Skip to main content
Springer Nature - PMC COVID-19 Collection logoLink to Springer Nature - PMC COVID-19 Collection
. 1995;2(6):458–465. doi: 10.1038/nsb0695-458

Structure-based design of the first potent and selective inhibitor of human non-pancreatic secretory phospholipase A2

RW Schevitz 1, NJ Bach 1, DG Carlson 1, NY Chirgadze 1, DK Clawson 1, RD Dillard 1, SE Draheim 1, LW Hartley 1, ND Jones 2, ED Mihelich 1, JL Olkowski 1, DW Snyder 1, C Sommers 3, J-P Wery 1
PMCID: PMC7097651  PMID: 7664108

Abstract

A lead compound obtained from a high volume human non-pancreatic secretory phospholipase A2 (hnps-PLA2) screen has been developed into a potent inhibitor using detailed structural knowledge of inhibitor binding to the enzyme active site. Four crystal structures of hnps-PLA2 complexed with a series of increasingly potent indole inhibitors were determined and used as the structural basis for both understanding this binding and providing valuable insights for further development. The application of structure-based drug design has made possible improvements in the binding of this screening lead to the enzyme by nearly three orders of magnitude. Furthermore, the optimized structure (LY311727) displayed 1,500-fold selectivity when assayed against porcine pancreatic s-PLA2.

