Summary
Since the discovery of the extra-cellular lining material of the lung and the possibility harvesting this source by endobronchial lavage this material has been the object of many studies directed to analyze its components, function and possible change in the diseased lung.
The best known component of the extra-cellular lining material is the phospholipid and its fatty acid composition. But also on the cellular material much emphasis has been taken with the aim using its cytology as diagnostic parameter. However, very few informations were obtained about the protein material also washed out during the endobronchial lavage.
As it was demonstrated by immunological methods the proteins of the extra-cellular lining material consist of serum identical proteins and those being obviously specific for the lung tissue. As found, most serum identical proteins occure in the same amounts as found in the blood serum, and the molecular weight in general range up to 160,000 daltons indicating that there must be a restriction in passage of high molecular weight proteins through the lumen walls of the endothelium. Some proteins, IgG, IgA, do occure in a higher level in the extra-cellular lining material leading to the suggestion that these proteins were synthesized and secreted by the lung tissue itself. — The molecular weight of the lung specific proteins range from 16,000–340,000 daltons. Under reducing conditions however, for all species listed, two classes of subunits −36,000 and 12,000 daltons — result, indicating that these proteins might have comparable functions in the different species. The exact function of these specific proteins as well as the serum identical proteins till now is not known. One can only speculate that the serum identical proteins will have the same function in plasma and the lung, and that the specific proteins are involved in the formation in the surfactant system. Different amounts of lung specific proteins in lavage of disease lungs suggest that their estimation might be an additional useful parameter in diagnosis of lung diseases.
Key words: Bronchoalveolar lavage, Extra-cellular lining material, Serum identical proteins, Lung specific proteins
Abbreviation
- ARDS
adult respiratory distress syndrome
Footnotes
Supported by the Deutsche Forschungsgemeinschaft Wi 359/7+8
References
- 1.Adams FJ, Fujiwara T, Emmanouilides G, Scudder A. Surface properties and lipids from lungs of infants with hyaline membrane disease. J Pediatr. 1965;66:357–364. doi: 10.1016/s0022-3476(65)80193-7. [DOI] [PubMed] [Google Scholar]
- 2.Avery ME, Mead J. Surface properties in relation to atelectasis and hyaline membrane disease. Am J Dis Child. 1959;97:517–523. doi: 10.1001/archpedi.1959.02070010519001. [DOI] [PubMed] [Google Scholar]
- 3.Baughman RP, Bosken CH, Loudon RG, Hurtubise P, Wessler T. Quantitation of bronchoalveolar lavage with methylene blue. Am Rev Respir Dis. 1983;128:266–270. doi: 10.1164/arrd.1983.128.2.266. [DOI] [PubMed] [Google Scholar]
- 4.Baxter CF, Rouser R, Simon G. Variations among vertebrates of lung phospholipid class composition. Lipids. 1972;4:243–244. doi: 10.1007/BF02532640. [DOI] [PubMed] [Google Scholar]
- 5.Bell DY, Hook GER. Pulmonary alveolar proteinosis: analyses of airway and alveolar proteins. Am Rev Respir Dis. 1979;119:979–900. doi: 10.1164/arrd.1979.119.6.979. [DOI] [PubMed] [Google Scholar]
- 6.Bell DY, Haseman JA, Spock A, McLennan G, Hook GER. Plasma proteins of the bronchoalveolar surface of the lungs of smokers and nonsmokers. Am Rev Respir Dis. 1981;124:72–79. doi: 10.1164/arrd.1981.124.1.72. [DOI] [PubMed] [Google Scholar]
