Skip to main content
Springer Nature - PMC COVID-19 Collection logoLink to Springer Nature - PMC COVID-19 Collection
. 2020 Feb 28;63(5):686–702. doi: 10.1007/s40843-019-1261-1

Bicontinuous cubic phases in biological and artificial self-assembled systems

生物和人工自组装体系中的双连续立方结构

Congcong Cui 1, Yuru Deng 2,, Lu Han 1,
PMCID: PMC7094945  PMID: 32219007

Abstract

Nature has created innumerable life forms with miraculous hierarchical structures and morphologies that are optimized for different life events through evolution over billions of years. Bicontinuous cubic structures, which are often described by triply periodic minimal surfaces (TPMSs) and their constant mean curvature (CMC)/parallel surface companions, are of special interest to various research fields because of their complex form with unique physical functionalities. This has prompted the scientific community to fully understand the formation, structure, and properties of these materials. In this review, we summarize and discuss the formation mechanism and relationships of the relevant biological structures and the artificial self-assembly systems. These structures can be formed through biological processes with amazing regulation across a great length scales; nevertheless, artificial construction normally produces the structure corresponding to the molecular size and shape. Notably, the block copolymeric system is considered to be an applicable and attractive model system for the study of biological systems due to their versatile design and rich phase behavior. Some of the phenomena found in these two systems are compared and discussed, and this information may provide new ideas for a comprehensive understanding of the relationship between molecular shape and resulting interface curvature and the self-assembly process in living organisms. We argue that the co-polymeric system may serve as a model to understand these biological systems and could encourage additional studies of artificial self-assembly and the creation of new functional materials.

Keywords: triply periodic minimal surface, self-assembly, cubic membrane, lyotropic liquid crystal, block copolymer

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21922304, 21873072 and 31670841), Shanghai Rising-Star Program (17QA1401700) and Wenzhou Institute, University of Chinese Academy of Sciences (WIUCASQD2019005).

Author contributions Han L and Deng Y proposed the topic and outline of the manuscript. The manuscript was originally drafted by Cui C, and further enriched by Han L and Deng Y. All the co-authors contributed to the discussion and refinement of the manuscript.

Conflict of interest The authors declare that they have no conflict of interest.

Footnotes

Congcong Cui received his Bachelor degree from Henan Normal University and Master degree from Yunnan Normal University. Currently, he is a research assistant in Tongji University. His research interest is focused on mesostructured materials and biomineralizations.

Yuru Deng received her undergraduate degree from Kaohsiung Medical University and PhD degree from State University of New York, USA. She did her postdoctoral training at Wadsworth Centre (NY), investigating Cubic Membrane (CM) nanostructures. She was an assistant professor at National University of Singapore (2002-2013) and is currently a Senior Research Associate at Wenzhou Institute, University of Chinese Academy of Sciences. She is internationally recognized as a pioneer in CM research, an emerging field in biomedicine and nano-technology.

Lu Han received his undergraduate degree from Shanghai Jiao Tong University. He completed his PhD work in 2011 at Shanghai Jiao Tong University and at Stockholm University in 2010. He joined Shanghai Jiao Tong University as an assistant professor in 2011 and became an associate professor in 2013. He moved to Tongji University as a professor in 2017. His current research focuses on synthesis and characterization of mesostructured materials, biomineralizations, and structural analyses by transmission electron microscopy.

Contributor Information

Yuru Deng, Email: dengyr@wibe.ac.cn.

Lu Han, Email: luhan@tongji.edu.cn.

