Skip to main content
Springer Nature - PMC COVID-19 Collection logoLink to Springer Nature - PMC COVID-19 Collection
. 1986;320(6062):540–543. doi: 10.1038/320540a0

Requirement for c-ras proteins during viral oncogene transformation

Mark R Smith 1,2, Steven J DeGudicibus 1,3, Dennis W Stacey 1
PMCID: PMC7095476  PMID: 2938016

Abstract

Many retroviral oncogenes have been classified into one of several categories based on structure, enzymology and cellular localization1. These genes originated from host cells and are probably derived from genes normally involved in the control of cell proliferation2. The cellular counterparts of three oncogenes have been identified as a growth factor or growth factor receptor3–6; related oncogenes include receptor-like membrane proteins which often express tyrosine kinase activity. These growth factor-related oncogenes are structurally and biochemically distinct from the membrane-associated ras gene family, which bind and hydrolyse GTP7–9. Oncogenes localized primarily in the cytoplasm which probably have serine kinase activity, have also been identified10–12. Although the structure and biochemistry of many oncogenes have been extensively studied, relatively little is known about the functional relationships of oncogene proteins within the cell. An opportunity to study such interaction is provided by the identification of a monoclonal antibody that neutralizes cellular ras proteins when microinjected into cells13. It has been shown previously that the injected antibody inhibits the initiation of S-phase in NIH 3T3 cells14. In the present study we injected this monoclonal antibody into NIH 3T3 cells transformed by a variety of oncogenes. The results show that transformation by three growth factor receptor-like oncogenes depends on c-ras proteins, while transformation by two cytoplasmic oncogenes appears to be independent of c-ras protein.

References

  • 1.Bishop JM. Cell. 1985;42:23–38. doi: 10.1016/S0092-8674(85)80098-2. [DOI] [PubMed] [Google Scholar]
  • 2.Bishop JM, Varmus HE. RNA Tumor Viruses: Molecular Biology of Tumor Viruses. 1984. pp. 999–1108. [Google Scholar]
  • 3.Doolittle FR. Science. 1983;221:275–277. doi: 10.1126/science.6304883. [DOI] [PubMed] [Google Scholar]
  • 4.Downward J. Nature. 1984;307:521–527. doi: 10.1038/307521a0. [DOI] [PubMed] [Google Scholar]
  • 5.Waterfield MD. Nature. 1983;304:35–39. doi: 10.1038/304035a0. [DOI] [PubMed] [Google Scholar]
  • 6.Sherr CJ. Cell. 1985;41:665–676. doi: 10.1016/S0092-8674(85)80047-7. [DOI] [PubMed] [Google Scholar]
  • 7.Ellis RW. Nature. 1981;292:506–511. doi: 10.1038/292506a0. [DOI] [PubMed] [Google Scholar]
  • 8.Sweet RW. Nature. 1984;311:273–275. doi: 10.1038/311273a0. [DOI] [PubMed] [Google Scholar]
  • 9.McGrath JP, Capon DJ, Goeddel DV, Levinson AD. Nature. 1984;310:644–649. doi: 10.1038/310644a0. [DOI] [PubMed] [Google Scholar]
  • 10.Kloetzer WS, Maxwell SA, Arlinghaus RB. Virology. 1984;138:143–155. doi: 10.1016/0042-6822(84)90154-5. [DOI] [PubMed] [Google Scholar]
  • 11.Moelling K, Heimann B, Beimling P, Rapp UR, Sander T. Nature. 1984;312:558–561. doi: 10.1038/312558a0. [DOI] [PubMed] [Google Scholar]
  • 12.Papkoff J, Nigg EA, Hunter T. Cell. 1983;33:161–172. doi: 10.1016/0092-8674(83)90345-8. [DOI] [PubMed] [Google Scholar]
  • 13.Kung H-F, Smith MR, Bekesi E, Manne V, Stacey DW. Expl Cell Res. 1986;162:363–371. doi: 10.1016/0014-4827(86)90341-1. [DOI] [PubMed] [Google Scholar]
  • 14.Mulcahy LS, Smith MR, Stacey DW. Nature. 1985;313:241–243. doi: 10.1038/313241a0. [DOI] [PubMed] [Google Scholar]
  • 15.Furth ME, Davis LJ, Fleurdelys B, Scolnick EM. J. Virol. 1982;43:294–304. doi: 10.1128/jvi.43.1.294-304.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Stacey, D. W., DeGudicibus, S. J. & Smith, M. R. (in preparation).
  • 17.Brugge JS, Erikson RL. Nature. 1977;269:346–348. doi: 10.1038/269346a0. [DOI] [PubMed] [Google Scholar]
  • 18.Fedele LA, Even J, Garon CF, Donner L, Sherr CJ. Proc. natn. Acad. Sci. U.S.A. 1981;78:4036–4040. doi: 10.1073/pnas.78.7.4036. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.Donner L, Fedele LA, Garon CF, Anderson SJ, Sherr CJ. J. Virol. 1982;41:489–500. doi: 10.1128/jvi.41.2.489-500.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Robbins KC, Devare SG, Reddy EP, Aaronson SA. Science. 1982;218:1131–1133. doi: 10.1126/science.6293053. [DOI] [PubMed] [Google Scholar]
  • 21.Blair DG, McClements WL, Oskarsson MK, Fischinger PJ, Vande Woude GF. Proc. natn. Acad. Sci. U.S.A. 1980;77:3504–3508. doi: 10.1073/pnas.77.6.3504. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.Rapp UR, Todaro GJ. Proc. natn. Acad. Sci. U.S.A. 1980;77:624–628. doi: 10.1073/pnas.77.1.624. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23.Horn JR, Wood TG, Murphy EC, Blair DG, Arlinghaus RB. Cell. 1981;25:37–46. doi: 10.1016/0092-8674(81)90229-4. [DOI] [PubMed] [Google Scholar]
  • 24.Noda M, Selinger Z, Scolnick EM, Bassin RH. Proc. natn. Acad. Sci. U.S.A. 1983;80:5602–5606. doi: 10.1073/pnas.80.18.5602. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25.Schiller JT, Vass WC, Lowy DR. Proc. natn. Acad. Sci. U.S.A. 1984;81:7880–7884. doi: 10.1073/pnas.81.24.7880. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.Papageorge, A. G. et al.Molec. cell Biol. (in the press).
  • 27.Beckner SK, Hattori S, Shih TY. Nature. 1985;317:71–72. doi: 10.1038/317071a0. [DOI] [PubMed] [Google Scholar]
  • 28.Gilman A. Cell. 1984;36:577–579. doi: 10.1016/0092-8674(84)90336-2. [DOI] [PubMed] [Google Scholar]
  • 29.Wigler M. Proc. natn. Acad. Sci. U.S.A. 1979;76:1373–1376. doi: 10.1073/pnas.76.3.1373. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Nature are provided here courtesy of Nature Publishing Group

RESOURCES