References

  • 1.Green J-L. Circulating phospholipase A2 activity associated with sepsis and septic shock is indistinguishable from that associated with rheumatoid arthritis. Inflammation. 1991;15:355–367. doi: 10.1007/BF00917352. [DOI] [PubMed] [Google Scholar]
  • 2.Kramer RM. Structure & properties of a human non-pancreatic phospholipase A2. J.biol. Chem. 1989;264:5768–5775. [PubMed] [Google Scholar]
  • 3.Dennis EA, Rhee SG, Billah MM, Hannun YA. Role of phospholipases in generating lipid second messengers in signal transduction. FASEB J. 1991;5:2068–2077. doi: 10.1096/fasebj.5.7.1901288. [DOI] [PubMed] [Google Scholar]
  • 4.Pruzanski W, Vadas P, Browing J. Secretory non-pancreatic group II phospholipase A2: role in physiologic and inflammatory processes. J. lipid Med. 1993;8:161–167. [PubMed] [Google Scholar]
  • 5.Santos AA. Are events after endotoxemia related to circulating phospholipase A2? Ann. Surg. 1994;219:183–192. doi: 10.1097/00000658-199402000-00010. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Vadas P, Pruzanski W. Induction of group II phospholipase A2 expression and pathogenesis of the sepsis syndrome. Circ. Shock. 1993;39:160–167. [PubMed] [Google Scholar]
  • 7.Baldwin JJ. Thynopyran-2-sulfonamides: novel topically active carbonic anhydrase inhibitors for the treatment of glaucoma. J. med. Chem. 1989;32:2510–2513. doi: 10.1021/jm00132a003. [DOI] [PubMed] [Google Scholar]
  • 8.Shoichet BK, Stroud RM, Santi DV, Kuntz ID, Perry KM. Structure-based discovery of inhibitors of thymidylate synthase. Science. 1993;259:1445–1450. doi: 10.1126/science.8451640. [DOI] [PubMed] [Google Scholar]
  • 9.Erickson J. Design, activity, and 2.8 Å crystal structure of a C2 symmetric inhibitor complexed to HIV-1 protease. Science. 1990;249:527–533. doi: 10.1126/science.2200122. [DOI] [PubMed] [Google Scholar]
  • 10.Lam PYS. Rational design of potent, bioavailable, nonpeptide cyclic ureas as HIV protease inhibitors. Science. 1994;263:380–384. doi: 10.1126/science.8278812. [DOI] [PubMed] [Google Scholar]
  • 11.Ealick SE. Application of crystallographic and modelling methods in the design of purine nucleoside phosphorylase inhibitors. Proc. Natn. Acad. Sci U.S.A. 1991;88:11540–111544. doi: 10.1073/pnas.88.24.11540. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.von Itzstein M. Rational design of potent sialidase-based inhibitors of influenza virus replication. Nature. 1993;363:418–423. doi: 10.1038/363418a0. [DOI] [PubMed] [Google Scholar]
  • 13.Warner P, Green RC, Gomes B, Strimpler AM. Non-peptide inhibitors of human leukocyte elastase. 1. The design and synthesis of pyridone-containing inhibitors. J. med. Chem. 1994;37:3090–3099. doi: 10.1021/jm00045a014. [DOI] [PubMed] [Google Scholar]
  • 14.Beaton HG. Discovery of new non-phospholipid inhibitors of the secretory phospholipases A2. J. med. Chem. 1994;37:557–559. doi: 10.1021/jm00031a001. [DOI] [PubMed] [Google Scholar]
  • 15.Jain MK. Fatty acid amides: scooting mode-based discovery of tight-binding competitive inhibitors of secreted phospholipases A2. J. med. Chem. 1992;35:3584–3586. doi: 10.1021/jm00097a018. [DOI] [PubMed] [Google Scholar]
  • 16.Pisabarro MT. Rational modification of human synovial fluid phospholipase A2 inhibitors. J med. Chem. 1994;37:337–341. doi: 10.1021/jm00029a004. [DOI] [PubMed] [Google Scholar]
  • 17.Wery J-P. Structure of recombinant human rheumatoid arthritic synovial fluid phopholipase A2 at 2.2 Å resolution. Nature. 1991;352:79–82. doi: 10.1038/352079a0. [DOI] [PubMed] [Google Scholar]
  • 18.Scott DL. Structures of free and inhibited human secretory phospholipase A2 from inflammatory exudate. Science. 1991;254:1007–1010. doi: 10.1126/science.1948070. [DOI] [PubMed] [Google Scholar]
  • 19.White SP, Scott DL, Otwinski Z, Gelb MH, Sigler PB. Crystal structure of cobra-venom phospholipase 'A2 in a complex with a transition-state analogue. Science. 1990;250:1560–1563. doi: 10.1126/science.2274787. [DOI] [PubMed] [Google Scholar]
  • 20.Scott DL, Otwinowski Z, Gelb MH, Sigler PB. Crystal structure of bee venom phospholpase A2 in a complex with a transition-state analogue. Science. 1990;250:1563–1566. doi: 10.1126/science.2274788. [DOI] [PubMed] [Google Scholar]
  • 21.Thunnissen MMGM. X-ray structure of phospholipase A2 complexed with a substrate-derived inhibitor. Nature. 1990;347:689–691. doi: 10.1038/347689a0. [DOI] [PubMed] [Google Scholar]
  • 22.Kaplan L, Weiss J, Elsback P. Low concentrations ofindomethacin inhibit phospholipase A2 of rabbit polymorphonuclear leukocytes. Proc. natn. Acad. Sci. U.S.A. 1978;75:2955–2958. doi: 10.1073/pnas.75.6.2955. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23.Lobo IB, Hoult JRS. Groups I,II and III extracellular phospholipases A2: Selective inhibition of group II enzymes by indomethacin but not other NSAIDs. Agents Actions. 1994;41:111–113. doi: 10.1007/BF01986409. [DOI] [PubMed] [Google Scholar]
  • 24.Reynolds LJ, Hughes LL, Dennis EA. Analysis of human synovial fluid phospholipase A2 on short chain phosphatidylcholine-mixed micelles: development of a spectrophotomertic assay suitable for a microtiterplate reader. Analyt. Biochem. 1992;204:190–197. doi: 10.1016/0003-2697(92)90160-9. [DOI] [PubMed] [Google Scholar]
  • 25.Snyder DW, Sommers CD, Bobbitt JL, Mihelich ED. Characterization of the contractile effects of human recombinant non-pancreatic secretory phopholipase A2 and other PLA2s on guinea pig lung pleural strips. J. Pharmac. exp. Ther. 1993;266:1147–1155. [PubMed] [Google Scholar]
  • 26.Yu L, Dennis EA. Critical role of a hydrogen bond in the interaction of phospholipase A2 with transition-state and substrate analogues. Proc. natn. Acad. Sci. U.S.A. 1991;88:9325–9329. doi: 10.1073/pnas.88.20.9325. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27.Dennis EA. Diversity of group types, regulation, and function of phospholipase A2. J. biol. Chem. 1994;269:13057–13060. [PubMed] [Google Scholar]
  • 28.Shibata A. Diffraction data collection with R-AXIS II, an X-ray detecting system using imaging plate. Rigaku J. 1990;7:28–32. [Google Scholar]
  • 29.Brunger A. X-PLOR version 3.1 A system for crystallography and NMR. 1992. [Google Scholar]
  • 30.Hendrickson WA, Konnert JH. Biomolecular Structure, Function, Conformation and Evolution. 1981. Stereochemically restrained least-squares refinement; pp. 43–57. [Google Scholar]
  • 31.Jones TA. A graphics model building and refinement system for macromolecules. J. appl. Crystallogr. 1978;11:268–272. doi: 10.1107/S0021889878013308. [DOI] [Google Scholar]

Articles from Nature Structural Biology are provided here courtesy of Nature Publishing Group

RESOURCES