References

  • 1.Andersson S, Hyde ST, Larsson K, et al. Minimal surfaces and structures: From inorganic and metal crystals to cell membranes and biopolymers. Chem Rev. 1988;88:221–242. [Google Scholar]
  • 2.Hyde S, Blum Z, Landh T, et al. The Language of Shape: The Role of Curvature in Condensed Matter: Physics, Chemistry and Biology. Amsterdam: Elsevier; 1996. [Google Scholar]
  • 3.Donnay G, Pawson DL. X-ray diffraction studies of echinoderm plates. Science. 1969;166:1147–1150. doi: 10.1126/science.166.3909.1147. [DOI] [PubMed] [Google Scholar]
  • 4.Nissen HU. Crystal orientation and plate structure in echinoid skeletal units. Science. 1969;166:1150–1152. doi: 10.1126/science.166.3909.1150. [DOI] [PubMed] [Google Scholar]
  • 5.Larsson K, Fontell K, Krog N. Structural relationships between lamellar, cubic and hexagonal phases in monoglyceride-water systems, possibility of cubic structures in biological systems. Chem Phys Lipids. 1980;27:321–328. [Google Scholar]
  • 6.Landh T. From entangled membranes to eclectic morphologies: cubic membranes as subcellular space organizers. FEBS Lett. 1995;369:13–17. doi: 10.1016/0014-5793(95)00660-2. [DOI] [PubMed] [Google Scholar]
  • 7.Michielsen K, Stavenga DG. Gyroid cuticular structures in butterfly wing scales: Biological photonic crystals. J R Soc Interface. 2008;5:85–94. doi: 10.1098/rsif.2007.1065. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Saranathan V, Osuji CO, Mochrie SGJ, et al. Structure, function, and self-assembly of single network gyroid (i4132) photonic crystals in butterfly wing scales. Proc Natl Acad Sci USA. 2010;107:11676–11681. doi: 10.1073/pnas.0909616107. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.Schröder-Turk GE, Wickham S, Averdunk H, et al. The chiral structure of porous chitin within the wing-scales of Cattophrys rubi. J Struct Biol. 2011;174:290–295. doi: 10.1016/j.jsb.2011.01.004. [DOI] [PubMed] [Google Scholar]
  • 10.Seago AE, Brady P, Vigneron JP, et al. Gold bugs and beyond: A review of iridescence and structural colour mechanisms in beetles (Coleoptera) J R Soc Interface. 2009;6:S165. doi: 10.1098/rsif.2008.0354.focus. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Galusha JW, Richey LR, Gardner JS, et al. Discovery of a diamond-based photonic crystal structure in beetle scales. Phys Rev E. 2008;77:050904. doi: 10.1103/PhysRevE.77.050904. [DOI] [PubMed] [Google Scholar]
  • 12.Almsherqi Z, Margadant F, Deng Y. A look through ‘lens’ cubic mitochondria. Interface Focus. 2012;2:539–545. doi: 10.1098/rsfs.2011.0120. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Luzzati V, Tardieu A, Gulik-Krzywicki T. Polymorphism of lipids. Nature. 1968;217:1028–1030. doi: 10.1038/2171028a0. [DOI] [PubMed] [Google Scholar]
  • 14.Scriven LE. Equilibrium bicontinuous structure. Nature. 1976;263:123–125. [Google Scholar]
  • 15.Longley W, Mcintosh TJ. A bicontinuous tetrahedral structure in a liquid-crystalline lipid. Nature. 1983;303:612–614. [Google Scholar]
  • 16.Fontell K. Cubic phases in surfactant and surfactant-like lipid systems. Colloid Polym Sci. 1990;268:264–285. [Google Scholar]
  • 17.Seddon JM. An inverse face-centered cubic phase formed by diacylglycerol-phosphatidylcholine mixtures. Biochemistry. 1990;29:7997–8002. doi: 10.1021/bi00486a031. [DOI] [PubMed] [Google Scholar]
  • 18.Mackay AL. Periodic minimal surfaces. Nature. 1985;314:604–606. [Google Scholar]
  • 19.Bates FS, Fredrickson GH. Block copolymers—designer soft materials. Phys Today. 1999;52:32–38. [Google Scholar]
  • 20.Orilall MC, Wiesner U. Block copolymer based composition and morphology control in nanostructured hybrid materials for energy conversion and storage: Solar cells, batteries, and fuel cells. Chem Soc Rev. 2011;40:520–535. doi: 10.1039/c0cs00034e. [DOI] [PubMed] [Google Scholar]
  • 21.Thomas EL, Anderson DM, Henkee CS, et al. Periodic area-minimizing surfaces in block copolymers. Nature. 1988;334:598–601. [Google Scholar]
  • 22.Mai Y, Eisenberg A. Self-assembly of block copolymers. Chem Soc Rev. 2012;41:5969–5985. doi: 10.1039/c2cs35115c. [DOI] [PubMed] [Google Scholar]
  • 23.Hajduk DA, Harper PE, Gruner SM, et al. The gyroid: A new equilibrium morphology in weakly segregated diblock copolymers. Macromolecules. 1994;27:4063–4075. [Google Scholar]
  • 24.Cochran EW, Garcia-Cervera CJ, Fredrickson GH. Stability of the gyroid phase in diblock copolymers at strong segregation. Macromolecules. 2006;39:2449–2451. [Google Scholar]
  • 25.Stefik M, Guldin S, Vignolini S, et al. Block copolymer self-assembly for nanophotonics. Chem Soc Rev. 2015;44:5076–5091. doi: 10.1039/c4cs00517a. [DOI] [PubMed] [Google Scholar]
  • 26.Blum Z, Hyde S. On the templating of curvature in zeolites. Chem Mater. 1990;2:312–314. [Google Scholar]
  • 27.Sun J, Bonneau C, Cantin A, et al. The ITQ-37 mesoporous chiral zeolite. Nature. 2009;458:1154–1157. doi: 10.1038/nature07957. [DOI] [PubMed] [Google Scholar]
  • 28.Nesper R, von Schnering HG. Periodic potential surfaces in crystal structures. Angew Chem Int Ed Engl. 1986;25:110–112. [Google Scholar]
  • 29.Bruinsma R. Elasticity and excitations of minimal crystals. J Phys II France. 1992;2:425–451. [Google Scholar]
  • 30.Fujita N, Terasaki O. Band structure of the P, D, and G surfaces. Phys Rev B. 2005;72:085459. [Google Scholar]
  • 31.Drummond CJ, Fong C. Surfactant self-assembly objects as novel drug delivery vehicles. Curr Opin Colloid Interface Sci. 1999;4:449–456. [Google Scholar]
  • 32.Shah JC, Sadhale Y, Chilukuri DM. Cubic phase gels as drug delivery systems. Adv Drug Deliver Rev. 2001;47:229–250. doi: 10.1016/s0169-409x(01)00108-9. [DOI] [PubMed] [Google Scholar]