- 7.Benson BJ, Williams MC, Hawgood S, Sargeant T. Role of lung surfactant-specific proteins in surfactant structure and function. In: von Wichert P, editor. Current Concepts in Surfactant Research. Basel München Paris: Karger; 1984. pp. 83–92. [Google Scholar]
- 8.Bhattacharyya SN, Passero MA, DiAugustine RP, Lynn WS. Isolation and characterization of two hydroxyproline containing glycoproteins from normal animal lung lavage and lamellar bodies. J Clin Invest. 1975;55:914–920. doi: 10.1172/JCI108020. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 9.Bhattacharyya SN, Sahu S, Lynn WS. Structural studies on a glycoprotein isolated from alveoli of patients with alveolar proteinosis. Biochim Biophys Acta. 1976;427:91–106. doi: 10.1016/0005-2795(76)90288-9. [DOI] [PubMed] [Google Scholar]
- 10.Bhattacharyya SN, Lynn WS. Studies on structural relationship between two glycoproteins isolated from alveoli of patients with alveolar proteinosis. Biochim Biophys Acta. 1977;494:150–161. doi: 10.1016/0005-2795(77)90143-x. [DOI] [PubMed] [Google Scholar]
- 11.Bhattacharyya SN, Lynn SW. Isolation and characterization of a pulmonary glycoprotein from human amniotic fluid. Biochim Biophys Acta. 1978;537:329–335. doi: 10.1016/0005-2795(78)90516-0. [DOI] [PubMed] [Google Scholar]
- 12.Bhattacharyya SN, Lynn SW. Structural characterization of a glycoprotein isolated from alveoli of patients with alveolar proteinosis. J Biol Chem. 1979;254:5191–5198. [PubMed] [Google Scholar]
- 13.Bignon J, Chahinian P, Feldmann G, Sapin C. Ultrastructural immunoperoxidase demonstration of autologous albumin in the alveolar capillary membrane and in the alveolar lining material in normal rats. J Cell Biol. 1975;64:503–504. doi: 10.1083/jcb.64.2.503. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 14.Bignon J, Jaurand MC, Pinchon MC, Sapin C, Warnet JM. Immunoelectron microscopic and immunochemical demonstrations of serum proteins in the alveolar lining material of the rat lung. Am Rev Respir Dis. 1976;113:109–120. doi: 10.1164/arrd.1976.113.2.109. [DOI] [PubMed] [Google Scholar]
- 15.Bignon J, Jaubert F, Jaurand MC. Ultrastructural basis of the pulmonary capillary permeability to autologous plasma proteins to exogenous proteinic tracers. Chest. 1977;71(Suppl):294–296. doi: 10.1378/chest.71.2.294. [DOI] [PubMed] [Google Scholar]
- 16.Brown ES. Lung area from surface tension effects. Proc Soc Exptl Biol Med. 1957;95:168–170. doi: 10.3181/00379727-95-23155. [DOI] [PubMed] [Google Scholar]
- 17.Brown ES. Isolation and assay of dipalmitoyl lecithin in lung extracts. Am J Physiol. 1964;207:402–406. doi: 10.1152/ajplegacy.1964.207.2.402. [DOI] [PubMed] [Google Scholar]
- 18.Claypool WD, Chander A, Fisher AB. Isolation of the hydrophobic apoproteins of rat lung surfactant. Fed Proc. 1981;40:408. [Google Scholar]
- 19.Clements JA. Surface tension of lung extracts. Exptl Biol Med. 1957;95:170–172. doi: 10.3181/00379727-95-23156. [DOI] [PubMed] [Google Scholar]
- 20.Clements JA, Brown ES, Johnson RP. Pulmonary surface tension and the mucus lining of the lungs. Some theoretical considerations. J Appl Physiol. 1958;8:191–203. doi: 10.1152/jappl.1958.12.2.262. [DOI] [PubMed] [Google Scholar]
- 21.Clements JA, King RJ. Composition of the surface active material. In: Crystal RG, editor. Lung Biology in Health and Disease, Vol 2. New York: Marcel Decker; 1976. pp. 363–387. [Google Scholar]
- 22.Clements JA. Functions of the alveolar lining. Am Rev Respir Dis. 1977;115:67–71. doi: 10.1164/arrd.1977.115.S.67. [DOI] [PubMed] [Google Scholar]
