Skip to main content
Springer Nature - PMC COVID-19 Collection logoLink to Springer Nature - PMC COVID-19 Collection
. 2016 Jul 29;10(4):262–271. doi: 10.1007/s13206-016-0402-6

Rolling circle amplification as isothermal gene amplification in molecular diagnostics

Nam-In Goo 1, Dong-Eun Kim 1,
PMCID: PMC7096790  PMID: 32226587

Abstract

Rolling circle amplification (RCA) developed in the mid-1990s has been widely used as an efficient isothermal DNA amplification process for molecular diagnosis. This enzymatic process amplifies target DNA sequences with high fidelity and specificity by using the strand displacing DNA polymerases. The product of RCA is long single-stranded DNA that contains tandem repeat of target sequence. Isothermal reaction amplification condition of RCA has an advantage over conventional polymerase chain reaction, because no temperature cycling devices are needed for RCA. Thus, RCA is suitable tool for point-of-care detection of target nucleic acids as well as facile detection of target genes. Combined with various detection methods, RCA could amplify and detect femtomolar scale of target nucleic acids with a specificity of one or two base discrimination. Herein, RCA technology is reviewed with an emphasis on molecular diagnosis of microRNAs, infectious pathogens, and point mutations.

Keywords: Rolling circle amplification, Isothermal DNA amplification, Molecular diagnostics, Micro RNA, Single Nucleotide Polymorphisms

