T cells must recognize a vast array of potential foreign peptide–MHC complexes. Comprehensive immune cover can only be provided if each T cell recognizes numerous peptides. The implications of this T cell cross-reactivity include autoimmune disease but also provide opportunities for multiple therapeutic interventions.
Supplementary information
The online version of this article (doi:10.1038/nri3279) contains supplementary material, which is available to authorized users.
Subject terms: T cells, MHC, Immunotherapy, Autoimmunity, Innate immunity, Gene therapy
Abstract
Clonal selection theory proposed that individual T cells are specific for a single peptide–MHC antigen. However, the repertoire of αβ T cell receptors (TCRs) is dwarfed by the vast array of potential foreign peptide–MHC complexes, and a comprehensive system requires each T cell to recognize numerous peptides and thus be cross-reactive. This compromise on specificity has profound implications because the chance of any natural peptide–MHC ligand being an optimal fit for its cognate TCR is small, as there will almost always be more-potent agonists. Furthermore, any TCR raised against a specific peptide–MHC complex in vivo can only be the best available solution from the naive T cell pool and is unlikely to be the best possible solution from the substantially greater number of TCRs that could theoretically be produced. This 'systems view' of TCR recognition provides a plausible cause for autoimmune disease and substantial scope for multiple therapeutic interventions.
Supplementary information
The online version of this article (doi:10.1038/nri3279) contains supplementary material, which is available to authorized users.
Main
T cells recognize peptides bound to MHC class I and class II molecules at the cell surface1. The specificity of this recognition is conferred by the clonotypic αβ T cell receptor (TCR), which is made from two separate chains manufactured from variable (V), diversity (D), joining (J) and constant (C) gene fragments through a process of somatic gene rearrangement. This process involves nucleotide insertions and deletions at V(D)J junctions in each chain. The 'randomization' of V(D)J junctions and the fact that the TCR is a heterodimer of two separately rearranged chains results in a theoretical repertoire of >1015 unique αβ TCRs in the mouse2,3. The theoretical number of possible TCRs in humans is likely to be orders of magnitude larger, as humans possess 54 TCRβ variable genes as compared with the 35 genes in mice, with all other variables being comparable4.
The diversity of TCRs is based on the six complementarity-determining regions (CDRs), which engage both the peptide and the MHC molecule5 (Fig. 1). Typically, MHC class I and class II molecules present peptides from endogenous and exogenous antigens, respectively. The MHC class I molecule has a closed-ended peptide-binding groove and binds peptides of 8–14 amino acids in length. Longer peptides become increasingly distorted in the central region of the MHC class I molecule as the peptide length increases, resulting in peptide 'bulging'6,7. By contrast, the ends of the MHC class II peptide-binding cleft are open, allowing even longer peptides to extend beyond this groove without bulging (Fig. 1b,c).
The clonal selection theory8,9 proposed that individual lymphocytes are specific for a single antigen and that the recognition of alternative ligands is unlikely. For many years the concept of huge numbers of TCRs successfully providing immunity to all foreign peptides in a 'one-clonotype– one-specificity' paradigm was accepted. However, several workers questioned this concept10,11,12,13. Most notably, Don Mason called for the abandonment of such a notion in his seminal thesis on the topic (see Ref. 10). Many of the reasons for this paradigm shift were based on the simple arithmetic of effective immunity requiring the recognition of >1015 potential foreign peptides. Indeed, put in the context of 1015 T cells weighing >500 kilograms, the notion of immune coverage by a naive pool of 1015 monospecific TCRs as suggested by the clonal selection theory is clearly absurd10. There are only 1012 T cells in a human, and more recent studies have estimated that there are <108 distinct TCRs in the human naive T cell pool14.
In humans, MHC molecules are encoded within the HLA locus. The HLA locus is the most polymorphic region of the human genome and is known to encode more than 7,000 allelic variants across the population, with a large number of these variants present at appreciable frequencies15. Some HLA loci are among the fastest evolving coding regions in the human genome16. Each individual expresses six different classical peptide-presenting HLA class I molecules (two HLA-A, two HLA-B and two HLA-C) and six HLA class II molecules (two HLA-DR, two HLA-DQ and two HLA-DP). The expression of a wide variety of HLA molecules ensures that individuals across the population present different antigenic peptides and provides the greatest chance that some individuals may survive any emerging infection. It is extremely difficult to link HLA diversity to past pandemics, but evidence of the importance of infectious diseases in driving HLA selection can be seen with current emerging infectious diseases. For example, homozygosity at HLA class I alleles results in faster disease progression during HIV infection17, and some HLA class I alleles are associated with lower viral loads and protection from disease18. Various factors in addition to T cell immunity are thought to contribute to the maintenance of HLA diversity, including natural killer cell recognition19, mate selection20,21 and transmissible tumours22. Overall, the fact that mutations that alter the amino acid sequence of HLA class I and class II molecules are clustered around the peptide-binding cleft and often alter the peptide sequence that is preferentially bound by the HLA molecule23,24,25 strongly suggests that HLA diversity is upheld to increase the variety of peptides displayed.
The TCR recognizes peptide antigens presented by all HLA variants. Unlike the B cell receptor, the protein sequence of the TCR is fixed, and the TCR never undergoes affinity maturation. Thus, TCRs expressed by naive T cells are required to respond to all foreign antigens despite never having encountered them before and being unable to adapt to them at the protein sequence level. If the TCR repertoire was unable to recognize virtually all foreign peptides bound to self MHC molecules, then pathogens — which usually evolve many millions of times faster than their vertebrate hosts — would be expected to rapidly evolve to exploit these T cell 'blind spots' and overwhelm the host.
It is difficult to conceive of any obvious universal mechanism that might transmit knowledge of 'presentable' epitopes from previous infections between generations within the TCR CDR loops10. In the absence of 'prior knowledge' of the epitopes that might be encountered, T cell immunity must provide immune cover for all possible foreign peptides that contain appropriate anchors for binding to self MHC molecules10. This universal cover represents a major challenge to the immune system, as the possible array of peptides that can be manufactured from the 20 proteinogenic amino acids of a length that can bind to self MHC molecules is vast (>1015) (Box 1). In fact, the theoretical number of possible peptides that T cells might provide immunity to is even greater, as it is possible to raise specific T cell responses to peptides that contain amino acids with post-translational modifications, such as glycosylation26, citrullination27, phosphorylation28,29, cysteinylation and dimerization30,31. Thus, the number of potential foreign peptide–MHC complexes that T cells might encounter dwarfs the number of TCRs available.