- 23.Cochrane CG, Spragg P, Revak SA. Pathogenesis in adult respiratory distress syndrome. J Clin Invest. 1983;71:754–761. doi: 10.1172/JCI110823. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 24.Gadek JE, Fells GA, Zimmermann RL, Rennard SJ, Crystal RG. Antielastases of the human alveolar structure. Implications for the protease-antiprotease theory of emphysema. J Clin Invest. 1981;68:889–898. doi: 10.1172/JCI110344. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 25.George G, Hook GER. The pulmonary extracellular lining. Environ Health Perspect. 1984;55:227–237. doi: 10.1289/ehp.8455227. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 26.Goerke J. Lung surfactant. Biochim Biophys Acta. 1974;344:241–261. doi: 10.1016/0304-4157(74)90009-4. [DOI] [PubMed] [Google Scholar]
- 27.van Golde LMG. Metabolism of phospholipids in the lung. Am Rev Respir Dis. 1976;107:784–789. doi: 10.1164/arrd.1976.114.5.977. [DOI] [PubMed] [Google Scholar]
- 28.Gotoh R, Ueda S, Nakayama T, Takashita Y, Yasuoka S, Tsukura E. Protein components of bronchoalveolar lavage fluids from non-smokers and smokers. Eur J Respir Dis. 1983;64:369–377. [PubMed] [Google Scholar]
- 29.Gruenwald P, Johnson RP, Hunstead RJ, Clements JA. Correlation of mechanical properties of infant lungs with surface activity of extracts. Proc Soc Exptl Biol Med. 1962;109:369–371. doi: 10.3181/00379727-109-27205. [DOI] [PubMed] [Google Scholar]
- 30.Guyton AC, Moffatt DS, Adair TH. Role of alveolar surface tension in transepithelial movement of fluid. In: Robertson B, van Golde LMG, Batenburg JJ, editors. Pulmonary Surfactant. Amsterdam: Elsevier; 1984. pp. 171–185. [Google Scholar]
- 31.Hallmann M, Spragg R, Harrall JH, Moser K, Gluck L. Evidence of lung surfactant abnormality in respiratory failure. J Clin Invest. 1982;70:673–683. doi: 10.1172/JCI110662. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 32.Hand WL, Cantey JR. Antibacterial mechanisms of the lower respiratory tract. Immunoglobulin synthesis and secretion. J Clin Invest. 1974;53:354–362. doi: 10.1172/JCI107567. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 33.Hu PC, Miller FJ, Daniels MJ, Hatch GE, Graham JA, Gardner DE, Selgrade MK. Protein accumulation in lung lavage fluid following ozone exposure. Environ Res. 1982;29:377–388. doi: 10.1016/0013-9351(82)90039-1. [DOI] [PubMed] [Google Scholar]
- 34.Hunninghake GW, Gadek JE, Kawanami O, Ferrans VJ, Crystal RG. Inflammatory and immune processes in the human lung in health and disease: Evaluation by bronchoalveolar lavage. Am J Pathol. 1979;97:149–206. [PMC free article] [PubMed] [Google Scholar]
- 35.Janoff A, Carp H, Lee DK, Drew RT. Cigarette smoke inhalation decreases α1-antitrypsin activity in rat lung. Science. 1979;206:1313–1314. doi: 10.1126/science.316187. [DOI] [PubMed] [Google Scholar]
- 36.Kacew S, Reasor MJ. Chlorphetermine-induced alterations in pulmonary phospholipid content in rats. Biochem Pharmacol. 1983;32:2683–2688. doi: 10.1016/0006-2952(83)90076-x. [DOI] [PubMed] [Google Scholar]
- 37.Kaltreider HB. The role of the lung in immunoglobulin metabolism. In: Robin ED, editor. Lung Biology in Health and Disease, Vol 8. New York: Marcel Dekker; 1978. pp. 431–461. [Google Scholar]
- 38.Katyal SL, Estes LW, Lombardi B. Method for the isolation of surfactant and lavages of lung of adult, newborn, and fetal rats. Lab Invest. 1979;36:585–592. [PubMed] [Google Scholar]
- 39.Katyal SL, Singh G. An immunologic study of the apoproteins of rat lung surfactant. Lab Invest. 1979;40:562–567. [PubMed] [Google Scholar]
- 40.Katyal SL, Singh G. Analysis of pulmonary surfactant apoproteins by electrophoresis. Biochem Biophys Acta. 1981;670:323–331. doi: 10.1016/0005-2795(81)90104-5. [DOI] [PubMed] [Google Scholar]
