Abstract
Aim:
To characterize enzymatic activity of severe acute respiratory syndrome (SARS) coronavirus (CoV) 3C-like protease (3CLpro) and its four site-directed mutants.
Methods:
Based on the fluorescence resonance energy transfer (FRET) principle using 5-[(2′-aminoethyl)-amino] naphthelenesulfonic acid (EDANS) and 4-[[4-(dimethylamino) phenyl] azo] benzoic acid (Dabcyl) as the energy transfer pair, one fluorogenic substrate was designed for the evaluation of SARS-CoV 3CLpro proteolytic activity.
Results:
The kinetic parameters of the fluorogenic substrate have been determined as Km=404 μmol·L−1, kcat=1.08 min−1, and kcat/Km=2.7 mmol−1·L·min−1. SARS-CoV 3CLpro showed substantial pH and temperature-triggered activity switches, and site-directed mutagenesis analysis of SARS-CoV 3CLpro revealed that substitutions of His41, Cys145, and His163 resulted in complete loss of enzymatic activity, while replacement of Met162 with Ala caused strongly increased activity.
Conclusion:
This present work has provided valuable information for understanding the catalytic mechanism of SARS-CoV 3CLpro. This FRET-based assay might supply an ideal approach for the exploration SARS-CoV 3CLpro putative inhibitors.
Keywords: severe acute respiratory coronavirus, 3C-like protease, fluorescence resonance energy transfer, fluorogenic substrate, enzyme activity, site-directed mutagenesis
Footnotes
Project supported by the State Key Program of Basic Research of China (grants 2003-CB514125, 2003CB514124, 2002CB512807, 2002CB512802, 2002AA233011), Sino-European Project on SARS Diagnostics and Antivirals (Proposal/Contract No 003831), and the special programs of oppugning SARS from the Ministry of Science and Technology, Chinese Academy of Sciences, National Natural Science Foundation of China and Shanghai Science and Technology Commission.
Shuai Chen and Li-li Chen: Authors contributed equally to this work.
Contributor Information
Xu Shen, FAX: 86-21-5080-7088, Email: xshen@mail.shcnc.ac.cn.
Hua-liang Jiang, FAX: 86-21-5080-7088, Email: hljiang@mail.shcnc.ac.cn.
References
- 1.Holmes KV. SARS coronavirus: a new challenge for prevention and therapy. J Clin Invest. 2003;111:1605–9. doi: 10.1172/JCI18819. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 2.Peiris JS, Lai ST, Poon LL, Guan Y, Yam LY, Lim W. Coronavirus as a possible cause of severe acute respiratory syndrome. Lancet. 2003;361:1319–25. doi: 10.1016/S0140-6736(03)13077-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 3.Fouchier RA, Kuiken T, Schutten M, Van Amerongen G, Van Doornum GJ, Van Den Hoogen BG. Aetiology: Koch's postulates fulfilled for SARS virus. Nature. 2003;423:240–7. doi: 10.1038/423240a. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 4.Holmes KV. SARS-associated coronavirus. N Engl J Med. 2003;348:1948–51. doi: 10.1056/NEJMp030078. [DOI] [PubMed] [Google Scholar]
- 5.Ziebuhr J, Heusipp G, Siddell SG. Biosynthesis, purification, and characterization of the human coronavirus 229E 3C-like proteinase. J Virol. 1997;71:3992–7. doi: 10.1128/jvi.71.5.3992-3997.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 6.Dougherty WG, Semler BL. Expression of virus-encoded proteinases: functional and structural similarities with cellular enzymes. Microbiol Rev. 1993;57:781–822. doi: 10.1128/mr.57.4.781-822.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 7.Eleouet JF, Rasschaert D, Lambert P, Levy L, Vende P, Laude H. Complete sequence (20 kilobases) of the polyprotein-encoding gene 1of transmissible gastroenteritis virus. Virology. 