Here, I consider how the challenge of this disparity has been met by compromising on antigen specificity so that individual T cells are capable of responding to enormous numbers of different peptide–MHC complexes. This inevitable, extensive T cell cross-reactivity has some profound consequences, including providing a plausible cause for autoimmune disease. I also discuss how the consequences of TCR binding degeneracy offer substantial scope for multiple therapeutic interventions.
TCR binding degeneracy and structure
The recognition by TCRs of all HLA molecules and a roughly conserved diagonal mode of binding on peptide–MHC complexes suggest that TCR interactions conform to some 'rules of engagement' (Fig. 1). Such rules have been proffered in the form of a TCR 'interaction codon'32 that interacts with MHC class II molecules, and in the form of a 'restriction triad'7 that consists of three largely conserved residues in MHC class I molecules that interact with TCRs. These rules fit the generally observed arrangement of TCR–peptide–MHC interactions, in which the germline-encoded (that is, non-rearranged) CDR1α, CDR1β, CDR2α and CDR2β elements of the TCR contact the germline element of the MHC molecule, whereas the non-germline (that is, somatically rearranged) CDR3α and CDR3β loops contact the 'random' peptide element (Fig. 1). However, these convenient rules fail to match all the structures of TCR–peptide–MHC complexes that have been generated to date5, and MHC mutational studies show that the dependency on fixed pairwise interactions between a TCR and a peptide–MHC complex varies widely between individual TCRs33. The peptide–MHC complex itself can also change its confirmation following TCR binding34,35,36. Thus, it is clear that TCR–peptide–MHC interactions are not rigidly conserved but rather allow for considerable flexibility within the confines of some general orientation and binding rules.
The tumour-specific DMF4 TCR provides an excellent example of how large changes in TCR orientation can increase T cell cross-reactivity. The DMF4 TCR engages the nine-amino-acid (9-mer) peptide AAGIGILTV and the 10-mer peptide ELAGIGILTV (which have overlapping sequences) in the context of HLA-A*0201 by adopting a different orientation for the two peptide–MHC complexes37. TCR-binding plasticity can extend beyond different peptide binding registers or different peptide binding angles on peptide–MHC complexes because the CDR loops can be extremely flexible38,39. The mouse 2C TCR structure has been solved in complex with EQYKFYSV–H2-Kb (Ref. 40), EQYKFYSV–H2-Kbm3 (Ref. 41), SIYRYYGL–H2-Kb (Ref. 42) and QLSPFPFDL–H2-Ld (Ref. 43). Although the 2C TCR adopts a similar general conformation on each of these ligands, it assumes a more diagonal binding orientation on the H2-Ld ligand, positioning its CDR1 and CDR2 loops over different regions of the MHCα1 and MHCα2 helices43. In a more extreme example of TCR plasticity, the YAe62 TCR can recognize disparate MHC class I and class II ligands by adopting alternative conformations44. The human A6 TCR provides another well-documented example of plasticity and can accommodate the removal of bulky residues or the insertion of positively charged residues at the middle of the TCR–MHC interface with the cognate Tax peptide from human T-lymphotropic virus 1 (Ref. 39).
The recently described 1E6 TCR — which was isolated from a patient with type 1 diabetes and which recognizes residues 15–24 of the preproinsulin molecule (PPI15–24) presented in the context of HLA-A*0201 (Ref. 45) — does not undergo structural rearrangements following ligand binding46 but is still hugely cross-reactive. Despite a rigid 'lock and key' binding mode, T cells expressing the 1E6 TCR respond to over 1.3 million 10-mer peptides at least as strongly as they respond to the PPI15–24 peptide46,47. Peptides were identified that were >100-fold more potent than PPI15–24 at activating 1E6 TCR-expressing T cells but that differed from PPI15–24 at seven of the ten amino acid positions47. This promiscuity is explained by the structure of the 1E6 TCR–PPI15–24–HLA-A2 complex, in which the TCR exhibits peptide-centric binding that is focused on just two amino acids in the peptide46. This residue-focused mode of binding presumably allows for substitutions at other positions that, in some cases, must considerably stabilize the interaction. In another example of such peptide-centric binding, a single amino acid interchange within two HIV envelope epitopes was shown to reciprocally swap the specificities of two CD8+ T cell clones48, suggesting that a dominant focus on a single amino acid residue in the peptide within a peptide–MHC complex might be reasonably common. Indeed, the TCR–peptide–MHC structures that have been described to date show that usually only a few upward-facing residues from the peptide contribute to the interaction of the TCR with the peptide–MHC complex. Thus, data from the limited number of TCR structures available indicate that TCRs can exhibit substantial binding degeneracy by being extremely flexible and/or through a focused interaction that is dominated by a few peptide residues (Fig. 2).
Together, this binding promiscuity at the TCR interface and the flexible MHC-binding 'motifs'49 that often allow the accommodation of several amino acids at primary MHC anchor positions enable a substantial number of peptides to act as agonists for any given TCR.
T cells must be extremely cross-reactive
It is possible to generate vast numbers of peptides of the length recognized by T cells from the 20 proteinogenic amino acids (Box 1). Even conservative estimates predict that substantially more than 1% of these peptides will possess anchors that allow them to bind to any single MHC molecule. Taking 10-mer peptides as an example, it is possible to generate >1013 different peptides of 10 amino acids in length from the 20 amino acids. Assuming that at least 1% (>1011) of these peptides can bind to a given self MHC molecule, a heterozygous human antigen-presenting cell could theoretically present more than 12 × 1011 different 10-mer peptides on its six MHC class I molecules and six MHC class II molecules. Furthermore, as MHC class II molecules can present longer peptides that can 'frame-shift' within the open-ended binding groove (Fig. 1), Mason calculated that each MHC class II molecule could theoretically present almost 1017 different 14-mer peptides, assuming that 3% of all peptides associate with MHC class II molecules10, and this is without even considering the possibility of post-translational modifications. In summary, the number of potential peptide antigens exceeds the number of TCRs available to respond to them by many orders of magnitude, so T cells can only provide comprehensive immune cover if each one is capable of recognizing many peptides.
T cells are extremely cross-reactive. The theoretical arguments of Mason suggesting that T cells must each recognize on average at least 1 million individual peptides10 have recently gained traction as a result of data that demonstrate this level of cross-reactivity and provide plausible structural mechanisms for its occurrence. All T cells are 'auditioned' in the thymus and only those that react weakly with a self peptide–MHC ligand are positively selected50. T cells bearing TCRs that react strongly to self antigens are 'culled' at this stage.