- 41.Katyal SL, Amenta JS, Singh G, Silverman JA. Deficient lung surfactant apoproteins in amniotic fluid with mature phospholipid profile from diabetic pregnancies. Am J Obstet Gynaecol. 1984;148:48–53. doi: 10.1016/s0002-9378(84)80031-9. [DOI] [PubMed] [Google Scholar]
- 42.King RJ, Clements JA. Surface active materials from dog lung. I. Method of isolation. Am J Physiol. 1972;223:707–714. doi: 10.1152/ajplegacy.1972.223.3.707. [DOI] [PubMed] [Google Scholar]
- 43.King RJ, Clements JA. Surface active materials from dog lung. II. Composition and physiological correlations. Am J Physiol. 1972;223:715–726. doi: 10.1152/ajplegacy.1972.223.3.715. [DOI] [PubMed] [Google Scholar]
- 44.King RJ, Klass DJ, Gikas EG, Clements JA. Isolation of apoproteins from canine surface active material. Am J Physiol. 1973;224:788–795. doi: 10.1152/ajplegacy.1973.224.4.788. [DOI] [PubMed] [Google Scholar]
- 45.King RJ. The surfactant system of the lung. Fed Proc. 1974;33:2238–2247. [PubMed] [Google Scholar]
- 46.King RJ, Gikas EG, Ruch J, Clements JA. The radio-immunoassay of pulmonary surface active material in sheep lung. Am Rev Respir Dis. 1974;110:273–281. doi: 10.1164/arrd.1974.110.3.273. [DOI] [PubMed] [Google Scholar]
- 47.King RJ, Khan HA, Foye JL, Greenberg JH, Jones HE. Transferrin, iron and dermatophytes. I Serum dermatophyte inhibitory component definitely identified as unsaturated transferrin. J Lab Clin Med. 1975;86:204–212. [PubMed] [Google Scholar]
- 48.King RJ, Ruch J, Gikas EG, Platzker ACG, Creasy RK. Appearance of apoproteins of pulmonary surfactant in human amniotic fluid. J Appl Physiol. 1975;39:735–741. doi: 10.1152/jappl.1975.39.5.735. [DOI] [PubMed] [Google Scholar]
- 49.King RJ. Metabolic fate of the apoproteins of pulmonary surfactant. Am Rev Respir Dis. 1977;115:73–79. doi: 10.1164/arrd.1977.115.S.73. [DOI] [PubMed] [Google Scholar]
- 50.King RJ, Martin H, Mitts D, Hoemstrom FM. Metabolism of the apoproteins in pulmonary surfactant. J Appl Physiol. 1977;42:483–491. doi: 10.1152/jappl.1977.42.4.483. [DOI] [PubMed] [Google Scholar]
- 51.King RJ, MacBeth MC. Physico-chemical properties of dipalmitoyl phosphatidylcholine after interaction with an apoprotein of pulmonary surfactant. Biochim Biophys Acta. 1979;557:86–101. doi: 10.1016/0005-2736(79)90092-0. [DOI] [PubMed] [Google Scholar]
- 52.King RJ, Martin H. Intracellular metabolism of the apoproteins of pulmonary surfactant in rat lung. J Appl Physiol. 1980;48:812–820. doi: 10.1152/jappl.1980.48.5.812. [DOI] [PubMed] [Google Scholar]
- 53.King RJ, MacBeth MC. Interaction of the lipid and protein components of pulmonary surfactant. Role of phosphatidylglycerol and calcium. Biochim Biophys Acta. 1981;647:159–168. doi: 10.1016/0005-2736(81)90242-x. [DOI] [PubMed] [Google Scholar]
- 54.Kohorst WR, Schonfeld SA, Macklin JE, Whitcomb ME. Rapid diagnosis of Legionaires' Disease by bronchoalveolar lavage. Chest. 1983;84:186–190. doi: 10.1378/chest.84.2.186. [DOI] [PubMed] [Google Scholar]
- 55.Koumanov K, Bayanov A, Neicheva T, Maskovska T, Momchilova A. Material diabetes and changes in neonatal rat lung and alveolar surfactant phospholipid. Bull airop Physiopath resp. 1983;19:447–451. [PubMed] [Google Scholar]
- 56.Lachmann B, Bergmann K-Ch. Immunologische Proteindifferenzierung im alveolären Oberflächenfilm. Z Erkr Atmungsorgane. 1972;136:197–202. [PubMed] [Google Scholar]
- 57.Lachmann B, Berggren P, Curstedt T, Grossmann G, Robertson B. Surfactant replacement experimental respiratory distress syndrome induced by lung lavage. In: von Wichert P, editor. Current Concepts in Surfactant Research. Basel München Paris: Karger; 1984. pp. 251–256. [Google Scholar]
