Skip to main content
. Author manuscript; available in PMC: 2020 Mar 24.
Published in final edited form as: Biometrics. 2008 Mar 5;64(2):431–439. doi: 10.1111/j.1541-0420.2007.00904.x

Table 3.

A comparison of ARMS with AIC, full, and best univariate models in logistic regression for prostate cancer data (n = 200) under 1000 random permutations

Method L2 risk L1 risk EP AUC
ARMS-LIKELI 0.083 0.169 0.388 0.79
(0.002) (0.004) (0.006) (0.01)
ARMS-AIC 0.082 0.166 0.382 0.80
(0.002) (0.004) (0.006) (0.01)
ARMS-GDF 0.078 0.159 0.373 0.82
(0.002) (0.004) (0.006) (0.01)
ARMS-APE 0.087 0.175 0.398 0.77
(0.003) (0.005) (0.007) (0.01)
ARMS-RESID 0.088 0.177 0.401 0.76
(0.003) (0.005) (0.007) (0.01)
AIC 0.089 0.179 0.405 0.76
(0.003) (0.005) (0.007) (0.01)
Full 0.095 0.193 0.418 0.73
(0.003) (0.005) (0.007) (0.01)
Univariate (AMACR) 0.106 0.214 0.439 0.70
(0.003) (0.006) (0.008) (0.01)