Skip to main content
Springer Nature - PMC COVID-19 Collection logoLink to Springer Nature - PMC COVID-19 Collection
. 1986;4(7):637–641. doi: 10.1038/nbt0786-637

Development of a Genetically–Engineered, Candidate Polio Vaccine Employing the Self–Assembling Properties of the Tobacco Mosaic Virus Coat Protein

Joel R Haynes 1, Janet Cunningham 1, Adolph von Seefried 1, Michael Lennick 1, Robert T Garvin 1,2, Shi-Hsiang Shen 1
PMCID: PMC7097054  PMID: 32226216

Abstract

A synthetic gene coding for the coat protein of tobacco mosaic virus (TMVCP) was expressed in E. coli under the direction of the lacUV5 promoter. Modification of the 3′ end of the TMVCP gene by insertion of a region coding for an antigenic epitope from poliovirus type 3 resulted in the production of a hybrid TMVCP (TMVCP–polio 3). Both the E. coli–produced TMVCP and TMVCP–polio 3 were shown to assemble into virus–like rods under acidic conditions in E. coli extracts. Their purification was accomplished in a single step by chromatography on Sepharose 6B. TMVCP–polio 3 induced the formation of poliovirus neutralizing antibodies following injection into rats. The level of immune response was related to the degree of polymerization of the TMVCP–polio 3 preparations.