- 58.Macklem PT, Proctor DF, Hogg JC. The stability of peripheral airways. Resp Physiol. 1970;8:191–203. doi: 10.1016/0034-5687(70)90015-0. [DOI] [PubMed] [Google Scholar]
- 59.Maguire JJ, Shelley SA, Paciga JE, Balis JU. Isolation and characterization of proteins associated with the lung surfactant system. Prep Biochem. 1977;7:415–425. doi: 10.1080/00327487708065510. [DOI] [PubMed] [Google Scholar]
- 60.Martin WJ, Sanderson DR. Clinical utility of bronchoalveolar lavage in the assessment of interstitial lung disease. Ann Otol Rhinol Laryngol. 1983;92:362–368. doi: 10.1177/000348948309200413. [DOI] [PubMed] [Google Scholar]
- 61.Martin WJ, Williams DE, Dims DE, Sanderson DR. Interstitial lung disease. Assessment by bronchoalveolar lavage. Mayo Clin Proc. 1983;58:751–757. [PubMed] [Google Scholar]
- 62.Metcalf JL, Enhorning G, Possmeyer F. Pulmonary surfactant-associated proteins. Their role in the expression of surface activity. J Appl Physiol. 1980;49:34–41. doi: 10.1152/jappl.1980.49.1.34. [DOI] [PubMed] [Google Scholar]
- 63.Morley C, Greenough A, Miller N, Baugham A, Wood S, Hill C, Gore S. Cambridge artificial Surfactant trial. In: von Wichert P, editor. Current Concepts in surfactant Research. Basel München Paris: Karger; 1984. pp. 274–278. [Google Scholar]
- 64.Müller B, von Wichert P. Identical serum proteins and specific bronchoalveolar lavage proteins in the adult human and the rat. Am Rev Respir Dis. 1984;130:674–677. doi: 10.1164/arrd.1984.130.4.674. [DOI] [PubMed] [Google Scholar]
- 65.von Neergaard K. Neue Auffassung über einen Grundbegriff der Atemmechanik: Die Retraktionskraft der Lunge, abhängig von der Oberflächenspannung in den Aveolen. Z Gesamte Exp Med. 1929;66:373–394. [Google Scholar]
- 66.Paciga JE, Shelley SA, Balis JU. Secretory IgA is a component of rabbit lung surfactant. Biochim Biophys Acta. 1980;631:487–494. doi: 10.1016/0304-4165(80)90024-0. [DOI] [PubMed] [Google Scholar]
- 67.Passero MA, Tye RW, Kilburn KH, Lynn WS. Isolation and characterization of two glycoproteins from patients with alveolar proteinosis. Proc Natl Acad Sci. 1973;70:973–976. doi: 10.1073/pnas.70.4.973. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 68.Pattle RE. Properties, function and origin of the alveolar lining layer. Nature. 1955;175:1125–1126. doi: 10.1038/1751125b0. [DOI] [PubMed] [Google Scholar]
- 69.Payne SM, Finkelstein RA. The critical role of iron in host-bacterial interactions. J Clin Invest. 1978;61:1428–1440. doi: 10.1172/JCI109062. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 70.Rankin JA, Naegel GP, Schrader CE, Matthay RA, Reynolds HY. Air space immunoglobulin production and levels in bronchoalveolar lavage fluid of normal subjects and patients with sarcoidosis. Am Rev Respir Dis. 1983;127:442–448. doi: 10.1164/arrd.1983.127.4.442. [DOI] [PubMed] [Google Scholar]
- 71.Reifenrath R, Zimmermann J. Blood plasma contamination of the lung alveolar surfactant obtained by various sampling techniques. Respir Physiol. 1973;18:238–243. doi: 10.1016/0034-5687(73)90053-4. [DOI] [PubMed] [Google Scholar]
- 72.Reynolds HY, Newball HH. Analysis of proteins and respiratory cells obtained from human lungs by bronchial lavage. J Lab Clin Med. 1974;84:559–573. [PubMed] [Google Scholar]
- 73.Reynolds HY, Fulmer JD, Kazmierowski JA, Roberts WC, Frank MM, Crystal RG. Analysis of cellular and protein content of bronchoalveolar lavage fluid from patients with idiopathic pulmonary fibrosis and chronic hypersensitivity pneumonitis. J Clin Invest. 1977;59:165–175. doi: 10.1172/JCI108615. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 74.Robertson B. Choosing the surfactant for replacement therapy. In: von Wichert P, editor. Current Concepts in Surfactant Research. Basel München Paris: Karger; 1984. pp. 240–250. [Google Scholar]