  • 33.Ellens H, Siegel DP, Alford D, et al. Membrane fusion and inverted phases. Biochemistry. 1989;28:3692–3703. doi: 10.1021/bi00435a011. [DOI] [PubMed] [Google Scholar]
  • 34.Siegel DP, Banschbach JL. Lamellar/inverted cubic (L. alpha/QII) phase transition in N-methylated-dioleoylpho-sphatidylethanolamine. Biochemistry. 1990;29:5975–5981. doi: 10.1021/bi00477a014. [DOI] [PubMed] [Google Scholar]
  • 35.Shearman GC, Khoo BJ, Motherwell ML, et al. Calculations of and evidence for chain packing stress in inverse lyotropic bicontinuous cubic phases. Langmuir. 2007;23:7276–7285. doi: 10.1021/la700355a. [DOI] [PubMed] [Google Scholar]
  • 36.Wilts BD, Clode PL, Patel NH, et al. Nature’s functional nano-materials: Growth or self-assembly? MRS Bull. 2019;44:106–112. [Google Scholar]
  • 37.Meuler AJ, Hillmyer MA, Bates FS. Ordered network mesos-tructures in block polymer materials. Macromolecules. 2009;42:7221–7250. [Google Scholar]
  • 38.Han L, Xu D, Liu Y, et al. Synthesis and characterization of macroporous photonic structure that consists of azimuthally shifted double-diamond silica frameworks. Chem Mater. 2014;26:7020–7028. [Google Scholar]
  • 39.Mao W, Cao X, Sheng Q, et al. Silica scaffold with shifted “Plumber’s Nightmare” networks and their interconversion into diamond networks. Angew Chem Int Ed. 2017;56:10670–10675. doi: 10.1002/anie.201704639. [DOI] [PubMed] [Google Scholar]
  • 40.Cao X, Mao W, Mai Y, et al. Formation of diverse ordered structures in ABC triblock terpolymer templated macroporous silicas. Macromolecules. 2018;51:4381–4396. [Google Scholar]
  • 41.Cao X, Xu D, Yao Y, et al. Interconversion of triply periodic constant mean curvature surface structures: From double diamond to single gyroid. Chem Mater. 2016;28:3691–3702. [Google Scholar]
  • 42.Wen PC, Mahinthichaichan P, Trebesch N, et al. Microscopic view of lipids and their diverse biological functions. Curr Opin Struct Biol. 2018;51:177–186. doi: 10.1016/j.sbi.2018.07.003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 43.Goni FM. The basic structure and dynamics of cell membranes: An update of the Singer-Nicolson model. Biochim Biophys Acta (BBA) - Biomembranes. 2014;1838:1467–1476. doi: 10.1016/j.bbamem.2014.01.006. [DOI] [PubMed] [Google Scholar]
  • 44.Nicolson GL. The Fluid—Mosaic model of membrane structure: Still relevant to understanding the structure, function and dynamics of biological membranes after more than 40 years. Biochim Biophys Acta (BBA) - Biomembranes. 2014;1838:1451–1466. doi: 10.1016/j.bbamem.2013.10.019. [DOI] [PubMed] [Google Scholar]
  • 45.Sych T, Mély Y, Romer W. Lipid self-assembly and lectin-induced reorganization of the plasma membrane. Phil Trans R Soc B. 2018;373:20170117. doi: 10.1098/rstb.2017.0117. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 46.Vereb G, Szöllosi J, Matkó J, et al. Dynamic, yet structured: The cell membrane three decades after the Singer-Nicolson model. Proc Natl Acad Sci USA. 2003;100:8053–8058. doi: 10.1073/pnas.1332550100. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 47.Tieleman DP, Marrink SJ, Berendsen HJC. A computer perspective of membranes: Molecular dynamics studies of lipid bi-layer systems. Biochim Biophys Acta (BBA) - Rev Biomembranes. 1997;1331:235–270. doi: 10.1016/s0304-4157(97)00008-7. [DOI] [PubMed] [Google Scholar]
  • 48.Singer SJ, Nicolson GL. The fluid mosaic model of the structure of cell membranes. Science. 1972;175:720–731. doi: 10.1126/science.175.4023.720. [DOI] [PubMed] [Google Scholar]
  • 49.Pearson RH, Pascher I. The molecular structure of lecithin di-hydrate. Nature. 1979;281:499–501. doi: 10.1038/281499a0. [DOI] [PubMed] [Google Scholar]
  • 50.Deplazes E, Poger D, Cornell B, et al. The effect of H30+ on the membrane morphology and hydrogen bonding of a phospholipid bilayer. Biophys Rev. 2018;10:1371–1376. doi: 10.1007/s12551-018-0454-z. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 51.Cullis PR, De Kruijff B. Lipid polymorphism and the functional roles of lipids in biological membranes. Biochim Biophys Acta (BBA) - Rev Biomembranes. 1979;559:399–420. doi: 10.1016/0304-4157(79)90012-1. [DOI] [PubMed] [Google Scholar]
  • 52.Bretscher MS. Asymmetrical lipid bilayer structure for biological membranes. Nat New Biol. 1972;236:11–12. doi: 10.1038/newbio236011a0. [DOI] [PubMed] [Google Scholar]
  • 53.Chong K, Deng Y. The three dimensionality of cell membranes: Lamellar to cubic membrane transition as investigated by electron microscopy. Methods Cell Biol. 2012;108:319–343. doi: 10.1016/B978-0-12-386487-1.00015-8. [DOI] [PubMed] [Google Scholar]
  • 54.Almsherqi ZA, Landh T, Kohlwein SD, Deng Y. Cubic membranes: The missing dimension of cell membrane organization. Int Rev Cell Mol Biol. 2009;274:275–342. doi: 10.1016/S1937-6448(08)02006-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 55.Deng Y, Mieczkowski M. Three-dimensional periodic cubic membrane structure in the mitochondria of amoebae Chaos carolinensis. Protoplasma. 1998;203:16–25. [Google Scholar]
  • 56.Almsherqi ZA, Kohlwein SD, Deng Y. Cubic membranes: a legend beyond the Flatland* of cell membrane organization. J Cell Biol. 2006;173:839–844. doi: 10.1083/jcb.200603055. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 57.Lucie V, Förster F, Baumeister W. Structural studies by electron tomography: From cells to molecules. Annu Rev Biochem. 2005;74:833–865. doi: 10.1146/annurev.biochem.73.011303.074112. [DOI] [PubMed] [Google Scholar]
  • 58.Deng Y, Marko M, Buttle KF, et al. Cubic membrane structure in amoeba (Chaos carolinensis) mitochondria determined by electron microscopic tomography. J Struct Biol. 1999;127:231–239. doi: 10.1006/jsbi.1999.4147. [DOI] [PubMed] [Google Scholar]