1995;206:817–22. doi: 10.1006/viro.1995.1004. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 8.Thiel V, Herold J, Schelle B, Siddell SG. Viral replicase gene products suffice for coronavirus discontinuous transcription. J Virol. 2001;75:6676–81. doi: 10.1128/JVI.75.14.6676-6681.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 9.Herold J, Raabe T, Schelle-Prinz B, Siddell SG. Nucleotide sequence of the human coronavirus 229E RNA polymerase locus. Virology. 1993;195:680–91. doi: 10.1006/viro.1993.1419. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 10.Lee HJ, Shieh CK, Gorbalenya AE, Koonin EV, Monica N, Tuler J. The complete sequence (22 kilobases) of murine coronavirus gene 1encoding the putative proteases and RNA polymerase. Virology. 1991;180:567–82. doi: 10.1016/0042-6822(91)90071-I. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 11.Liu DX, Brown TD. Characterization and mutational analysis of an ORF 1a-encoding proteinase domain responsible for proteolytic processing of the infectious bronchitis virus 1a/1b polyprotein. Virology. 1995;209:420–7. doi: 10.1006/viro.1995.1274. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 12.Ziebuhr J, Snijder EJ, Gorbalenya AE. Virus-encoded proteinases and proteolytic processing in Nidovirales. J Gen Virol. 2000;81:853–79. doi: 10.1099/0022-1317-81-4-853. [DOI] [PubMed] [Google Scholar]
- 13.Hegyi A, Ziebuhr J. Conservation of substrate specificities among coronavirus main proteases. J Gen Virol. 2002;83:595–9. doi: 10.1099/0022-1317-83-3-595. [DOI] [PubMed] [Google Scholar]
- 14.Ziebuhr J, Herold J, Siddell SG. Characterization of a human coronavirus (strain 229E) 3C-like proteinase activity. J Virol. 1995;69:4331–8. doi: 10.1128/jvi.69.7.4331-4338.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 15.Anand K, Plam GJ, Mesters JR, Siddell SG, Ziebuhr J, Higenfeld R. Structure of coronavirus main proteinase reveals combination of a chymotrypsin fold with an extra alpha-helical domain. EMBO J. 2002;21:3213–24. doi: 10.1093/emboj/cdf327. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 16.Fan KQ, Wei P, Feng Q, Chen SD, Huang CK, Ma L. Biosynthesis, purification, and substrate specificity of severe acute respiratory syndrome coronavirus 3C-like proteinase. J Biol Chem. 2004;279:1637–42. doi: 10.1074/jbc.M310875200. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 17.Anand K, Ziebuhr J, Wadhwani P, Mesters JR, Hilgenfeld R. Coronavirus main proteinase (3CLpro) structure: basis for design of anti-SARS drugs. Science. 2003;300:1763–7. doi: 10.1126/science.1085658. [DOI] [PubMed] [Google Scholar]
- 18.Yang HT, Yang MJ, Ding Y, Liu YW, Lou ZY, Zhou Z. The crystal structures of severe acute respiratory syndrome virus main protease and its complex with an inhibitor. Proc Natl Acad Sci USA. 2003;100:13190–5. doi: 10.1073/pnas.1835675100. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 19.Kim JC, Spence RA, Currier PF, Liu X, Denison MR. Coronavirus protein processing and RNA synthesis is inhibited by the cysteine protease inhibitor E43d. Virology. 1995;208:1–8. doi: 10.1006/viro.1995.1123. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 20.Someya Y, Takeda N, Miyamura T. Identification of active-site amino acid residues in the Chiba virus 3C-like protease. J Virol. 2002;76:5949–58. doi: 10.1128/JVI.76.12.5949-5958.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 21.Xiong B, Gui CS, Xu XY, Luo C, Chen J, Luo HB. A 3D model of SARS-CoV 3CL proteinase and its inhibitors design by virtual screening. Acta Pharmacol Sin. 2003;24:497–504. [PubMed] [Google Scholar]