Extensive TCR binding degeneracy and cross-recognition of peptide–MHC molecules by thymocytes has been elegantly demonstrated by studies showing that a remarkably comprehensive T cell repertoire can be selected by a single peptide51 and that the resulting T cells can be activated by peptides that are unrelated in sequence to the peptide that they were selected on52. Further compelling evidence that T cells can exhibit extensive cross-reactivity comes from studies with combinatorial peptide libraries that comprise almost all possible peptides of a particular length11,47,53,54,55,56. These libraries are usually used as a series of sub-libraries laid out in positional-scanning format such that there is a sub-library with each amino acid fixed in each position and with all other positions made up of an equimolar mix of the remaining amino acids (of note, cysteine is generally excluded from the 'random' positions to avoid problems of oxidation) (see Supplementary information S1 (figure)). Studies with these libraries in T cell activation assays indicate that agonist ligands can contain several different amino acids at many positions. Several studies have gone on to use this approach to prove the 'Mason hypothesis' and show that individual T cell clones really can recognize over a million different individual peptides in the context of a single MHC molecule47,56,57.
Control of T cell cross-reactivity. The antigen sensitivity of a T cell and its ability to respond to weaker TCR ligands are inexorably linked. T cell sensitivity to an antigen is not a fixed parameter. Memory T cells can recognize concentrations of a peptide antigen that are >50-fold lower than those recognized by naive T cells58,59, and individual T cell clones can generate progeny with both high and low antigen sensitivities60. Antigen sensitivity can be regulated by changes in TCR expression levels or clustering on the cell surface, by changes in the expression or function of co-stimulatory molecules, by differential control of phosphatase pathways that dampen T cell signalling or by alterations in the glycosylation status of the TCR or other cell-surface molecules (reviewed in Ref. 61). Although these mechanisms may regulate the antigen sensitivity of T cells, and thus the ability of T cells to cross-recognize weak TCR ligands, it is difficult to conceive how they might be used to tune the biophysics of TCR engagement with a specific ligand. By contrast, the CD4 and CD8 glycoproteins have a unique role in 'co-receiving' peptide–MHC molecules by binding to largely invariant sites on MHC class II and MHC class I molecules, respectively62. Thus, these co-receptors might possess an ability to differentially regulate the responsiveness of the TCR to the ligand and thereby modulate TCR specificity63. Indeed, CD8 is known to affect both the on-rate64,65 and off-rate66,67 of TCR–peptide–MHC class I engagement and therefore can modulate the kinetics of TCR binding by different peptide–MHC ligands. We have demonstrated how the strength of the peptide–MHC class I–CD8 interaction can have substantial effects on T cell cross-reactivity53. It is important to realize that, although the TCR sequence is invariant, TCR sensitivity to agonist ligands (and therefore T cell cross-reactivity) is not fixed and can be varied throughout development by a number of parameters53.
Consequences of T cell cross-reactivity
The idea that immune cover is provided by limited numbers of highly cross-reactive T cells has both positive and negative implications. The presence of pools of cross-reactive T cells that each recognize large numbers of peptides but that do not respond to self peptides in the periphery has a number of positive consequences. First, a cross-reactive T cell repertoire generates a near perfect solution to the huge challenge of providing effective immune cover by allowing a limited number of T cells to provide immunity against virtually all foreign peptides that can bind to self MHC molecules. Second, a system with a limited number of hugely cross-reactive T cells is both temporally and spatially favourable, as far fewer T cells are needed to scan any infected cell than if the clonal selection theory was rigidly upheld. Third, the corollary of extensive T cell cross-reactivity is that several TCRs are likely to recognize any one peptide (and thus that T cell responses are polyclonal). Polyclonal recognition of peptide–MHC molecules makes it substantially more difficult for pathogens to escape immune recognition, as a mutation that escapes recognition by one TCR might be recognized by another. Fourth, extensive T cell cross-reactivity also provides excellent conservation of resources by generating 'one weapon with several triggers'.
Several documented examples show that an individual T cell clone can target more than one infection through different peptides, a phenomenon known as heterologous immunity68. Heterologous immunity between related pathogens is common. It is well known that immunity to cowpox provides cover for smallpox69, and the tuberculosis vaccine bacterium Mycobacterium bovis bacillus Calmette–Guérin (BCG) can provide some protection against leprosy70. But, the existence of extensive T cell cross-reactivity means that heterologous immunity can extend beyond the cross-recognition of pathogens with high sequence similarity to allow, for example, BCG-induced T cells to also provide immunity against poxviruses71. Similarly, CD8+ T cells specific for the human papillomavirus HLA-A2-restricted YMLDLQPET peptide also recognize the HLA-A2-restricted TMLDIQPED peptide from coronavirus72. Indeed, CD8+ T cell-mediated heterologous immunity can extend to very dissimilar antigens. For example, cells that are specific for the immunodominant GILGFVFTL peptide from influenza virus can often recognize the Epstein–Barr virus epitope GLCTLVAML73 or the immunodominant HIV-derived SLYNTVATL antigen74 (all of which are HLA-A2 restricted).
The extent of heterologous immunity and its importance to human immunity is not yet fully known. The potential positive outcomes of this phenomenon are clear, but heterologous immunity could also have deleterious effects. Documented negative consequences of heterologous immunity include influenza-specific CD8+ T cells contributing to lymphoproliferation in Epstein–Barr virus-associated mononucleosis75 or cross-recognizing a peptide derived from hepatitis C virus (HCV)76, which increases the severity of HCV-associated liver pathology77. It is also possible that heterologous immunity via T cell cross-reactivity could encourage a suboptimal response to the second pathogen owing to 'original antigenic sin'. This antigenic sin could extend beyond the simple case of suboptimal sensitivity to the second antigen to a situation in which the original antigen has established a T helper 1 (TH1)- TH2- or TH17-type response bias that is inappropriate for the second pathogen.
However, the most obvious and detrimental consequence of T cell cross-reactivity to vast numbers of individual peptides is the potential such a system has for causing autoimmunity (Fig. 3). Although strongly self-reactive T cells are deleted in the thymus50, weakly cross-reactive T cells may survive and become activated in the periphery through the cross-recognition of peptides from infectious agents, a phenomenon known as molecular mimicry78,79,80,81. Memory T cells can be stimulated by peptide concentrations more than 50-fold lower than those required to stimulate naive T cells58,59. It is therefore likely that a memory T cell could be stimulated by a cross-reactive peptide with an affinity for the TCR that is far lower than that of the original pathogen-derived peptide. In such a situation, pathogen-mediated priming would be obligatory before functional cross-recognition of a self peptide, a notion that is consistent with the observation that infection can precipitate autoimmune diseases79,82.