References

  • 1.Chow M, Yabrov R, Bittle J, Hogle J, Baltimore D. Synthetic peptides from four separate regions of the poliovirus type 1 capsid protein VP1 induce neutralizing antibodies. Proc. Natl. Acad. Sci. USA. 1985;82:910–914. doi: 10.1073/pnas.82.3.910. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2.Nestorowicz A, Tregear GW, Southwell CN, Martyn J, Murray JM, White DO, Jackson DC. Antibodies elicited by influenza virus hemagglutinin fail to bind to synthetic peptides representing putative antigenic sites. Molecular Immunology. 1985;22:145–154. doi: 10.1016/S0161-5890(85)80008-0. [DOI] [PubMed] [Google Scholar]
  • 3.Almond JW, Stanway G, Cann AJ, Westrop GD, Evans DMA, Ferguson M, Minor PD, Spitz M, Schild GC. New poliovirus vaccines: a molecular approach. Vaccine. 1984;2:177–184. doi: 10.1016/0264-410X(84)90081-1. [DOI] [PubMed] [Google Scholar]
  • 4.Hopp TP. Immunogenicity of a synthetic HBsAg peptide: enhancement by conjugation to a fatty acid carrier. Molecular Immunology. 1984;21:13–16. doi: 10.1016/0161-5890(84)90084-1. [DOI] [PubMed] [Google Scholar]
  • 5.Shapira M, Jibson M, Muller G, Arnon R. Immunity and protection against influenza virus by synthetic peptide corresponding to antigenic sites of hemagglutinin. Proc. Natl. Acad. Sci. USA. 1984;81:2461–2465. doi: 10.1073/pnas.81.8.2461. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Emini EA, Jameson BA, Wimmer E. Priming for and induction of anti-poliovirus neutralizing antibodies by synthetic peptides. Nature. 1983;304:699–703. doi: 10.1038/304699a0. [DOI] [PubMed] [Google Scholar]
  • 7.Gerin JL, Alexander H, Shih JW-K, Purcell RH, Dapolito G, Engle R, Green N, Sutcliffe JG, Shinnick TM, Lerner RA. Chemically synthesized peptides of hepatitis B surface antigen duplicate the d/y specificities and induce subtype-specific antibodies in chimpanzees. Proc. Natl. Acad. Sci. USA. 1983;80:2365–2369. doi: 10.1073/pnas.80.8.2365. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Neurath AR, Kent SBH, Strick N. Specificity of antibodies elicited by a synthetic peptide having a sequence in common with a fragment of a virus protein, the hepatitis B surface antigen. Proc. Natl. Acad. Sci. USA. 1982;79:7871–7875. doi: 10.1073/pnas.79.24.7871. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.Dreesman GR, Sanchez Y, Ionescu-Matiu I, Sparrow JT, Six HR, Peterson DL, Hollinger FB, Melnick JL. Antibody to hepatitis B surface antigen after a single inoculation of uncoupled synthetic HBsAg peptides. Nature. 1982;295:158–160. doi: 10.1038/295158a0. [DOI] [PubMed] [Google Scholar]
  • 10.Lerner RA, Green N, Alexander H, Liu F-T, Sutcliffe G, Shinnick TM. Chemically synthesized peptides predicted from the nucleotide sequence of the hepatitis B virus genome elicit antibodies reactive with the native envelope protein of Dane particles. Proc. Natl. Acad. Sci. USA. 1981;78:3403–3407. doi: 10.1073/pnas.78.6.3403. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Butler PJG. The current picture of the structure and assembly of tobacco mosaic virus. J. Gen. Virol. 1984;65:253–279. doi: 10.1099/0022-1317-65-2-253. [DOI] [PubMed] [Google Scholar]
  • 12.Grosjean H, Fiers W. Preferential codon usage in prokaryotic genes: the optimal codon-anticodon energy and the selective codon usage in efficiently expressed genes. Gene. 1982;18:199–209. doi: 10.1016/0378-1119(82)90157-3. [DOI] [PubMed] [Google Scholar]
  • 13.Goelet P, Lomonossoff GP, Butler PJG, Akam ME, Gait MJ, Karn J. Nucleotide sequence of tobacco mosaic virus RNA. Proc. Natl. Acad. Sci. USA. 1982;79:5818–5822. doi: 10.1073/pnas.79.19.5818. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Fuller F. A family of cloning vectors containing the lacUV5 promoter. Gene. 1982;19:43–54. doi: 10.1016/0378-1119(82)90187-1. [DOI] [PubMed] [Google Scholar]
  • 15.Evans DMA, Minor PD, Schild GS, Almond JW. Critical role of an eight-amino acid sequence of VP1 in neutralization of poliovirus type 3. Nature. 1983;304:459–462. doi: 10.1038/304459a0. [DOI] [PubMed] [Google Scholar]
  • 16.Durham ACH, Klug A. Structures and roles of the polymorphic forms of tobacco mosaic virus protein. III. A model for the association of A-protein into disks. J. Mol. Biol. 1972;67:315–332. doi: 10.1016/0022-2836(72)90244-6. [DOI] [PubMed] [Google Scholar]
  • 17.Durham ACH, Finch JT. Structures and roles of the polymorphic forms of tobacco mosaic virus protein. II. Electron microscopic observations of the larger polymers. J. Mol. Biol. 1972;67:307–314. doi: 10.1016/0022-2836(72)90243-4. [DOI] [PubMed] [Google Scholar]
  • 18.Valenzuela P, Coit D, Medina-Selby A, Kuo C, Van Nest G, Burke RL, Bull P, Urdea MS, Graves RV. Antigen engineering in yeast: Synthesis and assembly of hybrid hepatitis B surface antigen-herpes simplex 1 gD particles. BioTechnology. 1985;3:323–326. [Google Scholar]
  • 19.Gordon LK. Modern Approaches to Vaccines. 1984. Characterization of a hapten-carrier conjugate vaccine: H. influenzae-diphtheria conjugate vaccine; pp. 393–396. [Google Scholar]
  • 20.Schutze M-P, Leclerc C, Jolivet M, Audibert F, Chedid L. Carrier-induced epitopic suppression, a major issue for future synthetic vaccines. J. Immunology. 1985;135:2319–2322. [PubMed] [Google Scholar]
  • 21.Sanger F, Coulson AR. The use of thin polyacrylamide gels for DNA sequencing. FEBS Lett. 1978;87:107–110. doi: 10.1016/0014-5793(78)80145-8. [DOI] [PubMed] [Google Scholar]
  • 22.Clarke P, Lin H-C, Wilcox G. Ultraviolet imaging: a simple method for detecting nucleic acids in preparative gels. Analytical Biochem. 1982;124:88–91. doi: 10.1016/0003-2697(82)90224-X. [DOI] [PubMed] [Google Scholar]
  • 23.Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970;227:680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  • 24.Lee C-YG, Huang Y-S, Hu P-C, Gomer V, Menge AC. Analysis of sperm antigens by sodium dodecyl sulfate gel/protein blot radioimmunobinding method. Analytical Biochem. 1982;123:14–22. doi: 10.1016/0003-2697(82)90617-0. [DOI] [PubMed] [Google Scholar]
  • 25.van Steenis G, van Wezel AL, Sekhuis VM. Potency testing of killed polio vaccine in rats. Dev. Biol. Stand. 1981;47:119–128. [PubMed] [Google Scholar]

Articles from Bio/Technology (Nature Publishing Company) are provided here courtesy of Nature Publishing Group

RESOURCES