  • 59.Landh T. Cubic Cell Membrane Architectures: Taking Another Look at Membrane Bound Cell Spaces. Lund: Lunds Universitet; 1996. [Google Scholar]
  • 60.Almsherqi ZA, McLachlan CS, Mossop P, et al. Direct template matching reveals a host subcellular membrane gyroid cubic structure that is associated with sars virus. Redox Report. 2005;10:167–171. doi: 10.1179/135100005X57373. [DOI] [PubMed] [Google Scholar]
  • 61.Pyke K. Plastid Biogenesis and Differentiation. Berlin: Springer; 2007. pp. 1–28. [Google Scholar]
  • 62.Gunning BES. The greening process in plastids. Protoplasma. 1965;60:111–130. [Google Scholar]
  • 63.Solymosi K, Aronsson H. Etioplasts and Their Significance in Chloroplast Biogenesis. Secondary Etioplasts and Their Significance in Chloroplast Biogenesis. Dordrecht: Springer; 2013. pp. 39–71. [Google Scholar]
  • 64.Rascio N, Orsenigo M, Arboit D. Prolamellar body transformation with increasing cell age in the maize leaf. Protoplasma. 1976;90:253–263. [Google Scholar]
  • 65.Rascio N, Colombo PM, Vecchia FD, et al. Intrathylakoidal crystal appearance during the vital cycle of spinach chloroplasts. Protoplasma. 1985;126:153–157. [Google Scholar]
  • 66.Bennett J, Schwender JR, Shaw EK, et al. Failure of corn leaves to acclimate to low irradiance. Role of protochlorophyllide reductase in regulating levels of five chlorophyll-binding proteins. Biochim Biophys Acta (BBA) - Bioenergetics. 1987;892:118–129. [Google Scholar]
  • 67.Adamson H, Packer N, Gregory J. Chloroplast development and the synthesis of chlorophyll and protochlorophyllide in Zostera transferred to darkness. Planta. 1985;165:469–476. doi: 10.1007/BF00398091. [DOI] [PubMed] [Google Scholar]
  • 68.Whatley JM. Chloroplast development in primary leaves of Phaseolus vulgaris. New Phytol. 1974;73:1097–1110. [Google Scholar]
  • 69.Mezzenga R, Seddon JM, Drummond CJ, et al. Nature-inspired design and application of lipidic lyotropic liquid crystals. Adv Mater. 2019;31:1900818. doi: 10.1002/adma.201900818. [DOI] [PubMed] [Google Scholar]
  • 70.Larsson M, Larsson K. Periodic minimal surface organizations of the lipid bilayer at the lung surface and in cubic cytomembrane assemblies. Adv Colloid Interface Sci. 2014;205:68–73. doi: 10.1016/j.cis.2013.07.003. [DOI] [PubMed] [Google Scholar]
  • 71.Chong K, Tan OLL, Almsherqi ZA, et al. Isolation of mitochondria with cubic membrane morphology reveals specific ionic requirements for the preservation of membrane structure. Protoplasma. 2015;252:689–696. doi: 10.1007/s00709-014-0698-9. [DOI] [PubMed] [Google Scholar]
  • 72.Almsherqi Z, Hyde S, Ramachandran M, et al. Cubic membranes: A structure-based design for DNA uptake. J R Soc Interface. 2008;5:1023–1029. doi: 10.1098/rsif.2007.1351. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 73.Chong K, Almsherqi ZA, Shen HM, et al. Cubic membrane formation supports cell survival of amoeba Chaos under starvation-induced stress. Protoplasma. 2018;255:517–525. doi: 10.1007/s00709-017-1169-x. [DOI] [PubMed] [Google Scholar]
  • 74.Goldsmith CS, Tatti KM, Ksiazek TG, et al. Ultrastructural characterization of SARS coronavirus. Emerg Infect Dis. 2004;10:320–326. doi: 10.3201/eid1002.030913. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 75.Foelix RF, Kretz R, Rager G. Structure and postnatal development of photoreceptors and their synapses in the retina of the tree shrew (Tupaia belangen) Cell Tissue Res. 1987;247:287–297. doi: 10.1007/BF00218310. [DOI] [PubMed] [Google Scholar]
  • 76.Wilts BD, Apeleo Zubiri B, Klatt MA, et al. Butterfly gyroid na-nostructures as a time-frozen glimpse of intracellular membrane development. Sci Adv. 2017;3:e1603119. doi: 10.1126/sciadv.1603119. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 77.Maldovan M, Urbas AM, Yufa N, et al. Photonic properties of bicontinuous cubic microphases. Phys Rev B. 2002;65:165123. [Google Scholar]
  • 78.Israelachvili JN, Mitchell DJ, Ninham BW. Theory of self-assembly of hydrocarbon amphiphiles into micelles and bilayers. J Chem Soc Faraday Trans 2. 1976;72:1525–1568. [Google Scholar]
  • 79.Luzzati V. Biological significance of lipid polymorphism: The cubic phases. Curr Opin Struct Biol. 1997;7:661–668. doi: 10.1016/s0959-440x(97)80075-9. [DOI] [PubMed] [Google Scholar]
  • 80.Lynch ML, Spicer PT. Bicontinuous Liquid Crystals. New Jersey: CRC Press; 2005. [Google Scholar]
  • 81.Angelov B, Angelova A, Vainio U, et al. Long-living intermediates during a lamellar to a diamond-cubic lipid phase transition: A small-angle X-ray scattering investigation. Langmuir. 2009;25:3734–3742. doi: 10.1021/la804225j. [DOI] [PubMed] [Google Scholar]
  • 82.Angelov B, Angelova A, Mutafchieva R, et al. SAXS investigation of a cubic to a sponge (L3) phase transition in self-assembled lipid nanocarriers. Phys Chem Chem Phys. 2011;13:3073–3081. doi: 10.1039/c0cp01029d. [DOI] [PubMed] [Google Scholar]
  • 83.Angelov B, Angelova A, Filippov SK, et al. Multicompartment lipid cubic nanoparticles with high protein upload: Millisecond dynamics of formation. ACS Nano. 2014;8:5216–5226. doi: 10.1021/nn5012946. [DOI] [PubMed] [Google Scholar]
  • 84.Angelova A, Ollivon M, Campitelli A, et al. Lipid cubic phases as stable nanochannel network structures for protein biochip development: X-ray diffraction study. Langmuir. 2003;19:6928–6935. [Google Scholar]
  • 85.Angelova A, Angelov B, Papahadjopoulos-Sternberg B, et al. Structural organization of proteocubosome carriers involving medium- and large-size proteins. J Drug Deliver Sci Tech. 2005;15:108–112. [Google Scholar]