Future therapeutic perspectives
The compromise imposed by T cells being hugely cross-reactive in order to provide complete immune cover dictates that an individual TCR–peptide–MHC pairing is highly likely to be suboptimal. Thus, it should be possible to improve the binding of any given TCR to its cognate antigen by enhancing the specific molecular matching. Indeed, yeast display83, phage display84 and computational design85,86 have been used to produce TCRs that bind to peptide–MHC complexes with extremely high affinities (Kd <10 pM) and half-lives of many hours. The MHC class I pathway is predicted to present at least one peptide at the cell surface from every internally produced protein10. This allows TCRs to potentially target any cell based on its expression of any protein (Fig. 4a). Consequently, TCRs might have considerable advantages over regular antibody-based therapies, as they can target a substantially greater number of cellular proteins. Furthermore, there is now substantial evidence that it is possible to improve the affinity of almost any peptide antigen for a given natural TCR. Thus, there is ample scope for the rational design of therapeutic interventions that exploit the fact that most natural TCR–peptide–MHC interactions can be improved upon.
Enhanced TCRs in TCR gene transfer therapy. The rigours of thymic selection ensure that natural TCRs bind to ubiquitous self or tumour-associated antigens with substantially lower affinities than they bind to pathogen-derived antigens87. Natural TCR–peptide–MHC interactions have affinities (measured in terms of Kd) in the range of 0.1–500 μM87,88. Within this range of TCR binding affinities, the affinity and/or half-life correlates with antigen sensitivity65,89, placing natural antitumour T cells at a distinct disadvantage compared with their pathogen-reactive counterparts.
The transfer of TCR genes into recipient host T cells followed by the adoptive transfer of the T cells to patients allows the passive transfer of immunity and can provide a useful mechanism for breaking tolerance to tumour antigens90. This strategy has already shown some promise in patients with malignant melanoma91, but there is room for improvement. The transfer of genes encoding TCRs that have been affinity matured to bind to tumour-associated peptide–MHC complexes with affinities as high as those of the best antiviral T cells (Kd = 100 nM)87,88 could provide 'virus-like' tumour immunity. This process can also be used to generate TCRs with immune 'foresight', as demonstrated by the development of TCRs that could recognize all known escape variants of HIV-1 (Ref. 88).
Enhanced TCRs as soluble therapies. High-affinity soluble TCRs provide an efficient means for the cellular targeting of intracellular antigens that are presented by MHC molecules in vivo (Fig. 4a). Soluble TCRs can be linked to other molecules, such as antibody Fab fragments, and can deliver these molecules to sites of antigen expression in vivo92. Despite the low copy number of most peptide–MHC molecules (<50 copies per cell), we have recently used a soluble TCR fused to a CD3-specific Fab fragment to induce tumour regression in vivo92. These bispecific T cell-engaging TCRs function by recruiting polyclonal T cells via the CD3-specific Fab component but do not by themselves crosslink TCRs or induce T cell activation. Once these molecules are bound to a target cell surface, they become potent activators of antigen-experienced CD8+ T cells and promote the lysis of targets expressing as few as ten cognate peptide–MHC complexes92 (Fig. 4b). A similar approach could be used to dampen autoimmunity by crosslinking inhibitory receptors such as cytotoxic T lymphocyte antigen 4 (CTLA4).
Enhanced T cell ligands (TOPSORT). The fact that any TCR will be capable of recognizing enormous numbers of ligands paves the way for therapies based on altered peptide ligands (APLs). APLs can have advantages over natural ligands, as they can bind strongly to TCRs and can break tolerance to self ligands (including tumour-derived ligands). Previous assumptions about APLs, such as the suggestion that altering a buried anchor residue will not substantially alter TCR binding, have proved to be incorrect93. Nevertheless, combinatorial screening of peptide (or non-peptide) ligands can be used to determine the preferred binding 'landscape' of any TCR and circumvent the requirement for any assumptions. The nature of the system makes it highly likely that each TCR has a different preferred binding landscape. This then enables relatively precise targeting of specific TCRs within populations of antigen-specific T cells through a process termed TCR-optimized peptide skewing of the repertoire of T cells (TOPSORT), which can be used to sort the most effective clonotypes (Fig. 5). The widespread applicability of this approach is dependent on the effective clonotype being 'public'94 (that is, occurring in all individuals with the restricting HLA molecule) or having a public motif that is shared by all individuals with the relevant HLA molecule. Our own preliminary studies using ex vivo peripheral blood mononuclear cells show that this approach can be used to skew the clonotypes that respond to a tumour antigen (J. Ekeruche-Makinde et al., unpublished observations). A similar approach could be used to skew the clonotypes induced by a vaccination against HIV towards those that are known to be more difficult for HIV to escape from.
Concluding remarks
Accumulating evidence, including direct estimates of the total number of TCRs in a human, supports Mason's notion that we should abandon the 'one-clonotype– one-specificity' paradigm suggested by clonal selection theory in favour of a 'one-clonotype– millions-of-specificities' reality. The simple arithmetic of T cell immunity allows T cells to be highly cross-reactive while appearing to be exquisitely specific in the environment in which they are expected to function (Box 1). However, the realities of T cell immunity dictate that TCRs are very rarely an optimal fit for a real antigen and that real MHC-presented peptide antigens are rarely the optimal agonists for a given TCR. This compromise provides multiple opportunities for rational therapeutic interventions based on the directed manipulation of T cell immunity.
Box 1 | Extensive T cell cross-reactivity and apparent specificity are not incongruous.
From the 20 proteinogenic amino acids, it is possible to generate vast numbers of peptides of a length that can be presented by MHC molecules (see the table). T cells are specific because any given T cell can recognize only a tiny fraction of the 'universe' of peptides that can be presented by any given MHC molecule, but they are multispecific because the peptide universe is so large. By way of example, a T cell that recognizes 1 million 10-mer (10-amino-acid) peptides will have less than a 1 in 10 million chance of recognizing any 10-mer peptide chosen at random from the entire peptide universe. These numbers indicate that if a T cell that recognizes 1 million different 10-mer peptides was tested for recognition of random 10-mer peptides at a rate of 1 every minute then on average it would take over 20 years before a cross-reaction was seen! Even the total number of overlapping peptides that can be made from the entire human proteome is an extremely small fraction of all possible peptides (for example, fewer than 107 of the total possible number of 10-mer peptides (>1013) can be made from the human proteome).
In the environment in which T cells function, the important number is the frequency of functional recognition of unrelated peptides that can be processed and presented by MHC molecules. Assuming that just 1% of possible peptides are presented by an MHC molecule, then the functional recognition of 106 10-mer peptides by a single TCR translates into a frequency of cross-reactivity of 1 in 100,000, which is in good accord with an experimental attempt to directly measure this parameter95. Thus, the sheer size of the possible peptide universe allows T cells to be enormously cross-reactive while appearing to be very specific within the environment in which they are required to operate.