- 75.Rooney SA, Canavan PM, Motoyama EK. The identification of phosphatidylglycerol in the rat, rabbit, monkey and human lung. Biochim Biophys Acta. 1974;360:56–67. doi: 10.1016/0005-2760(74)90179-9. [DOI] [PubMed] [Google Scholar]
- 76.Sahu S, Lynn WS. Characterization of a high-molecular-weight glycoprotein isolated from the pulmonary secretions of patients with alveolar proteinosis. Biochem J. 1979;177:153–158. doi: 10.1042/bj1770153. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 77.Shelley SA, Balis JU, Paciga JE, Espinoza CG, Richman AV. Biochemical composition of adult human lung surfactant. Lung. 1982;160:195–206. doi: 10.1007/BF02719293. [DOI] [PubMed] [Google Scholar]
- 78.Singh G, Katyal SL. Surfactant apoproteins in nonmalignant pulmonary disorders. Am J Pathol. 1980;101:51–52. [PMC free article] [PubMed] [Google Scholar]
- 79.Strohmaier W, Gasser H, Bahrann S, Redl H, Schlag G. Surfactant composition in lung tissue and lavage fluid after standardized polytrauma followed by 14 days parenteral nutrition with different nutrition regimes. In: von Wichert P, editor. Current Concepts in Surfactant Research. Basel München Paris: Karger; 1984. pp. 217–222. [Google Scholar]
- 80.Sueshi K, Benson BJ. Isolation of a major apolipoprotein of canine and murine pulmonary surfactant. Biochemical and immunochemical characteristics. Biochim Biophys Acta. 1981;665:442–452. doi: 10.1016/0005-2760(81)90257-5. [DOI] [PubMed] [Google Scholar]
- 81.Sugahara K, Maeda H, Yamashiro K-J, Kohda H, Okazaki T, Morioka T. Quantification of an apoprotein of pulmonary surfactant in normal and alloxan-induced diabetic rats by electroimmunoassay. Lung. 1983;161:181–190. doi: 10.1007/BF02713860. [DOI] [PubMed] [Google Scholar]
- 82.Suzuki Y. Effect of protein, cholesterol, and phosphatidylglycerol on the surface activity of the lipid-protein complex. J Lipid Res. 1982;23:62–69. [PubMed] [Google Scholar]
- 83.Szabó S, Barbu Z, Lakatos L, László J, Szabó A. Local production of proteins in normal human bronchial secretion. Respiration. 1980;39:172–178. doi: 10.1159/000194213. [DOI] [PubMed] [Google Scholar]
- 84.Tomasi TB, Bienenstock J. Secretory immunoglobulins. Adv Immunol. 1968;9:1–96. doi: 10.1016/s0065-2776(08)60441-1. [DOI] [PubMed] [Google Scholar]
- 85.Velutti G, Capelli O, Lusuardi M, Braghiroli A, Pellegrino M, Milanti G, Benedetti L. Bronchoalveolar lavage in the normal lung. Respiration. 1983;44:403–410. doi: 10.1159/000194577. [DOI] [PubMed] [Google Scholar]
- 86.Voisin GA. Immune agents of the facilitation reaction. Their possible role in protection of the placental allograft. In: Beconsfild P, Villee C, editors. Placenta: a neglected experimental animal. New York: Pergamon Press; 1979. pp. 283–294. [Google Scholar]
- 87.White R, Janoff A, Godgrey HP. Secretion ofα2-macroglobulin by human alveolar macrophages. Lung. 1980;158:9–14. doi: 10.1007/BF02713697. [DOI] [PubMed] [Google Scholar]
- 88.Williams MC, Benson BJ. Immunocytochemical localization and identification of the major surfactant protein in adult rat lung. J Histochem Cytochem. 1981;29:291–305. doi: 10.1177/29.2.7019304. [DOI] [PubMed] [Google Scholar]
- 89.Zänker KS, Wendt P, Blümel G, Probst J. Partial purification and characterization of phosphatidylcholine-binding proteins from lung lavage. Biochem Med. 1980;23:239–256. doi: 10.1016/0006-2944(80)90034-4. [DOI] [PubMed] [Google Scholar]
