Skip to main content
Springer Nature - PMC COVID-19 Collection logoLink to Springer Nature - PMC COVID-19 Collection
. 2015 Oct 10;108(4):272–289. doi: 10.1007/s13149-015-0448-z

Bats and Viruses: complex relationships

Chauves-souris et virus : des relations complexes

F Rodhain 1,
PMCID: PMC7097034  PMID: 26330152

Abstract

With more than 1 200 species, bats and flying foxes (Order Chiroptera) constitute the most important and diverse order of Mammals after Rodents. Many species of bats are insectivorous while others are frugivorous and few of them are hematophagous. Some of these animals fly during the night, others are crepuscular or diurnal. Some fly long distances during seasonal migrations. Many species are colonial cave-dwelling, living in a rather small home range while others are relatively solitary. However, in spite of the importance of bats for terrestrial biotic communities and ecosystem ecology, the diversity in their biology and lifestyles remain poorly known and underappreciated. More than sixty viruses have been detected or isolated in bats; these animals are therefore involved in the natural cycles of many of them. This is the case, for instance, of rabies virus and other Lyssavirus (Family Rhabdoviridae), Nipah and Hendra viruses (Paramyxoviridae), Ebola and Marburg viruses (Filoviridae), SARS-CoV and MERS-CoV (Coronaviridae). For these zoonotic viruses, a number of bat species are considered as important reservoir hosts, efficient disseminators or even directly responsible of the transmission. Some of these bat-borne viruses cause highly pathogenic diseases while others are of potential significance for humans and domestic or wild animals; so, bats are an important risk in human and animal public health. Moreover, some groups of viruses developed through different phylogenetic mechanisms of coevolution between viruses and bats. The fact that most of these viral infections are asymptomatic in bats has been observed since a long time but the mechanisms of the viral persistence are not clearly understood. The various bioecology of the different bat populations allows exchange of virus between migrating and non-migrating conspecific species. For a better understanding of the role of bats in the circulation of these viral zoonoses, epidemiologists must pay attention to some of their biologic properties which are not fully documented, like their extreme longevity, their diet, the population size and the particular densities observed in species with crowded roosting behavior, the population structure and migrations, the hibernation permitting overwintering of viruses, their particular innate and acquired immune response, probably related at least partially to their ability to fly, allowing persistent virus infections and preventing immunopathological consequences, etc. It is also necessary to get a better knowledge of the interactions between bats and ecologic changes induced by man and to attentively follow bat populations and their viruses through surveillance networks involving human and veterinary physicians, specialists of wild fauna, ecologists, etc. in order to understand the mechanisms of disease emergence, to try to foresee and, perhaps, to prevent viral emergences beforehand. Finally, a more fundamental research about immune mechanisms developed in viral infections is essential to reveal the reasons why Chiroptera are so efficient reservoir hosts. Clearly, a great deal of additional work is needed to document the roles of bats in the natural history of viruses.

Keywords: Chiroptera, Bats, Virus, Viral zoonoses, Man, Epidemiology, Immune evasion and Virus persistence, Emerging epidemics

