Abstract
An increase in the metabolism of phosphatidylinositol occurs in a wide variety of tissues by the action of specific ligands1–3. In platelets, the interaction of thrombin with its receptor initiates the degradation of phosphatidylinositol by the action of a specific phospholipase C (refs 4–8). In normal conditions of stimulation, the resultant 1,2-diacylglycerol is rapidly and completely phosphorylated to phosphatidic acid4–11. The formation of phosphatidic acid precedes the release of arachidonic acid from the phospholipids of stimulated platelets5. This early appearence of phosphatidate might result in the initial production of arachidonic acid and lysophosphatidic acid by the action of a phospholipase A2 specific for phosphatidate12. Phosphatidate/lysophosphatidate could induce calciumgating13–15 and subsequently stimulate phospholipases of the A2-type8, that degrade phosphatidylcholine, phosphatidyl-ethanolamine and a further fraction of phosphatidylinositol6. Alternatively, the lysophosphatidate produced may serve as a substrate for the transfer of arachidonate directly from other phospholipids16,17 to form new phosphatidate which in turn can release more arachidonate. Overall, such a sequence would be equivalent to phospholipase A2 activation of other phospholipids. Our present data indicate that when the release of arachidonic acid is completely inhibited by cyclic AMP or quinacrine, phosphatidic acid is redirected entirely to phosphatidylinositol and there is no production of arachidonate. In these conditions, the availability of calcium might be profoundly restricted. The correlation in platelets of a phosphatidylinositol by a specific phospholipase A2 might suggest that these phenomena are applicable to activations in other cell systems.
References
- 1.Lapetina EG, Michell RH. FEBS Lett. 1973;31:1–10. doi: 10.1016/0014-5793(73)80061-4. [DOI] [PubMed] [Google Scholar]
- 2.Michell RH. Biochim. biophys. Acta. 1975;415:81–147. doi: 10.1016/0304-4157(75)90017-9. [DOI] [PubMed] [Google Scholar]
- 3.Michell RH. Trends biochem. Sci. 1979;4:128–131. doi: 10.1016/0968-0004(79)90443-2. [DOI] [Google Scholar]
- 4.Lapetina EG, Chandrabose K, Cuatrecasas P. Proc. natn. Acad. Sci. U.S.A. 1978;75:818–822. doi: 10.1073/pnas.75.2.818. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 5.Lapetina EG, Cuatrecasas P. Biochim. biophys. Acta. 1979;573:394–402. doi: 10.1016/0005-2760(79)90072-9. [DOI] [PubMed] [Google Scholar]
- 6.Lapetina EG, Billah MM, Cuatrecasas PJ. biol. Chem. 1981;256:5037–5040. [PubMed] [Google Scholar]
- 7.Billah MM, Lapetina EG, Cuatrecasas P. Biochem. biophys. Res. Commun. 1979;90:92–98. doi: 10.1016/0006-291X(79)91594-8. [DOI] [PubMed] [Google Scholar]
- 8.Billah MM, Lapetina EG, Cuatrecasas P. J. biol. Chem. 1980;255:10227–10231. [PubMed] [Google Scholar]
- 9.Walenga R, Vanderhoek JY, Feinstein MB. J. biol. Chem. 1980;255:6024–6027. [PubMed] [Google Scholar]
- 10.Broekman MJ, Ward MW, Marcus AJ. J. clin. Invest. 1980;66:275–283. doi: 10.1172/JCI109854. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 11.Lapetina EG, Billah MM, Cuatrecasas P. The Regulation of Coagulation. 1980. pp. 491–497. [Google Scholar]
- 12.Billah MM, Lapetina EG, Cuatrecasas P. J. biol. Chem. 1981;256:5399–5403. [PubMed] [Google Scholar]
- 13.Gerrard JM, Butler AM, Peterson DA, White JG. Prostaglandins Med. 1978;1:387–396. doi: 10.1016/0161-4630(78)90125-8. [DOI] [PubMed] [Google Scholar]
- 14.Gerrard JM. Am. J. Path. 1979;96:423–438. [PMC free article] [PubMed] [Google Scholar]
- 15.Gerrard JM, Kindom SE, Peterson DA, White JG. Am. J. Path. 1979;97:531–548. [PMC free article] [PubMed] [Google Scholar]
- 16.Bereziat G, Chambaz J, Trugman G, Pepin D, Polonovski J. J. Lipid Res. 1978;19:495–500. [PubMed] [Google Scholar]
- 17.Irvine RF, Dawson RMC. Biochem. biophys. Res. Commun. 1979;91:1399–1405. doi: 10.1016/0006-291X(79)91222-1. [DOI] [PubMed] [Google Scholar]
- 18.McKean ML, Smith JB, Silver MJ. J. biol. Chem. 1981;256:1522–1524. [PubMed] [Google Scholar]
- 19.Mauco G, Chap H, Simon MF, Douste-Blazy L. Biochemie. 1978;60:653–661. doi: 10.1016/S0300-9084(78)80784-6. [DOI] [PubMed] [Google Scholar]
- 20.Agranoff BW, Gradley RM, Grady RO. J. biol. Chem. 1958;233:1077–1083. [PubMed] [Google Scholar]
- 21.Bleasdale JE, Wallis P, MacDonald PC, Johnston JM. Biochim. biophys. Acta. 1979;575:135–147. doi: 10.1016/0005-2760(79)90139-5. [DOI] [PubMed] [Google Scholar]
- 22.Malmsten C, Granstrom E, Samuelsson B. Biochem. biophys. Res. Commun. 1976;68:569–576. doi: 10.1016/0006-291X(76)91183-9. [DOI] [PubMed] [Google Scholar]
- 23.Lapetina EG, Schmitges CJ, Chandrabose K, Cuatrecasas P. Biochem. biophys. Res. Commun. 1977;76:828–835. doi: 10.1016/0006-291X(77)91575-3. [DOI] [PubMed] [Google Scholar]
- 24.Lapetina EG, Schmitges CJ, Chandrabose K, Cuatrecasas P. Advances in Prostaglandin and Thromboxane Research. 1978. pp. 127–135. [PubMed] [Google Scholar]
- 25.Minkes M. J. clin. Invest. 1977;59:449–454. doi: 10.1172/JCI108659. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 26.Gerrard JM, Peller JD, Krick TP, White JG. Prostaglandins. 1977;14:39–50. doi: 10.1016/0090-6980(77)90155-1. [DOI] [PubMed] [Google Scholar]
- 27.Feinstein MB, Becker EL, Frazer C. Prostaglandins. 1977;14:1075–1093. doi: 10.1016/0090-6980(77)90286-6. [DOI] [PubMed] [Google Scholar]