Supplementary information
Acknowledgements
My studies in this area were made possible by the generous support of the UK Biotechnology and Biological Sciences Research Council to my colleagues and myself (grant BB/H001085/1). I thank D. Cole and B. Baker for helpful discussions.
Glossary
- Altered peptide ligands
(APLs). Peptide analogues that are derived from an original antigenic peptide. They commonly have amino acid substitutions at residues that contact the T cell receptor (TCR) and alter TCR engagement, resulting in different activation consequences than those induced by the wild-type ('index') antigenic peptide.
- Antigen sensitivity
A measure of how sensitive T cells are to the density of cognate antigen on the antigen-presenting cell surface. T cell receptor (TCR) affinity for a peptide–MHC complex has a large role in antigen sensitivity, but the parameter is also affected by the expression of other molecules that influence cell–cell contact or the downstream signal transduction that results from TCR–peptide–MHC engagement.
- Clonal selection theory
A theory proffered by Niels Jerne which states that there is already a vast array of lymphocytes in the body before any infection. Any challenge with antigen selects, and clonally expands, a single corresponding lymphocyte (B cell or T cell) from the pre-existing lymphocyte pool of differing specificities, and this clonal lymphocyte population then eliminates the antigen.
- Complementarity-determining regions
(CDRs). The regions within antigen receptors that complement the shape of an antigen. The CDRs are the most variable part of the antigen receptor and are largely responsible for the diversity in these molecules. The CDRs allow antibodies and T cell receptors to recognize a vast repertoire of antigens.
- Heterologous immunity
The term used to describe how an immune response to a pathogen can provide immunity to a non-identical pathogen. Heterologous immunity can be mediated by cross-reactive T cells or antibodies.
- Molecular mimicry
Resemblance between epitopes contained in microbial and host proteins, leading to cross-reactivity of T cells in the host.
- Original antigenic sin
A 'footprint' of immune responses is established during the first exposure to a pathogen. These specific memory T cell populations are preferentially re-expanded when re-exposed to the same antigen or one that is similar, thereby limiting the clonal expansion of new antigen-specific T cells. A similar mechanism has been proposed for B cell responses.
- T cell cross-reactivity
The reaction of T cells to more than one distinct peptide–MHC ligand.
- TCR binding degeneracy
Refers to the promiscuity of T cell receptor (TCR) engagement that allows a single TCR to bind to different peptide–MHC complexes.
Biography
Andrew K. Sewell is Associate Research Director of the Institute of Infection and Immunity at Cardiff University School of Medicine, UK. His research focuses on T cell ligands and the receptors that recognize them.
Related links
FURTHER INFORMATION
Competing interests
The author declares no competing financial interests.
References
- 1.Davis MM, et al. Ligand recognition by αβ T cell receptors. Annu. Rev. Immunol. 1998;16:523–544. doi: 10.1146/annurev.immunol.16.1.523. [DOI] [PubMed] [Google Scholar]
- 2.Davis MM. T cell receptor gene diversity and selection. Annu. Rev. Biochem. 1990;59:475–496. doi: 10.1146/annurev.bi.59.070190.002355. [DOI] [PubMed] [Google Scholar]
- 3.Davis MM, Bjorkman PJ. T-cell antigen receptor genes and T-cell recognition. Nature. 1988;334:395–402. doi: 10.1038/334395a0. [DOI] [PubMed] [Google Scholar]
- 4.Lefranc MP, et al. IMGT, the international ImMunoGeneTics information system. Nucleic Acids Res. 2009;37:D1006–D1012. doi: 10.1093/nar/gkn838. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 5.Rudolph MG, Stanfield RL, Wilson IA. How TCRs bind MHCs, peptides, and coreceptors. Annu. Rev. Immunol. 2006;24:419–466. doi: 10.1146/annurev.immunol.23.021704.115658. [DOI] [PubMed] [Google Scholar]
- 6.Probst-Kepper M, et al. Conformational restraints and flexibility of 14-meric peptides in complex with HLA-B*3501. J. Immunol. 2004;173:5610–5616. doi: 10.4049/jimmunol.173.9.5610. [DOI] [PubMed] [Google Scholar]
- 7.Tynan FE, et al. T cell receptor recognition of a 'super-bulged' major histocompatibility complex class I-bound peptide. Nature Immunol. 2005;6:1114–1122. doi: 10.1038/ni1257. [DOI] [PubMed] [Google Scholar]
- 8.Jerne NK. The natural-selection theory of antibody formation. Proc. Natl Acad. Sci. USA. 1955;41:849–857. doi: 10.1073/pnas.41.11.849. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 9.Jerne NK. The somatic generation of immune recognition. Eur. J. Immunol. 1971;1:1–9. doi: 10.1002/eji.1830010102. [DOI] [PubMed] [Google Scholar]
- 10.Mason D. A very high level of crossreactivity is an essential feature of the T-cell receptor. Immunol. Today. 1998;19:395–404. doi: 10.1016/s0167-5699(98)01299-7. [DOI] [PubMed] [Google Scholar]
- 11.Wilson DB, et al. Specificity and degeneracy of T cells. Mol. Immunol. 2004;40:1047–1055. doi: 10.1016/j.molimm.2003.11.022. [DOI] [PubMed] [Google Scholar]
- 12.Wucherpfennig KW, et al. Polyspecificity of T cell and B cell receptor recognition. Semin. Immunol. 2007;19:216–224. doi: 10.1016/j.smim.2007.02.012. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 13.Kersh GJ, Allen PM. Structural basis for T cell recognition of altered peptide ligands: a single T cell receptor can productively recognize a large continuum of related ligands. J. Exp. Med. 1996;184:1259–1268. doi: 10.1084/jem.184.4.1259. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 14.Arstila TP, et al. A direct estimate of the human αβ T cell receptor diversity. Science. 1999;286:958–961. doi: 10.1126/science.286.5441.958. [DOI] [PubMed] [Google Scholar]
- 15.Robinson J, et al. IMGT/HLA and IMGT/MHC: sequence databases for the study of the major histocompatibility complex. Nucleic Acids Res. 2003;31:311–314. doi: 10.1093/nar/gkg070. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 16.McAdam SN, et al. A uniquely high level of recombination at the HLA-B locus. Proc. Natl Acad. Sci. USA. 1994;91:5893–5897. doi: 10.1073/pnas.91.13.5893. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 17.Carrington M, et al. HLA and HIV-1: heterozygote advantage and B*35-Cw*04 disadvantage. Science. 1999;283:1748–1752. doi: 10.1126/science.283.5408.1748. [DOI] [PubMed] [Google Scholar]