Références

  • 1.AFSSA . Rapport sur la rage des Chiroptères en France métropolitaine. 2003. p. 70. [Google Scholar]
  • 2.Annan A, Baldwin H J, Corman V, et al. Human betacoronavirus 2c EMC/2012-related viruses in bats, Ghana and Europe. Emerg Infect Dis. 2013;19(3):456–9. doi: 10.3201/eid1903.121503. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3.Badrane H, Tordo N. Host switching in Lyssavirus history from the Chiroptera to the Carnivora orders. J Virol. 2001;75(17):8096–8104. doi: 10.1128/JVI.75.17.8096-8104.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Banyard AC, Hayman D, Johnson N, et al. Bats and Lyssavirus. Adv Virus Res. 2011;79:239–89. doi: 10.1016/B978-0-12-387040-7.00012-3. [DOI] [PubMed] [Google Scholar]
  • 5.Blackwood JC, Streicker DG, Altizer S, Rohani P. Resolving the roles of immunity, pathogenesis and immigration for rabies persistence in vampire bats. Proc Natl Acad Sci U S A. 2013;110(51):20837–42. doi: 10.1073/pnas.1308817110. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Breed AC, Field HE, Smith CS, et al. Bats without borders: long-distance movements and implications for disease risk management. Ecohealth. 2010;7(2):204–12. doi: 10.1007/s10393-010-0332-z. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Breed AC, Meers J, Sendow I, et al. The distribution of henipaviruses in Southeast Asia and Australasia: is Wallace’s line a barrier to Nipah virus? PlosOne. 2013;8(4):1–8. doi: 10.1371/journal.pone.0061316. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Brosset A. Les migrations de la pipistrelle de Nathusius, Pipistrellus nathusii, en France. Ses incidences possibles sur la propagation de la rage. Mammalia. 1990;54:207–12. [Google Scholar]
  • 9.Calisher CH, Childs JE, Field HE, et al. Bats: important reservoir hosts of emerging viruses. Clin Microbiol Rev. 2006;19(3):531–45. doi: 10.1128/CMR.00017-06. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.Carrington CV, Foster JE, Zhu HC, et al. Detection and phylogenetic analysis of group 1 coronaviruses in South American bats. Emerg Infect Dis. 2008;14(12):1890–3. doi: 10.3201/eid1412.080642. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Chan JF, To KK, Tse H, et al. Interspecies transmission and emergence of novel viruses: lessons from bats and birds. Trends Microbiol. 2013;21(10):544–55. doi: 10.1016/j.tim.2013.05.005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Ching PK, de los Reyes VC, Sucaldito MN, et al. Outbreak of Henipavirus Infection, Philippines, 2014. Emerg Infect Dis. 2015;21(2):328–31. doi: 10.3201/eid2102.141433. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Chua KB, Goh KJ, Wong KT, et al. Fatal encephalitis due to Nipah virus among pig-farmers in Malaysia. Lancet. 1999;354(9186):1257–9. doi: 10.1016/S0140-6736(99)04299-3. [DOI] [PubMed] [Google Scholar]
  • 14.Corman VM, Ithete NL, Richards LR, et al. Rooting the phylogenetic tree of middle East respiratory syndrome coronavirus by characterization of a conspecific virus from an African bat. J Virol. 2014;88(19):11297–303. doi: 10.1128/JVI.01498-14. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Daszak P, Zambrana-Torrelio C, Bogich TL, et al. Interdisciplinary approaches to understanding disease emergence: the past, present, and future drivers of Nipah virus emergence. Proc Natl Acad Sci U S A. 2013;110:3681–8. doi: 10.1073/pnas.1201243109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Drexler JF, Corman VM, Müller MA, et al. Bats host major mammalian paramyxoviruses. Nat Commun. 2012;3:796. doi: 10.1038/ncomms1796. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Field H, Young P, Yob JM, et al. The natural history of Hendra and Nipah viruses. Microbes Infect. 2001;3(4):307–14. doi: 10.1016/S1286-4579(01)01384-3. [DOI] [PubMed] [Google Scholar]
  • 18.Food and Agriculture Organisation of the United Nations (2011). Investigating the role of bats in emerging zoonoses: Balancing ecology, conservation and public health interests. S.H. Newman, H.E. Field, C.E. de Jong and J.H. Epstein (édit.), FAO Animal Production and Health Manual N° 12, Rome.
  • 19.Hahn MB, Gurley ES, Epstein JH, et al. The Role of Landscape composition and configuration on Pteropus giganteus Roosting Ecology and Nipah virus spillover Risk in Bangladesh. Am J Trop Med Hyg. 2014;90(2):247–55. doi: 10.4269/ajtmh.13-0256. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Hall RJ, Wang J, Peacey M, et al. New Alphacoronavirus in Mystacina tuberculata Bats, New Zealand. Emerg Infect Dis. 2014;20(4):697–700. doi: 10.3201/eid2004.131441. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.Hyatt AD, Daszak P, Cunningham AA, et al. Henipaviruses: Gaps in the Knowledge of Emergence. Ecohealth. 2004;1:25–38. doi: 10.1007/s10393-004-0017-6. [DOI] [Google Scholar]
  • 22.Khan MS, Hossain J, Gurley ES, et al. Use of infrared camera to understand bats’ access to date palm sap: implications for preventing Nipah virus transmission. Ecohealth. 2010;7(4):517–25. doi: 10.1007/s10393-010-0366-2. [DOI] [PubMed] [Google Scholar]
