastroretentive tablet formulation of ciprofloxacin hydrochloride: Pharmacokinetic characterization in healthy human volunteers. International Journal of Pharmaceutics. 2011;409:128–136. doi: 10.1016/j.ijpharm.2011.02.035. [DOI] [PubMed] [Google Scholar]
  73. Murray HH. Traditional and new applications for kaolin, smectite, and palygorskite: A general overview. Applied Clay Science. 2000;17:207–221. [Google Scholar]
  74. Noel SP, Courtney H, Bumgardner JD, Haggard WO. Chitosan films: A potential local drug delivery system for antibiotics. Clinical Orthopaedics and Related Research. 2008;466:1377–1382. doi: 10.1007/s11999-008-0228-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  75. Oh J-M, Kwak S-Y, Choy J-H. Intracrystalline structure of DNA molecules stabilized in the layered double hydroxide. Journal of Physics and Chemistry of Solids. 2006;67:1028–1031. [Google Scholar]
  76. Oh YJ, Choi G, Choy YB, Park JW, Park JH, Lee HJ, Yoon YJ, Chang HC, Choy JH. Aripiprazole-montmorillonite: A new organic-inorganic nanohybrid material for biomedical appl ications. Chemistry — A European Journal. 2013;19:4869–4875. doi: 10.1002/chem.201203384. [DOI] [PubMed] [Google Scholar]
  77. Padula C, Colombo G, Nicoli S, Catellani PL, Massimo G, Santi P. Bioadhesive film for the transdermal delivery of lidocaine: In vitro and in vivo behavior. Journal of Controlled Release. 2003;88:277–285. doi: 10.1016/s0168-3659(03)00015-4. [DOI] [PubMed] [Google Scholar]
  78. Park JK, Choy YB, Oh J-M, Kim JY, Hwang S-J, Choy J-H. Controlled release of donepezil intercalated in smectite clays. International Journal of Pharmaceutics. 2008;359:198–204. doi: 10.1016/j.ijpharm.2008.04.012. [DOI] [PubMed] [Google Scholar]
  79. Pinto Flávia Carmo Horta, Silva-Cunha Armando, Pianetti Gerson Antônio, Ayres Eliane, Oréfice Rodrigo Lambert, Da Silva Gisele Rodrigues. Montmorillonite Clay-Based Polyurethane Nanocomposite As Local Triamcinolone Acetonide Delivery System. Journal of Nanomaterials. 2011;2011:1–11. [Google Scholar]
  80. Poensin D, Carpentier PH, Féchoz C, Gasparini S. Effects of mud pack treatment on skin microcirculation. Joint Bone Spine. 2003;70:367–370. doi: 10.1016/s1297-319x(03)00064-2. [DOI] [PubMed] [Google Scholar]
  81. Pongjanyakul T, Suksri H. Alginate-magnesium aluminum silicate films for buccal delivery of nicotine. Colloids and Surfaces B: Biointerfaces. 2009;74:103–113. doi: 10.1016/j.colsurfb.2009.06.033. [DOI] [PubMed] [Google Scholar]
  82. Pongjanyakul T, Khunawattanakul W, Puttipipatkhachorn S. Physicochemical characterizations and release studies of nicotine-magnesium aluminum silicate complexes. Applied Clay Science. 2009;44:242–250. [Google Scholar]
  83. Raju KN, Velmurugan S, Deepika B, Vinushitha S. Formulation and in-vitro evaluation of buccal tablets of metoprolol tartrate. International Journal of Pharmacy and Pharmaceutical Sciences. 2011;3:239–246. [Google Scholar]
  84. Rotenberg B, Patel AJ, Chandler D. Molecular explanation for why talc surfaces can be both hydrophilic and hydrophobic. Journal of the American Chemical Society. 2011;133:20521–20527. doi: 10.1021/ja208687a. [DOI] [PMC free article] [PubMed] [Google Scholar]
  85. Rutkai G, Kristóf T. Molecular simulation study of intercalation of small molecules in kaolinite. Chemical Physics Letters. 2008;462:269–274. [Google Scholar]
  86. Sablotsky, S. and Gentile, J.A. (1994) Method and device for the release of drugs to the skin. US Patent 5,300,291. Date Issued: 5 Apr.
  87. Salcedo I, Aguzzi C, Sandri G, Bonferoni MC, Mori M, Cerezo P, Sánchez R, Viseras C, Caramella C. In vitro biocompatibility and mucoadhesion of montmorillonite chitosan nanocomposite: A new drug delivery. Applied Clay Science. 2012;55:131–137. [Google Scholar]
  88. Shaikh S, Birdi A, Qutubuddin S, Lakatosh E, Baskaran H. Controlled release in transdermal pressure sensitive adhesives using organosilicate nanocomposites. Annals of Biomedical Engineering. 2007;35:2130–2137. doi: 10.1007/s10439-007-9369-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  89. Sharifzadeh, G. (2013) Synthesis and characterization of polyacrylamide/sodium carboxymethyl cellulose/montmorillonite nanocomposite hydrogel vaginal ring for drug delivery systems. Masters thesis, Universiti Teknologi Malaysia, Malaysia, 82 pp.