  • 86.Angelov B, Angelova A, Garamus VM, et al. Small-angle neutron and X-ray scattering from amphiphilic stimuli-responsive diamond-type bicontinuous cubic phase. J Am Chem Soc. 2007;129:13474–13479. doi: 10.1021/ja072725+. [DOI] [PubMed] [Google Scholar]
  • 87.Angelov B, Angelova A, Ollivon M, et al. Diamond-type lipid cubic phase with large water channels. J Am Chem Soc. 2003;125:7188–7189. doi: 10.1021/ja034578v. [DOI] [PubMed] [Google Scholar]
  • 88.Angelova A, Angelov B, Lesieur S, et al. Dynamic control of nanofluidic channels in protein drug delivery vehicles. J Drug Deliver Sci Tech. 2008;18:41–45. [Google Scholar]
  • 89.Angelov B, Angelova A. Papahadjopoulos-Sternberg B, et al. Detailed structure of diamond-type lipid cubic nanoparticles. J Am Chem Soc. 2006;128:5813–5817. doi: 10.1021/ja060082c. [DOI] [PubMed] [Google Scholar]
  • 90.Angelov B, Angelova A, Garamus VM, et al. Earliest stage of the tetrahedral nanochannel formation in cubosome particles from unilamellar nanovesicles. Langmuir. 2012;28:16647–16655. doi: 10.1021/la302721n. [DOI] [PubMed] [Google Scholar]
  • 91.Dolan JA, Wilts BD, Vignolini S, et al. Optical properties of gyroid structured materials: From photonic crystals to metamaterials. Adv Opt Mater. 2015;3:12–32. [Google Scholar]
  • 92.Matsen MW. Effect of architecture on the phase behavior of AB-type block copolymer melts. Macromolecules. 2012;45:2161–2165. [Google Scholar]
  • 93.Luo M, Luo Y, Li X. Non-spherical polymersomes driven by directional aromatic interactions. Sci China Mater. 2018;61:437–438. [Google Scholar]
  • 94.Zhang K, Zhao Z, Huang J, et al. Self-recoverable semi-crystalline hydrogels with thermomechanics and shape memory performance. Sci China Mater. 2019;62:586–596. [Google Scholar]
  • 95.Zhou P, Liang F, Liu Y, et al. Janus colloidal copolymers. Sci China Mater. 2015;58:961–968. [Google Scholar]
  • 96.Liu Z, Guo K, Zhao N, et al. Polysaccharides-based nanohybrids: Promising candidates for biomedical materials. Sci China Mater. 2019;62:1831–1836. [Google Scholar]
  • 97.Kim JK, Yang SY, Lee Y, et al. Functional nanomaterials based on block copolymer self-assembly. Prog Polym Sci. 2010;35:1325–1349. [Google Scholar]
  • 98.Patterson D, Robard A. Thermodynamics of polymer compatibility. Macromolecules. 1978;11:690–695. [Google Scholar]
  • 99.Helfand E, Wasserman ZR. Block copolymer theory. 4. Narrow interphase approximation. Macromolecules. 1976;9:879–888. [Google Scholar]
  • 100.Helfand E, Wasserman ZR. Block copolymer theory. 5. Spherical domains. Macromolecules. 1978;11:960–966. [Google Scholar]
  • 101.Helfand E, Wasserman Z. Block copolymer theory. 6. Cylindrical domains. Macromolecules. 1980;13:994–998. [Google Scholar]
  • 102.Matsen MW, Bates FS. Unifying weak- and strong-segregation block copolymer theories. Macromolecules. 1996;29:1091–1098. [Google Scholar]
  • 103.Matsen MW, Schick M. Stable and unstable phases of a diblock copolymer melt. Phys Rev Lett. 1994;72:2660–2663. doi: 10.1103/PhysRevLett.72.2660. [DOI] [PubMed] [Google Scholar]
  • 104.Khandpur AK, Foerster S, Bates FS, et al. Polyisoprene-poly-styrene diblock copolymer phase diagram near the order-disorder transition. Macromolecules. 1995;28:8796–8806. [Google Scholar]
  • 105.Abetz V, Stadler RABC. BAC triblock copolymers—morphological engineering by variation of the block sequence. Macromol Symp. 1997;113:19–26. [Google Scholar]
  • 106.Matsushita Y, Choshi H, Fujimoto T, et al. Preparation and morphological properties of a triblock copolymer of the ABC type. Macromolecules. 1980;13:1053–1058. [Google Scholar]
  • 107.Hadjichristidis N, Iatrou H, Pitsikalis M, et al. Linear and nonlinear triblock terpolymers. Synthesis, self-assembly in selective solvents and in bulk. Prog Polym Sci. 2005;30:725–782. [Google Scholar]
  • 108.Zheng W, Wang ZG. Morphology of ABC triblock copolymers. Macromolecules. 1995;28:7215–7223. [Google Scholar]
  • 109.Gröschel AH, Schacher FH, Schmalz H, et al. Precise hierarchical self-assembly of multicompartment micelles. Nat Commun. 2012;3:710. doi: 10.1038/ncomms1707. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 110.Shefelbine TA, Vigild ME, Matsen MW, et al. Core-Shell gyroid morphology in a poly(isoprene-block-styrene-block-dimethylsi-loxane) triblock copolymer. J Am Chem Soc. 1999;121:8457–8465. [Google Scholar]
  • 111.Mogi Y, Kotsuji H, Kaneko Y, et al. Preparation and morphology of triblock copolymers of the ABC type. Macromolecules. 1992;25:5408–5411. [Google Scholar]
  • 112.Mogi Y, Mori K, Matsushita Y, et al. Tricontinuous morphology of triblock copolymers of the ABC type. Macromolecules. 1992;25:5412–5415. [Google Scholar]
  • 113.Epps TH, Cochran EW, Hardy CM, et al. Network phases in ABC triblock copolymers. Macromolecules. 2004;37:7085–7088. [Google Scholar]
  • 114.Epps TH, Cochran EW, Bailey TS, et al. Ordered network phases in linear poly(isoprene-b-styrene-b-ethylene oxide) triblock copolymers. Macromolecules. 2004;37:8325–8341. [Google Scholar]
  • 115.Matsen MW. Gyroid versus double-diamond in ABC triblock copolymer melts. J Chem Phys. 1998;108:785–796. [Google Scholar]
  • 116.Dotera T, Hatano A. The diagonal bond method: A new lattice polymer model for simulation study of block copolymers. J Chem Phys. 1996;105:8413–8427. [Google Scholar]
  • 117.Dotera T. Tricontinuous cubic structures in ABC/A/C copolymer and homopolymer blends. Phys Rev Lett. 2002;89:205502. doi: 10.1103/PhysRevLett.89.205502. [DOI] [PubMed] [Google Scholar]
  • 118.Vignolini S, Yufa NA, Cunha PS, et al. A 3D optical metamaterial made by self-assembly. Adv Mater. 2012;24:OP23–OP27. doi: 10.1002/adma.201103610. [DOI] [PubMed] [Google Scholar]