- 18.Goulder PJ, Watkins DI. Impact of MHC class I diversity on immune control of immunodeficiency virus replication. Nature Rev. Immunol. 2008;8:619–630. doi: 10.1038/nri2357. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 19.Ljunggren HG, Karre K. In search of the 'missing self': MHC molecules and NK cell recognition. Immunol. Today. 1990;11:237–244. doi: 10.1016/0167-5699(90)90097-s. [DOI] [PubMed] [Google Scholar]
- 20.Carroll LS, Penn DJ, Potts WK. Discrimination of MHC-derived odors by untrained mice is consistent with divergence in peptide-binding region residues. Proc. Natl Acad. Sci. USA. 2002;99:2187–2192. doi: 10.1073/pnas.042244899. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 21.Yamazaki K, et al. Control of mating preferences in mice by genes in the major histocompatibility complex. J. Exp. Med. 1976;144:1324–1335. doi: 10.1084/jem.144.5.1324. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 22.Siddle HV, et al. Transmission of a fatal clonal tumor by biting occurs due to depleted MHC diversity in a threatened carnivorous marsupial. Proc. Natl Acad. Sci. USA. 2007;104:16221–16226. doi: 10.1073/pnas.0704580104. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 23.Hughes AL, Ota T, Nei M. Positive Darwinian selection promotes charge profile diversity in the antigen-binding cleft of class I major-histocompatibility-complex molecules. Mol. Biol. Evol. 1990;7:515–524. doi: 10.1093/oxfordjournals.molbev.a040626. [DOI] [PubMed] [Google Scholar]
- 24.Parham P, Ohta T. Population biology of antigen presentation by MHC class I molecules. Science. 1996;272:67–74. doi: 10.1126/science.272.5258.67. [DOI] [PubMed] [Google Scholar]
- 25.Sette A, Sidney J. HLA supertypes and supermotifs: a functional perspective on HLA polymorphism. Curr. Opin. Immunol. 1998;10:478–482. doi: 10.1016/s0952-7915(98)80124-6. [DOI] [PubMed] [Google Scholar]
- 26.Green RS, et al. Mammalian N-glycan branching protects against innate immune self-recognition and inflammation in autoimmune disease pathogenesis. Immunity. 2007;27:308–320. doi: 10.1016/j.immuni.2007.06.008. [DOI] [PubMed] [Google Scholar]
- 27.Hill JA, et al. Arthritis induced by posttranslationally modified (citrullinated) fibrinogen in DR4-IE transgenic mice. J. Exp. Med. 2008;205:967–979. doi: 10.1084/jem.20072051. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 28.Mohammed F, et al. Phosphorylation-dependent interaction between antigenic peptides and MHC class I: a molecular basis for the presentation of transformed self. Nature Immunol. 2008;9:1236–1243. doi: 10.1038/ni.1660. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 29.Petersen J, et al. Phosphorylated self-peptides alter human leukocyte antigen class I-restricted antigen presentation and generate tumor-specific epitopes. Proc. Natl Acad. Sci. USA. 2009;106:2776–2781. doi: 10.1073/pnas.0812901106. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 30.Chen W, Yewdell JW, Levine RL, Bennink JR. Modification of cysteine residues in vitro and in vivo affects the immunogenicity and antigenicity of major histocompatibility complex class I-restricted viral determinants. J. Exp. Med. 1999;189:1757–1764. doi: 10.1084/jem.189.11.1757. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 31.Meadows L, et al. The HLA-A*0201-restricted H-Y antigen contains a posttranslationally modified cysteine that significantly affects T cell recognition. Immunity. 1997;6:273–281. doi: 10.1016/s1074-7613(00)80330-1. [DOI] [PubMed] [Google Scholar]
- 32.Feng D, Bond CJ, Ely LK, Maynard J, Garcia KC. Structural evidence for a germline-encoded T cell receptor–major histocompatibility complex interaction 'codon'. Nature Immunol. 2007;8:975–983. doi: 10.1038/ni1502. [DOI] [PubMed] [Google Scholar]
- 33.Burrows SR, et al. Hard wiring of T cell receptor specificity for the major histocompatibility complex is underpinned by TCR adaptability. Proc. Natl Acad. Sci. USA. 2010;107:10608–10613. doi: 10.1073/pnas.1004926107. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 34.Borbulevych OY, et al. T cell receptor cross-reactivity directed by antigen-dependent tuning of peptide–MHC molecular flexibility. Immunity. 2009;31:885–896. doi: 10.1016/j.immuni.2009.11.003. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 35.Garboczi DN, et al. Structure of the complex between human T-cell receptor, viral peptide and HLA-A2. Nature. 1996;384:134–141. [PubMed] [Google Scholar]
- 36.Tynan FE, et al. A T cell receptor flattens a bulged antigenic peptide presented by a major histocompatibility complex class I molecule. Nature Immunol. 2007;8:268–276. doi: 10.1038/ni1432. [DOI] [PubMed] [Google Scholar]
- 37.Borbulevych OY, Santhanagopolan SM, Hossain M, Baker BM. TCRs used in cancer gene therapy cross-react with MART-1/Melan-A tumor antigens via distinct mechanisms. J. Immunol. 2011;187:2453–2463. doi: 10.4049/jimmunol.1101268. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 38.Armstrong KM, Piepenbrink KH, Baker BM. Conformational changes and flexibility in T-cell receptor recognition of peptide–MHC complexes. Biochem. J. 2008;415:183–196. doi: 10.1042/BJ20080850. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 39.Scott DR, Borbulevych OY, Piepenbrink KH, Corcelli SA, Baker BM. Disparate degrees of hypervariable loop flexibility control T-cell receptor cross-reactivity, specificity, and binding mechanism. J. Mol. Biol. 2011;414:385–400. doi: 10.1016/j.jmb.2011.10.006. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 40.Garcia KC, et al. Structural basis of plasticity in T cell receptor recognition of a self peptide–MHC antigen. Science. 1998;279:1166–1172. doi: 10.1126/science.279.5354.1166. [DOI] [PubMed] [Google Scholar]
- 41.Luz JG, et al. Structural comparison of allogeneic and syngeneic T cell receptor–peptide–major histocompatibility complex complexes: a buried alloreactive mutation subtly alters peptide presentation substantially increasing Vβ interactions. J. Exp. Med. 2002;195:1175–1186. doi: 10.1084/jem.20011644. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 42.Degano M, et al. A functional hot spot for antigen recognition in a superagonist TCR/MHC complex. Immunity. 2000;12:251–261. doi: 10.1016/s1074-7613(00)80178-8. [DOI] [PubMed] [Google Scholar]