References

  • 1.Fire A., Xu S.Q. Rolling replication of short DNA circles. Proc. Natl. Acad. Sci. USA. 1995;92:4641–4645. doi: 10.1073/pnas.92.10.4641. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2.Liu D., et al. Rolling Circle DNA Synthesis: Small Circular Oligonucleotides as Efficient Templates for DNA Polymerases. J. Am. Chem. Soc. 1996;118:1587–1594. doi: 10.1021/ja952786k. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3.Blanco L., Salas M. Characterization and purification of a phage phi 29-encoded DNA polymerase required for the initiation of replication. Proc. Natl. Acad. Sci. USA. 1984;81:5325–5329. doi: 10.1073/pnas.81.17.5325. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Blanco L., et al. Highly efficient DNA synthesis by the phage phi 29 DNA polymerase. Symmetrical mode of DNA replication. J. Biol. Chem. 1989;264:8935–8940. [PubMed] [Google Scholar]
  • 5.Beyer S., Nickels P., Simmel F.C. Periodic DNA nanotemplates synthesized by rolling circle amplification. Nano Lett. 2005;5:719–722. doi: 10.1021/nl050155a. [DOI] [PubMed] [Google Scholar]
  • 6.Nilsson M., et al. Padlock probes: circularizing oligonucleotides for localized DNA detection. Science. 1994;265:2085–2088. doi: 10.1126/science.7522346. [DOI] [PubMed] [Google Scholar]
  • 7.Nilsson M. Lock and roll: single-molecule genotyping in situ using padlock probes and rolling-circle amplification. Histochem. Cell Biol. 2006;126:159–164. doi: 10.1007/s00418-006-0213-2. [DOI] [PubMed] [Google Scholar]
  • 8.Lizardi P.M., et al. Mutation detection and single-molecule counting using isothermal rolling-circle amplification. Nat. Genet. 1998;19:225–232. doi: 10.1038/898. [DOI] [PubMed] [Google Scholar]
  • 9.Cheng Y., et al. Highly sensitive determination of microRNA using target-primed and branched rolling-circle amplification. Angew. Chem. Int. Ed. Engl. 2009;48:3268–3272. doi: 10.1002/anie.200805665. [DOI] [PubMed] [Google Scholar]
  • 10.Schweitzer B., Kingsmore S. Combining nucleic acid amplification and detection. Curr. Opin. Biotechnol. 2001;12:21–27. doi: 10.1016/S0958-1669(00)00172-5. [DOI] [PubMed] [Google Scholar]
  • 11.Cheng W., et al. A novel electrochemical biosensor for ultrasensitive and specific detection of DNA based on molecular beacon mediated circular strand displacement and rolling circle amplification. Biosens. Bioelectron. 2014;62:274–279. doi: 10.1016/j.bios.2014.06.056. [DOI] [PubMed] [Google Scholar]
  • 12.Faruqi A.F., et al. High-throughput genotyping of single nucleotide polymorphisms with rolling circle amplification. BMC Genomics. 2001;2:4. doi: 10.1186/1471-2164-2-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Heo H.Y., et al. A valveless rotary microfluidic device for multiplex point mutation identification based on ligation-rolling circle amplification. Biosens. Bioelectron. 2016;78:140–146. doi: 10.1016/j.bios.2015.11.039. [DOI] [PubMed] [Google Scholar]
  • 14.Li J., et al. Rolling circle amplification combined with gold nanoparticle aggregates for highly sensitive identification of single-nucleotide polymorphisms. Anal. Chem. 2010;82:2811–2816. doi: 10.1021/ac100336n. [DOI] [PubMed] [Google Scholar]
  • 15.Li X., et al. Genotyping of multiple single nucleotide polymorphisms with hyperbranched rolling circle amplification and microarray. Clin. Chim. Acta. 2009;399:40–44. doi: 10.1016/j.cca.2008.08.012. [DOI] [PubMed] [Google Scholar]
  • 16.Pickering J., et al. Integration of DNA ligation and rolling circle amplification for the homogeneous, endpoint detection of single nucleotide polymorphisms. Nucleic Acids Res. 2002;30:60. doi: 10.1093/nar/gnf060. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Zhang S., Wu Z., Shen G., Yu R. A label-free strategy for SNP detection with high fidelity and sensitivity based on ligation-rolling circle amplification and intercalating of methylene blue. Biosens. Bioelectron. 2009;24:3201–3207. doi: 10.1016/j.bios.2009.03.012. [DOI] [PubMed] [Google Scholar]
  • 18.Jonstrup S.P., Koch J., Kjems J. A microRNA detection system based on padlock probes and rolling circle amplification. RNA. 2006;12:1747–1752. doi: 10.1261/rna.110706. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.Zhou Y., et al. A dumbbell probe-mediated rolling circle amplification strategy for highly sensitive microRNA detection. Nucleic Acids Res. 2010;38:156. doi: 10.1093/nar/gkq556. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Mashimo Y., Mie M., Suzuki S., Kobatake E. Detection of small RNA molecules by a combination of branched rolling circle amplification and bioluminescent pyrophosphate assay. Anal. Bioanal. Chem. 2011;401:221–227. doi: 10.1007/s00216-011-5083-3. [DOI] [PubMed] [Google Scholar]
  • 21.Sun Y., Gregory K.J., Chen N.G., Golovlev V. Rapid and direct microRNA quantification by an enzymatic luminescence assay. Anal. Biochem. 2012;429:11–17. doi: 10.1016/j.ab.2012.06.021. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.Li Y., Liang L., Zhang C.Y. Isothermally sensitive detection of serum circulating miRNAs for lung cancer diagnosis. Anal. Chem. 2013;85:11174–11179. doi: 10.1021/ac403462f. [DOI] [PubMed] [Google Scholar]
  • 23.Liu H., et al. High specific and ultrasensitive isothermal detection of microRNA by padlock probe-based exponential rolling circle amplification. Anal. Chem. 2013;85:7941–7947. doi: 10.1021/ac401715k. [DOI] [PubMed] [Google Scholar]
  • 24.Zhang L.R., Zhu G., Zhang C.Y. Homogeneous and label-free detection of microRNAs using bifunctional strand displacement amplification-mediated hyperbranched rolling circle amplification. Anal. Chem. 2014;86:6703–6709. doi: 10.1021/ac501645x. [DOI] [PubMed] [Google Scholar]