  • 119.Robbins SW, Beaucage PA, Sai H, et al. Block copolymer self-assembly-directed synthesis of mesoporous gyroidal superconductors. Sci Adv. 2016;2:e1501119. doi: 10.1126/sciadv.1501119. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 120.Urbas AM, Maldovan M, DeRege P, et al. Bicontinuous cubic block copolymer photonic crystals. Adv Mater. 2002;14:1850–1853. [Google Scholar]
  • 121.Yu Y, Zhang L, Eisenberg A. Morphogenic effect of solvent on crew-cut aggregates of apmphiphilic diblock copolymers. Macromolecules. 1998;31:1144–1154. [Google Scholar]
  • 122.Bhargava P, Zheng JX, Li P, et al. Self-assembled polystyrene-Woc/c-poly(ethylene oxide) micelle morphologies in solution. Macromolecules. 2006;39:4880–4888. [Google Scholar]
  • 123.Zhang L, Eisenberg A. Multiple morphologies and characteristics of “crew-cut” micelle-like aggregates of polystyrene-b-poly(acrylic acid) diblock copolymers in aqueous solutions. J Am Chem Soc. 1996;118:3168–3181. [Google Scholar]
  • 124.Zhang L, Eisenberg A. Formation of crew-cut aggregates of various morphologies from amphiphilic block copolymers in solution. Polym Adv Technol. 1998;9:677–699. [Google Scholar]
  • 125.Zhang L, Yu K, Eisenberg A. Ion-induced morphological changes in “crew-cut” aggregates of amphiphilic block copolymers. Science. 1996;272:1777–1779. doi: 10.1126/science.272.5269.1777. [DOI] [PubMed] [Google Scholar]
  • 126.Zhang L, Eisenberg A. Multiple morphologies of “crew-cut” aggregates of polystyrene-b-poly(acrylic acid) block copolymers. Science. 1995;268:1728–1731. doi: 10.1126/science.268.5218.1728. [DOI] [PubMed] [Google Scholar]
  • 127.Gröschel AH, Walther A. Block copolymer micelles with inverted morphologies. Angew Chem Int Ed. 2017;56:10992–10994. doi: 10.1002/anie.201703765. [DOI] [PubMed] [Google Scholar]
  • 128.Lin Z, Liu S, Mao W, et al. Tunable self-assembly of diblock copolymers into colloidal particles with triply periodic minimal surfaces. Angew Chem Int Ed. 2017;56:7135–7140. doi: 10.1002/anie.201702591. [DOI] [PubMed] [Google Scholar]
  • 129.La Y, Park C, Shin TJ, et al. Colloidal inverse bicontinuous cubic membranes of block copolymers with tunable surface functional groups. Nat Chem. 2014;6:534–541. doi: 10.1038/nchem.1946. [DOI] [PubMed] [Google Scholar]
  • 130.Park C, La Y, An TH, et al. Mesoporous monoliths of inverse bicontinuous cubic phases of block copolymer bilayers. Nat Commun. 2015;6:6392. doi: 10.1038/ncomms7392. [DOI] [PubMed] [Google Scholar]
  • 131.La Y, Song J, Jeong MG, et al. Templated synthesis of cubic crystalline single networks having large open-space lattices by polymer cubosomes. Nat Commun. 2018;9:5327. doi: 10.1038/s41467-018-07793-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 132.Jeong MG, Kim KT. Covalent stabilization of inverse bicontinuous cubic structures of block copolymer bilayers by photo-dimerization of indene pendant groups of polystyrene hydrophobic blocks. Macromolecules. 2016;50:223–234. [Google Scholar]
  • 133.Lyu X, Xiao A, Zhang W, et al. Head-tail asymmetry as the determining factor in the formation of polymer cubosomes or hexasomes in a rod-coil amphiphilic block copolymer. Angew Chem Int Ed. 2018;57:10132–10136. doi: 10.1002/anie.201804401. [DOI] [PubMed] [Google Scholar]
  • 134.Azmi IDM, Moghimi SM, Yaghmur A. Cubosomes and hexo-somes as versatile platforms for drug delivery. Therapeutic Deliver. 2015;6:1347–1364. doi: 10.4155/tde.15.81. [DOI] [PubMed] [Google Scholar]
  • 135.Karami Z, Hamidi M. Cubosomes: Remarkable drug delivery potential. Drug Discovery Today. 2016;21:789–801. doi: 10.1016/j.drudis.2016.01.004. [DOI] [PubMed] [Google Scholar]
  • 136.Yabu H. Self-organized precipitation: An emerging method for preparation of unique polymer particles. Polym J. 2013;45:261–268. [Google Scholar]
  • 137.Grundy LS, Lee VE, Li N, et al. Rapid production of internally structured colloids by flash nanoprecipitation of block copolymer blends. ACS Nano. 2018;12:4660–4668. doi: 10.1021/acsnano.8b01260. [DOI] [PubMed] [Google Scholar]
  • 138.Li H, Liu Y, Cao X, et al. A shifted double-diamond titania scaffold. Angew Chem Int Ed. 2017;56:806–811. doi: 10.1002/anie.201611012. [DOI] [PubMed] [Google Scholar]
  • 139.Han L, Che S. An overview of materials with triply periodic minimal surfaces and related geometry: From biological structures to self-assembled systems. Adv Mater. 2018;30:1705708. doi: 10.1002/adma.201705708. [DOI] [PubMed] [Google Scholar]
  • 140.Sheng Q, Mao W, Han L, et al. Fabrication of photonic bandgap materials by shifting double frameworks. Chem Eur J. 2018;24:17389–17396. doi: 10.1002/chem.201801767. [DOI] [PubMed] [Google Scholar]
  • 141.Helfrich W. Elastic properties of lipid bilayers: Theory and possible experiments. Z für Naturforschung C. 1973;28:693–703. doi: 10.1515/znc-1973-11-1209. [DOI] [PubMed] [Google Scholar]
  • 142.Sadoc JF, Charvolin J. Frustration in bilayers and topologies of liquid crystals of amphiphilic molecules. J Phys France. 1986;47:683–691. [Google Scholar]
  • 143.Anderson DM, Gruner SM, Leibier S. Geometrical aspects of the frustration in the cubic phases of lyotropic liquid crystals. Proc Natl Acad Sci USA. 1988;85:5364–5368. doi: 10.1073/pnas.85.15.5364. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 144.Charvolin J, Sadoc JF. Periodic systems of frustrated fluid films and “bicontinuous” cubic structures in liquid crystals. J Phys France. 1987;48:1559–1569. [Google Scholar]
  • 145.Helfrich W, Rennschuh H. Landau theory of the lamellar-to-cubic phase transition. J Phys Colloques. 1990;51:C7–189-C7-195. [Google Scholar]