  90. Singer A, Galán E. Developments in Palygorskite-Sepiolite Research: A New Outlook on these Nanomaterials. Amsterdam: Elsevier; 2011. [Google Scholar]
  91. Singhvi G, Singh M. Review: In-vitro drug release characterization models. International Journal of Pharmacutical Studies and Research. 2011;2:77–84. [Google Scholar]
  92. Sohi H, Sultana Y, Khar RK. Taste masking technologies in oral pharmaceuticals: Recent developments and approaches. Drug Development and Industrial Pharmacy. 2004;30:429–448. doi: 10.1081/ddc-120037477. [DOI] [PubMed] [Google Scholar]
  93. Sun B, Ranganathan B, Feng S-S. Multifunctional poly (d, l-lactide-co-glycolide)/montmorillonite (plga/mmt) nanoparticles decorated by trastuzumab for targeted chemotherapy of breast cancer. Biomaterials. 2008;29:475–486. doi: 10.1016/j.biomaterials.2007.09.038. [DOI] [PubMed] [Google Scholar]
  94. Suresh R, Borkar S, Sawant V, Shende V, Dimble S. Nanoclay drug delivery system. International Journal of Pharmaceutical Sciences and Nanotechnology. 2010;3:901–905. [Google Scholar]
  95. Takahashi T, Yamada Y, Kataoka K, Nagasaki Y. Preparation of a novel PEG-clay hybrid as a DDS material: Dispersion stability and sustained release profiles. Journal of Controlled Release. 2005;107:408–416. doi: 10.1016/j.jconrel.2005.03.031. [DOI] [PubMed] [Google Scholar]
  96. Tan HS, Pfister WR. Pressure-sensitive adhesives for transdermal drug delivery systems. Pharmaceutical Science & Technology Today. 1999;2:60–69. doi: 10.1016/s1461-5347(99)00119-4. [DOI] [PubMed] [Google Scholar]
  97. Tsourvakas S. Local Antibiotic Therapy in the Treatment of Bone and Soft Tissue Infections. 2012. [Google Scholar]
  98. Veniale F, Barberis E, Carcangiu G, Morandi N, Setti M, Tamanini M, Tessier D. Formulation of muds for pelotherapy: Effects of “maturation” by different mineral waters. Applied Clay Science. 2004;25:135–148. [Google Scholar]
  99. Vergaro V, Abdullayev E, Lvov YM, Zeitoun A, Cingolani R, Rinaldi R, Leporatti S. Cytocompatibility and uptake of halloysite clay nanotubes. Biomacromolecules. 2010;11:820–826. doi: 10.1021/bm9014446. [DOI] [PubMed] [Google Scholar]
  100. Viseras C, Cerezo P, Sanchez R, Salcedo I, Aguzzi C. Current challenges in clay minerals for drug delivery. Applied Clay Science. 2010;48:291–295. [Google Scholar]
  101. Viseras C, Lopez-Galindo A. Pharmaceutical applications of some Spanish clays (sepiolite, palygorskite, bentonite): Some preformulation studies. Applied Clay Science. 1999;14:69–82. [Google Scholar]
  102. Wang JH, Young TH, Lin DJ, Sun MK, Huag HS, Cheng LP. Preparation of clay/PMMA nanocomposites with intercalated or exfoliated structure for bone cement synthesis. Macromolecular Materials and Engineering. 2006;291:661–669. [Google Scholar]
  103. Wang L, Xing H, Zhang S, Ren Q, Pan L, Zhang K, Bu W, Zheng X, Zhou L, Peng W. A Gd-doped Mg-Al-LDH/Au nanocomposite for CT/MR bimodal imagings and simultaneous drug delivery. Biomaterials. 2013;34:3390–3401. doi: 10.1016/j.biomaterials.2013.01.070. [DOI] [PubMed] [Google Scholar]
  104. Wei J-C, Yen Y-T, Su H-L, Lin J-J. Inhibition of bacterial growth by the exfoliated clays and observation of physical capturing mechanism. The Journal of Physical Chemistry C. 2011;115:18770–18775. [Google Scholar]
  105. Williams LB, Haydel SE. Evaluation of the medicinal use of clay minerals as antibacterial agent. International Geology Review. 2010;52:745–770. doi: 10.1080/00206811003679737. [DOI] [PMC free article] [PubMed] [Google Scholar]
  106. Williams LB, Haydel SE, Giese RF, Eberl DD. Chemical and mineralogical characteristics of French green clays used for healing. Clays and Clay Minerals. 2008;56:437–452. doi: 10.1346/CCMN.2008.0560405. [DOI] [PMC free article] [PubMed] [Google Scholar]
  107. Wittchow, E. (2014) Biocorrodible implant with anti-corrosion coating. US Patent 20,140,228,968. Date Issued: 14 Aug.
  108. Wokovich AM, Prodduturi S, Doub WH, Hussain AS, Buhse LF. Transdermal drug delivery system (TDDS) adhesion as a critical safety, efficacy and quality attribute. European Journal of Pharmaceutics and Biopharmaceutics. 2006;64:1–8. doi: 10.1016/j.ejpb.2006.03.009. [DOI] [PubMed] [Google Scholar]
  109. Yang J-H, Lee S-Y, Han Y-S, Park K-C, Choy J- H. Efficient transdermal penetration and improved stability of L-ascorbic acid encapsulated in an inorganic nanocapsule. Bulletin — Korean Chemical Society. 2003;24:499–503. [Google Scholar]

Articles from Clays and Clay Minerals are provided here courtesy of Nature Publishing Group

RESOURCES