  • 25.Zhuang J., Lai W., Chen G., Tang D. A rolling circle amplification-based DNA machine for miRNA screening coupling catalytic hairpin assembly with DNAzyme formation. Chem. Commun. (Camb) 2014;50:2935–2938. doi: 10.1039/c3cc49873e. [DOI] [PubMed] [Google Scholar]
  • 26.Miao P., et al. Ultrasensitive detection of microRNA through rolling circle amplification on a DNA tetrahedron decorated electrode. Bioconjug. Chem. 2015;26:602–607. doi: 10.1021/acs.bioconjchem.5b00064. [DOI] [PubMed] [Google Scholar]
  • 27.Zhang X., et al. Chemiluminescence detection of DNA/ microRNA based on cation-exchange of CuS nanoparticles and rolling circle amplification. Chem. Commun. (Camb) 2015;51:6952–6955. doi: 10.1039/C5CC01317H. [DOI] [PubMed] [Google Scholar]
  • 28.Chen Y., et al. A DNA logic gate based on strand displacement reaction and rolling circle amplification, responding to multiple low-abundance DNA fragment input signals, and its application in detecting miRNAs. Chem. Commun. (Camb) 2015;51:6980–6983. doi: 10.1039/C5CC01389E. [DOI] [PubMed] [Google Scholar]
  • 29.Hong C., et al. Fluorometric Detection of MicroRNA Using Isothermal Gene Amplification and Graphene Oxide. Anal. Chem. 2016;88:2999–3003. doi: 10.1021/acs.analchem.6b00046. [DOI] [PubMed] [Google Scholar]
  • 30.Schopf E., et al. Mycobacterium tuberculosis detection via rolling circle amplification. Anal. Methods. 2010;3:267–273. doi: 10.1039/C0AY00529K. [DOI] [PubMed] [Google Scholar]
  • 31.Fu Z., Zhou X., Xing D. Sensitive colorimetric detection of Listeria monocytogenes based on isothermal gene amplification and unmodified gold nanoparticles. Methods. 2013;64:260–266. doi: 10.1016/j.ymeth.2013.08.003. [DOI] [PubMed] [Google Scholar]
  • 32.Gomez A., Miller N.S., Smolina I. Visual detection of bacterial pathogens via PNA-based padlock probe assembly and isothermal amplification of DNAzymes. Anal. Chem. 2014;86:11992–11998. doi: 10.1021/ac5018748. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 33.Xiang Y., et al. Real-time monitoring of mycobacterium genomic DNA with target-primed rolling circle amplification by a Au nanoparticle-embedded SPR biosensor. Biosens. Bioelectron. 2015;66:512–519. doi: 10.1016/j.bios.2014.11.021. [DOI] [PubMed] [Google Scholar]
  • 34.Guo Y., et al. Label-free and highly sensitive electrochemical detection of E. coli based on rolling circle amplifications coupled peroxidase-mimicking DNAzyme amplification. Biosens. Bioelectron. 2016;75:315–319. doi: 10.1016/j.bios.2015.08.031. [DOI] [PubMed] [Google Scholar]
  • 35.Wang B., et al. Rapid and sensitive detection of severe acute respiratory syndrome coronavirus by rolling circle amplification. J. Clin. Microbiol. 2005;43:2339–2344. doi: 10.1128/JCM.43.5.2339-2344.2005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36.Brasino M.D., Cha J.N. Isothermal rolling circle amplification of virus genomes for rapid antigen detection and typing. Analyst. 2015;140:5138–5144. doi: 10.1039/C5AN00721F. [DOI] [PubMed] [Google Scholar]
  • 37.Hamidi S.V., Ghourchian H. Colorimetric monitoring of rolling circle amplification for detection of H5N 1 influenza virus using metal indicator. Biosens. Bioelectron. 2015;72:121–126. doi: 10.1016/j.bios.2015.04.078. [DOI] [PubMed] [Google Scholar]
  • 38.Hamidi S.V., Ghourchian H., Tavoosidana G. Real-time detection of H5N 1 influenza virus through hyperbranched rolling circle amplification. Analyst. 2015;140:1502–1509. doi: 10.1039/C4AN01954G. [DOI] [PubMed] [Google Scholar]
  • 39.Rockett R., et al. Specific rolling circle amplification of low-copy human polyomaviruses BKV, HPyV6, HPyV7, TSPyV, and STLPyV. J. Virol. Methods. 2015;215-216:17–21. doi: 10.1016/j.jviromet.2015.02.004. [DOI] [PubMed] [Google Scholar]
  • 40.Esquela-Kerscher A., Slack F.J. Oncomirs -micro RNAs with a role in cancer. Nat. Rev. Cancer. 2006;6:259–269. doi: 10.1038/nrc1840. [DOI] [PubMed] [Google Scholar]
  • 41.Ambros V. MicroRNA pathways in flies and worms: growth, death, fat, stress, and timing. Cell. 2003;113:673–676. doi: 10.1016/S0092-8674(03)00428-8. [DOI] [PubMed] [Google Scholar]
  • 42.Yanaihara N., et al. Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer Cell. 2006;9:189–198. doi: 10.1016/j.ccr.2006.01.025. [DOI] [PubMed] [Google Scholar]
  • 43.Rabinowits G., et al. Exosomal microRNA: a diagnostic marker for lung cancer. Clin. Lung Cancer. 2009;10:42–46. doi: 10.3816/CLC.2009.n.006. [DOI] [PubMed] [Google Scholar]
  • 44.Lu Y.F., et al. IFNL 3 mRNA structure is remodeled by a functional non-coding polymorphism associated with hepatitis C virus clearance. Sci. Rep. 2015;5:16037. doi: 10.1038/srep16037. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 45.Schroder N.W., Schumann R.R. Single nucleotide polymorphisms of Toll-like receptors and susceptibility to infectious disease. Lancet Infect Dis. 2005;5:156–164. doi: 10.1016/S1473-3099(05)70023-2. [DOI] [PubMed] [Google Scholar]
  • 46.Roses A.D. Pharmacogenetics and the practice of medicine. Nature. 2000;405:857–865. doi: 10.1038/35015728. [DOI] [PubMed] [Google Scholar]
  • 47.Pharoah P.D.P., Dunning A.M., Ponder B.A.J., Easton D.F. Association studies for finding cancer-susceptibility genetic variants. Nat. Rev. Cancer. 2004;4:850–860. doi: 10.1038/nrc1476. [DOI] [PubMed] [Google Scholar]
  • 48.Freitag C.M. The genetics of autistic disorders and its relevance: a review of the literature. Mol. Psychiatry. 2007;12:2–22. doi: 10.1038/sj.mp.4001896. [DOI] [PubMed] [Google Scholar]
  • 49.Zhernakova A., Diemen C.C.V., Wijmenga C. Detecting shared pathogenesis from the shared genetics of immune-related diseases. Nat. Rev. Genet. 2009;10:43–55. doi: 10.1038/nrg2489. [DOI] [PubMed] [Google Scholar]

Articles from Biochip Journal are provided here courtesy of Nature Publishing Group

RESOURCES