  • 146.Hyde ST. Curvature and the global structure of interfaces in surfactant-water systems. J Phys Colloques. 1990;51:C7–209-C7-228. [Google Scholar]
  • 147.Schwarz US, Gompper G. Stability of bicontinuous cubic phases in ternary amphiphilic systems with spontaneous curvature. J Chem Phys. 2000;112:3792–3802. [Google Scholar]
  • 148.Schwarz US, Gompper G. Stability of inverse bicontinuous cubic phases in lipid-water mixtures. Phys Rev Lett. 2000;85:1472–1475. doi: 10.1103/PhysRevLett.85.1472. [DOI] [PubMed] [Google Scholar]
  • 149.Schröder-Turk GE, Fogden A, Hyde ST. Bicontinuous geometries and molecular self-assembly: Comparison of local curvature and global packing variations in genus-three cubic, tetragonal and rhombohedral surfaces. Eur Phys J B. 2006;54:509–524. [Google Scholar]
  • 150.Chen H, Jin C. Competition brings out the best: Modelling the frustration between curvature energy and chain stretching energy of lyotropic liquid crystals in bicontinuous cubic phases. Interface Focus. 2017;7:20160114. doi: 10.1098/rsfs.2016.0114. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 151.Gronnier J, Gerbeau-Pissot P, Germain V, et al. Divide and rule: Plant plasma membrane organization. Trends Plant Sci. 2018;23:899–917. doi: 10.1016/j.tplants.2018.07.007. [DOI] [PubMed] [Google Scholar]
  • 152.Simon KS, Pollock NL, Lee SC. Membrane protein nanoparticles: The shape of things to come. Biochem Soc Trans. 2018;46:1495–1504. doi: 10.1042/BST20180139. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 153.Engelman DM. Membranes are more mosaic than fluid. Nature. 2005;438:578–580. doi: 10.1038/nature04394. [DOI] [PubMed] [Google Scholar]
  • 154.Carquin M, D’Auria L, Pollet H, et al. Recent progress on lipid lateral heterogeneity in plasma membranes: From rafts to sub-micrometric domains. Prog Lipid Res. 2016;62:1–24. doi: 10.1016/j.plipres.2015.12.004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 155.Krause MR, Regen SL. The structural role of cholesterol in cell membranes: From condensed bilayers to lipid rafts. Ace Chem Res. 2014;47:3512–3521. doi: 10.1021/ar500260t. [DOI] [PubMed] [Google Scholar]
  • 156.Sonnino S, Prinetti A. Membrane domains and the “Lipid Raft” concept. Curr Med Chem. 2013;20:4–21. [PubMed] [Google Scholar]
  • 157.Ferrero S, Grados-Torrez RE, Leivar P, et al. Proliferation and morphogenesis of the endoplasmic reticulum driven by the membrane domain of 3-hydroxy-3-methylglutaryl coenzyme a reductase in plant cells. Plant Physiol. 2015;168:899–914. doi: 10.1104/pp.15.00597. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 158.Deng Y, Almsherqi ZA, Shui G, et al. Docosapentaenoic acid (DPA) is a critical determinant of cubic membrane formation in amoeba Chaos mitochondria. FASEB J. 2009;23:2866–2871. doi: 10.1096/fj.09-130435. [DOI] [PubMed] [Google Scholar]
  • 159.Lv WH, Liu FF, Deng YR. Biological cubic membranes. Prog Biochem Biophys. 2018;45:5–15. [Google Scholar]
  • 160.Snapp EL, Hegde RS, Francolini M, et al. Formation of stacked ER cisternae by low affinity protein interactions. J Cell Biol. 2003;163:257–269. doi: 10.1083/jcb.200306020. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 161.Matsen MW, Bates FS. Origins of complex self-assembly in block copolymers. Macromolecules. 1996;29:7641–7644. [Google Scholar]
  • 162.Zhang L, Eisenberg A. Thermodynamic vs kinetic aspects in the formation and morphological transitions of crew-cut aggregates produced by self-assembly of polystyrene-b-poly(acrylic acid) block copolymers in dilute solution. Macromolecules. 1999;32:2239–2249. [Google Scholar]
  • 163.Garcia BC, Kamperman M, Ulrich R, et al. Morphology diagram of a diblock copolymer-aluminosilicate nanoparticle system. Chem Mater. 2009;21:5397–5405. [Google Scholar]
  • 164.Barriga HMG, Tyler A, McCarthy NLC, et al. Temperature and pressure tuneable swollen bicontinuous cubic phases approaching nature’s length scales. Soft Matter. 2015;11:600–607. doi: 10.1039/c4sm02343a. [DOI] [PubMed] [Google Scholar]
  • 165.Tyler AH, Barriga HMG, Parsons ES, et al. Electrostatic swelling of bicontinuous cubic lipid phases. Soft Matter. 2015;11:3279–3286. doi: 10.1039/c5sm00311c. [DOI] [PubMed] [Google Scholar]
  • 166.Zabara A, Chong JTY, Martiel I, et al. Design of ultra-swollen lipidic mesophases for the crystallization of membrane proteins with large extracellular domains. Nat Commun. 2018;9:544. doi: 10.1038/s41467-018-02996-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 167.Hustad PD, Marchand GR, Garcia-Meitin EI, et al. Photonic polyethylene from self-assembled mesophases of polydisperse olefin block copolymers. Macromolecules. 2009;42:3788–3794. [Google Scholar]
  • 168.Kim I, Li S. Recent progress on polydispersity effects on block copolymer phase behavior. Polym Rev. 2019;59:561–587. [Google Scholar]
  • 169.Sadoc JF, Charvolin J. Infinite periodic minimal surfaces and their crystallography in the hyperbolic plane. Acta Crystlogr A Found Crystlogr. 1989;45:10–20. [Google Scholar]
  • 170.Benedicto AD, O’Brien DF. Bicontinuous cubic morphologies in block copolymers and amphiphile/water systems: mathematical description through the minimal surfaces. Macromolecules. 1997;30:3395–3402. [Google Scholar]
  • 171.Fogden A, Hyde ST. Continuous transformations of cubic minimal surfaces. Eur Phys J B. 1999;7:91–104. [Google Scholar]
  • 172.Schroder GE, Ramsden SJ, Fogden A, et al. A rhombohedral family of minimal surfaces as a pathway between the p and d cubic mesophases. Physica A-Statistical Mech its Appl. 2004;339:137–144. [Google Scholar]