  • 23.Lau SK, Woo PC, Li KS, et al. Severe acute respiratory syndrome coronavirus-like virus in Chinese horseshoe Bats. Proc Natl Acad Sci U S A. 2005;102(39):14040–5. doi: 10.1073/pnas.0506735102. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Li W, Shi Z, Yu M, et al. Bats are natural reservoirs of SARS-like coronaviruses. Science. 2005;310(5748):676–9. doi: 10.1126/science.1118391. [DOI] [PubMed] [Google Scholar]
  • 25.Memish ZA, Mishra N, Olival KJ, et al. Middle East respiratory syndrome Coronavirus in Bats. Saudi Arabia. Emerg Infect. 2013;19(11):1819–23. doi: 10.3201/eid1911.131172. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.Messenger SL, Smith JS, Rupprecht CE. Emerging epidemiology of bat-associated cryptic cases of rabies in humans in the United States. Clin Infect Dis. 2002;35(6):738–47. doi: 10.1086/342387. [DOI] [PubMed] [Google Scholar]
  • 27.Moutou F. La Vengeance de la Civette masquée. Paris: Le Pommier; 2007. p. 332. [Google Scholar]
  • 28.Müller MA, Paweska JT, Leman PA, et al. Coronavirus antibodies in African bat species. Emerg Infect Dis. 2007;13(9):1367–70. doi: 10.3201/eid1309.070342. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.Nadin-Davis SA, Real LA. Molecular phylogenetics of the lyssaviruses–Insights from a coalescent approach. Adv Virus Res. 2011;79:203–38. doi: 10.1016/B978-0-12-387040-7.00011-1. [DOI] [PubMed] [Google Scholar]
  • 30.Nahar N, Sultana R, Gurley ES, et al. Date palm sap collection: exploring opportunities to prevent Nipah transmission. Ecohealth. 2010;7(2):196–203. doi: 10.1007/s10393-010-0320-3. [DOI] [PubMed] [Google Scholar]
  • 31.O’Shea TJ, Cryan PM, Cunningham AA, et al. Bat flight and zoonotic viruses. Emerg Infect Dis. 2014;20(5):741–5. doi: 10.3201/eid2005.130539. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32.Pfefferle S, Oppong S, Drexler JF, et al. Distant relatives of severe acute respiratory syndrome coronavirus and close relatives of human coronavirus 229E in bats. Ghana. Emerg Infect Dis. 2009;15(9):1377–84. doi: 10.3201/eid1509.090224. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 33.Picard-Meyer E, Robardet E, Arthur L, et al. Bat rabies in France: a 24-year retrospective epidemiological study. PLoS One. 2014;9(6):e98622. doi: 10.1371/journal.pone.0098622. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34.Shankar V, Orciari L A, Mattos C D, Kuzmin I V, Pape W J, et al. Genetic divergence of rabies viruses from bat species of Colorado. USA. Vector Borne Zoonotic Dis. 2005;5(4):330–41. doi: 10.1089/vbz.2005.5.330. [DOI] [PubMed] [Google Scholar]
  • 35.Simas PV, Barnabé AC, Durães-Carvalho R, et al. Bat coronavirus in Brazil related to appalachian ridge and porcine epidemic diarrhea viruses. Emerg Infect Dis. 2015;21(4):729–31. doi: 10.3201/eid2104.141783. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36.Streicker DG, Turmelle AS, Vonhof MJ, et al. Host Phylogeny constrains cross-species emergence and establishment of rabies virus in bats. Science. 2010;329(5992):676–9. doi: 10.1126/science.1188836. [DOI] [PubMed] [Google Scholar]
  • 37.Tong S, Conrardy C, Ruone S, et al. Detection of novel SARS-like and other coronaviruses in bats from Kenya. Emerg Infect Dis. 2009;15(3):482–5. doi: 10.3201/eid1503.081013. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 38.Towner JS, Pourrut X, Albariño CG, et al. Marburg virus infection detected in a common African bat. PLoS One. 2007;2(8):e764. doi: 10.1371/journal.pone.0000764. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 39.Turmelle AS, Olival KJ. Correlates of viral richness in bats (Order Chiroptera) Ecohealth. 2009;6(4):522–39. doi: 10.1007/s10393-009-0263-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 40.Vabret A, Pillet S, Enouf V. Un nouveau coronavirus venu du Moyen-Orient. Virologie. 2013;17:211–15. doi: 10.1684/vir.2013.0514. [DOI] [PubMed] [Google Scholar]
  • 41.van der Poel WH, Lina PH, Kramps JA. Public health awareness of emerging zoonotic viruses of bats: a European perspective. Vector Borne Zoonotic Dis. 2006;6(4):315–24. doi: 10.1089/vbz.2006.6.315. [DOI] [PubMed] [Google Scholar]
  • 42.Watanabe S, Masangkay JS, Nagata N, et al. Bat coronaviruses and experimental infection of bats, the Philippines. Emerg Infect Dis. 2010;16(8):1217–23. doi: 10.3201/eid1608.100208. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 43.Wong S, Lau S, Woo P, Yuen KY. Bats as a continuing source of emerging infections in humans. Rev Med Virol. 2007;17(2):67–91. doi: 10.1002/rmv.520. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 44.Yang L, Wu Z, Ren X, et al. MERS-related Betacoronavirus in Vespertilio superans Bats. China. Emerg Infect Dis. 2014;20(7):1260–2. doi: 10.3201/eid2007.140318. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 45.Zhang G, Cowled C, Shi Z, et al. Comparative analysis of bat genomes provides insight into the evolution of flight and immunity. Science. 2013;339(6118):456–60. doi: 10.1126/science.1230835. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Bulletin De La Societe De Pathologie Exotique (1990) are provided here courtesy of Nature Publishing Group

RESOURCES