- 43.Colf LA, et al. How a single T cell receptor recognizes both self and foreign MHC. Cell. 2007;129:135–146. doi: 10.1016/j.cell.2007.01.048. [DOI] [PubMed] [Google Scholar]
- 44.Yin L, et al. A single T cell receptor bound to major histocompatibility complex class I and class II glycoproteins reveals switchable TCR conformers. Immunity. 2011;35:23–33. doi: 10.1016/j.immuni.2011.04.017. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 45.Skowera A, et al. CTLs are targeted to kill β cells in patients with type 1 diabetes through recognition of a glucose-regulated preproinsulin epitope. J. Clin. Invest. 2008;118:3390–3402. doi: 10.1172/JCI35449. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 46.Bulek AM, et al. Structural basis for the killing of human β cells by CD8+ T cells in type 1 diabetes. Nature Immunol. 2012;13:283–289. doi: 10.1038/ni.2206. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 47.Wooldridge L, et al. A single autoimmune T cell receptor recognizes more than a million different peptides. J. Biol. Chem. 2012;287:1168–1177. doi: 10.1074/jbc.M111.289488. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 48.Takahashi H, et al. A single amino acid interchange yields reciprocal CTL specificities for HIV-1 gp160. Science. 1989;246:118–121. doi: 10.1126/science.2789433. [DOI] [PubMed] [Google Scholar]
- 49.Falk K, Rotzschke O, Stevanovic S, Jung G, Rammensee HG. Allele-specific motifs revealed by sequencing of self-peptides eluted from MHC molecules. Nature. 1991;351:290–296. doi: 10.1038/351290a0. [DOI] [PubMed] [Google Scholar]
- 50.Starr TK, Jameson SC, Hogquist KA. Positive and negative selection of T cells. Annu. Rev. Immunol. 2003;21:139–176. doi: 10.1146/annurev.immunol.21.120601.141107. [DOI] [PubMed] [Google Scholar]
- 51.Ignatowicz L, Kappler J, Marrack P. The repertoire of T cells shaped by a single MHC/peptide ligand. Cell. 1996;84:521–529. doi: 10.1016/S0092-8674(00)81028-4. [DOI] [PubMed] [Google Scholar]
- 52.Ignatowicz L, et al. T cells can be activated by peptides that are unrelated in sequence to their selecting peptide. Immunity. 1997;7:179–186. doi: 10.1016/s1074-7613(00)80521-x. [DOI] [PubMed] [Google Scholar]
- 53.Wooldridge L, et al. CD8 controls T cell cross-reactivity. J. Immunol. 2010;185:4625–4632. doi: 10.4049/jimmunol.1001480. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 54.Hiemstra HS, Drijfhout JW, Roep BO. Antigen arrays in T cell immunology. Curr. Opin. Immunol. 2000;12:80–84. doi: 10.1016/s0952-7915(99)00054-0. [DOI] [PubMed] [Google Scholar]
- 55.Pinilla C, et al. Exploring immunological specificity using synthetic peptide combinatorial libraries. Curr. Opin. Immunol. 1999;11:193–202. doi: 10.1016/s0952-7915(99)80033-8. [DOI] [PubMed] [Google Scholar]
- 56.Maynard J, et al. Structure of an autoimmune T cell receptor complexed with class II peptide–MHC: insights into MHC bias and antigen specificity. Immunity. 2005;22:81–92. doi: 10.1016/j.immuni.2004.11.015. [DOI] [PubMed] [Google Scholar]
- 57.Hiemstra HS, et al. Quantitative determination of TCR cross-reactivity using peptide libraries and protein databases. Eur. J. Immunol. 1999;29:2385–2391. doi: 10.1002/(SICI)1521-4141(199908)29:08<2385::AID-IMMU2385>3.0.CO;2-B. [DOI] [PubMed] [Google Scholar]
- 58.Curtsinger JM, Lins DC, Mescher MF. CD8+ memory T cells (CD44high, Ly-6C+) are more sensitive than naive cells (CD44low, Ly-6C−) to TCR/CD8 signaling in response to antigen. J. Immunol. 1998;160:3236–3243. [PubMed] [Google Scholar]
- 59.Veiga-Fernandes H, Walter U, Bourgeois C, McLean A, Rocha B. Response of naive and memory CD8+ T cells to antigen stimulation in vivo. Nature Immunol. 2000;1:47–53. doi: 10.1038/76907. [DOI] [PubMed] [Google Scholar]
- 60.Kroger CJ, Alexander-Miller MA. Cutting edge: CD8+ T cell clones possess the potential to differentiate into both high- and low-avidity effector cells. J. Immunol. 2007;179:748–751. doi: 10.4049/jimmunol.179.2.748. [DOI] [PubMed] [Google Scholar]
- 61.Wooldridge L, et al. Tricks with tetramers: how to get the most from multimeric peptide-MHC. Immunology. 2008;126:147–164. doi: 10.1111/j.1365-2567.2008.02848.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 62.Janeway CA., Jr. The T cell receptor as a multicomponent signalling machine: CD4/CD8 coreceptors and CD45 in T cell activation. Annu. Rev. Immunol. 1992;10:645–674. doi: 10.1146/annurev.iy.10.040192.003241. [DOI] [PubMed] [Google Scholar]
- 63.van den Berg HA, Wooldridge L, Laugel B, Sewell AK. Coreceptor CD8-driven modulation of T cell antigen receptor specificity. J. Theor. Biol. 2007;249:395–408. doi: 10.1016/j.jtbi.2007.08.002. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 64.Gakamsky DM, et al. CD8 kinetically promotes ligand binding to the T-cell antigen receptor. Biophys. J. 2005;89:2121–2133. doi: 10.1529/biophysj.105.061671. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 65.Laugel B, et al. Different T cell receptor affinity thresholds and CD8 coreceptor dependence govern cytotoxic T lymphocyte activation and tetramer binding properties. J. Biol. Chem. 2007;282:23799–23810. doi: 10.1074/jbc.M700976200. [DOI] [PubMed] [Google Scholar]
- 66.Wooldridge L, et al. Interaction between the CD8 coreceptor and major histocompatibility complex class I stabilizes T cell receptor–antigen complexes at the cell surface. J. Biol. Chem. 2005;280:27491–27501. doi: 10.1074/jbc.M500555200. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 67.Luescher IF, et al. CD8 modulation of T-cell antigen receptor–ligand interactions on living cytotoxic T lymphocytes. Nature. 1995;373:353–356. doi: 10.1038/373353a0. [DOI] [PubMed] [Google Scholar]
- 68.Welsh RM, Selin LK. No one is naive: the significance of heterologous T-cell immunity. Nature Rev. Immunol. 2002;2:417–426. doi: 10.1038/nri820. [DOI] [PubMed] [Google Scholar]
- 69.Stewart AJ, Devlin PM. The history of the smallpox vaccine. J. Infect. 2006;52:329–334. doi: 10.1016/j.jinf.2005.07.021. [DOI] [PubMed] [Google Scholar]