  • 173.Kozlovsky Y, Efrat A, Siegel DA, et al. Stalk phase formation: Effects of dehydration and saddle splay modulus. Biophys J. 2004;87:2508–2521. doi: 10.1529/biophysj.103.038075. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 174.Siegel DP, Kozlov MM. The Gaussian curvature elastic modulus of N-monomethylated dioleoylphosphatidylethanolamine: Relevance to membrane fusion and lipid phase behavior. Biophys J. 2004;87:366–374. doi: 10.1529/biophysj.104.040782. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 175.Chernomordik LV, Kozlov MM. Protein-lipid interplay in fusion and fission of biological membranes. Annu Rev Biochem. 2003;72:175–207. doi: 10.1146/annurev.biochem.72.121801.161504. [DOI] [PubMed] [Google Scholar]
  • 176.Chernomordik LV, Kozlov MM. Mechanics of membrane fusion. Nat Struct Mol Biol. 2008;15:675–683. doi: 10.1038/nsmb.1455. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 177.Norlén L. Skin barrier formation: The membrane folding model. J Invest Dermatol. 2001;117:823–829. doi: 10.1046/j.0022-202x.2001.01445.x. [DOI] [PubMed] [Google Scholar]
  • 178.Pathak RK, Luskey KL, Anderson RG. Biogenesis of the crystalloid endoplasmic reticulum in UT-1 cells: Evidence that newly formed endoplasmic reticulum emerges from the nuclear envelope. J Cell Biol. 1986;102:2158–2168. doi: 10.1083/jcb.102.6.2158. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 179.Oparka KJ, Johnson RPC. Endoplasmic reticulum and crystalline fibrils in the root protophloem of Nymphoides peltata. Planta. 1978;143:21–27. doi: 10.1007/BF00389047. [DOI] [PubMed] [Google Scholar]
  • 180.Deng YR, Landh T. The cubic gyroid-based membrane structure of the chloroplast in Zygnema (Chlorophyceae Zygnematles) Zool Stud. 1995;34:175–177. [Google Scholar]
  • 181.Oka T. Transformation between inverse bicontinuous cubic phases of a lipid from diamond to gyroid. Langmuir. 2015;31:11353–11359. doi: 10.1021/acs.langmuir.5b02180. [DOI] [PubMed] [Google Scholar]
  • 182.Seddon JM, Templer RH, Warrender NA, et al. Phosphati-dylcholine-fatty acid membranes: Effects of headgroup hydration on the phase behaviour and structural parameters of the gel and inverse hexagonal (HII) phases. Biochim Biophys Acta (BBA)-Biomembranes. 1997;1327:131–147. doi: 10.1016/s0005-2736(97)00047-3. [DOI] [PubMed] [Google Scholar]
  • 183.Squires AM, Templer RH, Seddon JM, et al. Kinetics and mechanism of the interconversion of inverse bicontinuous cubic mesophases. Phys Rev E. 2005;72:011502. doi: 10.1103/PhysRevE.72.011502. [DOI] [PubMed] [Google Scholar]
  • 184.Oka T. Small-angle x-ray crystallography on single-crystal regions of inverse bicontinuous cubic phases: Lipid bilayer structures and Gaussian curvature-dependent fluctuations. J Phys Chem B. 2017;121:11399–11409. doi: 10.1021/acs.jpcb.7b08589. [DOI] [PubMed] [Google Scholar]
  • 185.Kulkarni CV, Tang TY, Seddon AM, et al. Engineering bicontinuous cubic structures at the nanoscale—the role of chain splay. Soft Matter. 2010;6:3191–3194. [Google Scholar]
  • 186.Conn CE, Ces O, Squires AM, et al. A pressure-jump time-resolved X-ray diffraction study of cubic-cubic transition kinetics in monoolein. Langmuir. 2008;24:2331–2340. doi: 10.1021/la7023378. [DOI] [PubMed] [Google Scholar]
  • 187.Qiu H, Caffrey M. The phase diagram of the monoolein/water system: Metastability and equilibrium aspects. Biomaterials. 2000;21:223–234. doi: 10.1016/s0142-9612(99)00126-x. [DOI] [PubMed] [Google Scholar]
  • 188.Wan Y, Zhao Y. On the controllable soft-templating approach to mesoporous silicates. Chem Rev. 2007;107:2821–2860. doi: 10.1021/cr068020s. [DOI] [PubMed] [Google Scholar]
  • 189.Alberius PCA, Frindell KL, Hayward RC, et al. General predictive syntheses of cubic, hexagonal, and lamellar silica and titania mesostructured thin films. Chem Mater. 2002;14:3284–3294. [Google Scholar]
  • 190.Soler-Illia GJAA, Sanchez C, Lebeau B, et al. Chemical strategies to design textured materials: from microporous and mesoporous oxides to nanonetworks and hierarchical structures. Chem Rev. 2002;102:4093–4138. doi: 10.1021/cr0200062. [DOI] [PubMed] [Google Scholar]
  • 191.Yang P, Deng T, Zhao D, et al. Hierarchically ordered oxides. Science. 1998;282:2244–2246. doi: 10.1126/science.282.5397.2244. [DOI] [PubMed] [Google Scholar]
  • 192.Yang P, Zhao D, Margolese DI, et al. Generalized syntheses of large-pore mesoporous metal oxides with semicrystalline frameworks. Nature. 1998;396:152–155. [Google Scholar]
  • 193.Yang P, Zhao D, Margolese DI, et al. Block copolymer templating syntheses of mesoporous metal oxides with large ordering lengths and semicrystalline framework. Chem Mater. 1999;11:2813–2826. [Google Scholar]
  • 194.Sakamoto Y, Kaneda M, Terasaki O, et al. Direct imaging of the pores and cages of three-dimensional mesoporous materials. Nature. 2000;408:449–453. doi: 10.1038/35044040. [DOI] [PubMed] [Google Scholar]
  • 195.Ohsuna T, Sakamoto Y, Terasaki O, et al. TEM image simulation of mesoporous crystals for structure type identification. Solid State Sci. 2011;13:736–744. [Google Scholar]
  • 196.Willhammar T, Sun J, Wan W, et al. Structure and catalytic properties of the most complex intergrown zeolite ITQ-39 determined by electron crystallography. Nat Chem. 2012;4:188–194. doi: 10.1038/nchem.1253. [DOI] [PubMed] [Google Scholar]
  • 197.Bell M. A comparative study of the ultrastructure of the sebaceous glands of man and other primates. J Invest Dermatol. 1974;62:132–143. doi: 10.1111/1523-1747.ep12676777. [DOI] [PubMed] [Google Scholar]
  • 198.Öhman P. Fine structure of the retinal pigment epithelium of the river lamprey (Lampetra fluviatilis, Cyclostomi) Acta Zoolog. 1974;55:245–253. [Google Scholar]

Articles from Science China Materials are provided here courtesy of Nature Publishing Group

RESOURCES