- 22.Sun HF, Luo HB, Yu CY, Sun T, Chen J, Peng SY. Molecular cloning, expression, purification, and mass spectrometric characterization of 3C-like protease of SARS coronavirus. Protein Exp Purif. 2003;32:302–8. doi: 10.1016/j.pep.2003.08.016. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 23.Knight CG, Willenbrock F, Murphy G. A novel coumarin-labelled peptide for sensitive continuous assays of the matrix metalloproteinases. FEBS Lett. 1992;296:263–6. doi: 10.1016/0014-5793(92)80300-6. [DOI] [PubMed] [Google Scholar]
- 24.Angliker H, Neumann U, Molloy SS, Thomas G. Internally quenched fluorogenic substrate for furin. Anal Biochem. 1995;224:409–12. doi: 10.1006/abio.1995.1058. [DOI] [PubMed] [Google Scholar]
- 25.Mittoo S, Sundstrom LE, Bradley M. Synthesis and evaluation of fluorescent probes for the detection of calpain activity. Anal Biochem. 2003;319:234–8. doi: 10.1016/S0003-2697(03)00324-5. [DOI] [PubMed] [Google Scholar]
- 26.Kuo CJ, Chi YH, Hsu JT, Liang PH. Characterization of SARS main protease and inhibitor assay using a fluorogenic substrate. Biochem Biophys Res Commun. 2004;318:862–7. doi: 10.1016/j.bbrc.2004.04.098. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 27.Garcia-Echeverria C, Rich DH. New intramolecularly quenched fluorogenic peptide substrates for the study of the kinetic specificity of papain. FEBS Lett. 1992;297:100–2. doi: 10.1016/0014-5793(92)80336-F. [DOI] [PubMed] [Google Scholar]
- 28.Wang GT, Matayoshi E, Jan Huffaker H, Krafft GA. Design and synthesis of new fluorogenic HIV protease substrates based on resonance energy transfer. Tetrahedron Lett. 1990;31:6493–6. doi: 10.1016/S0040-4039(00)97099-0. [DOI] [Google Scholar]
- 29.Matayoshi ED, Wang GT, Krafft GA, Erickson J. Novel fluorogenic substrates for assaying retroviral proteases by resonance energy transfer. Science. 1990;247:954–8. doi: 10.1126/science.2106161. [DOI] [PubMed] [Google Scholar]
- 30.Maggiora LL, Smith CW, Zhang ZY. A general method for the preparation of internally quenched fluorogenic protease substrates using solid-phase peptide synthesis. J Med Chem. 1992;35:3727–30. doi: 10.1021/jm00099a001. [DOI] [PubMed] [Google Scholar]
- 31.Huang CK, Wei P, Fan KQ, Liu Y, Lai LL. 3C-like proteinase from SARS coronavirus catalyzes substrate hydrolysis by a general base mechanism. Biochemistry. 2004;43:4568–74. doi: 10.1021/bi036022q. [DOI] [PubMed] [Google Scholar]
- 32.Copeland RA. Enzymes: A Practical Introduction to Structure, Mechanism, and Data Analysis. 2000. [Google Scholar]
- 33.Gorbalenya AE, Koonin EV, Donchenko AP, Blinov VM. Coronavirus genome: prediction of putative functional domains in the non-structural polyprotein by comparative amino acid sequence analysis. Nucleic Acids Res. 1989;17:4847–61. doi: 10.1093/nar/17.12.4847. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 34.Marra MA, Jones SJM, Astell CR, Holt RA, Wilson AB, Butterfield YSN. The genome sequence of the SARS-associated coronavirus. Science. 2003;300:1399–403. doi: 10.1126/science.1085953. [DOI] [PubMed] [Google Scholar]
- 35.Lu Y, Denison MR. Determinants of mouse hepatitis virus 3C-like proteinase activity. Virology. 1997;230:335–42. doi: 10.1006/viro.1997.8479. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 36.Hegyi A, Friebe A, Gorbalenya AE, Ziebuhr J. Mutational analysis of the active centre of coronavirus 3C-like proteases. J Gen Virol. 2002;83:581–93. doi: 10.1099/0022-1317-83-3-581. [DOI] [PubMed] [Google Scholar]