- 70.Setia MS, Steinmaus C, Ho CS, Rutherford GW. The role of BCG in prevention of leprosy: a meta-analysis. Lancet Infect. Dis. 2006;6:162–170. doi: 10.1016/S1473-3099(06)70412-1. [DOI] [PubMed] [Google Scholar]
- 71.Mathurin KS, Martens GW, Kornfeld H, Welsh RM. CD4 T-cell-mediated heterologous immunity between mycobacteria and poxviruses. J. Virol. 2009;83:3528–3539. doi: 10.1128/JVI.02393-08. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 72.Nilges K, et al. Human papillomavirus type 16 E7 peptide-directed CD8+ T cells from patients with cervical cancer are cross-reactive with the coronavirus NS2 protein. J. Virol. 2003;77:5464–5474. doi: 10.1128/JVI.77.9.5464-5474.2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 73.Clute SC, et al. Broad cross-reactive TCR repertoires recognizing dissimilar Epstein–Barr and influenza A virus epitopes. J. Immunol. 2010;185:6753–6764. doi: 10.4049/jimmunol.1000812. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 74.Acierno PM, et al. Cross-reactivity between HLA-A2-restricted FLU-M1:58-66 and HIV p17 GAG:77-85 epitopes in HIV-infected and uninfected individuals. J. Transl. Med. 2003;1:3. doi: 10.1186/1479-5876-1-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 75.Clute SC, et al. Cross-reactive influenza virus-specific CD8+ T cells contribute to lymphoproliferation in Epstein–Barr virus-associated infectious mononucleosis. J. Clin. Invest. 2005;115:3602–3612. doi: 10.1172/JCI25078. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 76.Wedemeyer H, Mizukoshi E, Davis AR, Bennink JR, Rehermann B. Cross-reactivity between hepatitis C virus and influenza A virus determinant-specific cytotoxic T cells. J. Virol. 2001;75:11392–11400. doi: 10.1128/JVI.75.23.11392-11400.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 77.Urbani S, et al. Heterologous T cell immunity in severe hepatitis C virus infection. J. Exp. Med. 2005;201:675–680. doi: 10.1084/jem.20041058. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 78.Wucherpfennig KW, Strominger JL. Molecular mimicry in T cell-mediated autoimmunity: viral peptides activate human T cell clones specific for myelin basic protein. Cell. 1995;80:695–705. doi: 10.1016/0092-8674(95)90348-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 79.Oldstone MB. Molecular mimicry and immune-mediated diseases. FASEB J. 1998;12:1255–1265. doi: 10.1096/fasebj.12.13.1255. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 80.Zhao ZS, Granucci F, Yeh L, Schaffer PA, Cantor H. Molecular mimicry by herpes simplex virus-type 1: autoimmune disease after viral infection. Science. 1998;279:1344–1347. doi: 10.1126/science.279.5355.1344. [DOI] [PubMed] [Google Scholar]
- 81.Albert LJ, Inman RD. Molecular mimicry and autoimmunity. N. Engl. J. Med. 1999;341:2068–2074. doi: 10.1056/NEJM199912303412707. [DOI] [PubMed] [Google Scholar]
- 82.Rose NR. Infection, mimics, and autoimmune disease. J. Clin. Invest. 2001;107:943–944. doi: 10.1172/JCI12673. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 83.Kieke MC, et al. Selection of functional T cell receptor mutants from a yeast surface-display library. Proc. Natl Acad. Sci. USA. 1999;96:5651–5656. doi: 10.1073/pnas.96.10.5651. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 84.Li Y, et al. Directed evolution of human T-cell receptors with picomolar affinities by phage display. Nature Biotech. 2005;23:349–354. doi: 10.1038/nbt1070. [DOI] [PubMed] [Google Scholar]
- 85.Hawse WF, et al. Cutting edge: evidence for a dynamically driven T cell signaling mechanism. J. Immunol. 2012;188:5819–5823. doi: 10.4049/jimmunol.1200952. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 86.Irving M, et al. Interplay between T cell receptor binding kinetics and the level of cognate peptide presented by major histocompatibility complexes governs CD8+ T cell responsiveness. J. Biol. Chem. 2012;287:23068–23078. doi: 10.1074/jbc.M112.357673. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 87.Cole DK, et al. Human TCR-binding affinity is governed by MHC class restriction. J. Immunol. 2007;178:5727–5734. doi: 10.4049/jimmunol.178.9.5727. [DOI] [PubMed] [Google Scholar]
- 88.Varela-Rohena A, et al. Control of HIV-1 immune escape by CD8 T cells expressing enhanced T-cell receptor. Nature Med. 2008;14:1390–1395. doi: 10.1038/nm.1779. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 89.McKeithan TW. Kinetic proofreading in T-cell receptor signal transduction. Proc. Natl Acad. Sci. USA. 1995;92:5042–5046. doi: 10.1073/pnas.92.11.5042. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 90.Restifo NP, Dudley ME, Rosenberg SA. Adoptive immunotherapy for cancer: harnessing the T cell response. Nature Rev. Immunol. 2012;12:269–281. doi: 10.1038/nri3191. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 91.Morgan RA, et al. Cancer regression in patients after transfer of genetically engineered lymphocytes. Science. 2006;314:126–129. doi: 10.1126/science.1129003. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 92.Liddy N, et al. Monoclonal TCR-redirected tumor cell killing. Nature Med. 2012;18:980–987. doi: 10.1038/nm.2764. [DOI] [PubMed] [Google Scholar]
- 93.Cole DK, et al. Modification of MHC anchor residues generates heteroclitic peptides that alter TCR binding and T cell recognition. J. Immunol. 2010;185:2600–2610. doi: 10.4049/jimmunol.1000629. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 94.Miles JJ, Douek DC, Price DA. Bias in the αβ T-cell repertoire: implications for disease pathogenesis and vaccination. Immunol. Cell Biol. 2011;89:375–387. doi: 10.1038/icb.2010.139. [DOI] [PubMed] [Google Scholar]
- 95.Ishizuka J, et al. Quantitating T cell cross-reactivity for unrelated peptide antigens. J. Immunol. 2009;183:4337–4345. doi: 10.4049/jimmunol.0901607. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 96.Miles JJ, et al. Genetic and structural basis for selection of a ubiquitous T cell receptor deployed in Epstein–Barr virus infection. PLoS Pathog. 2010;6:e1001198. doi: 10.1371/journal.ppat.1001198. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 97.Yin Y, Li Y, Kerzic MC, Martin R, Mariuzza RA. Structure of a TCR with high affinity for self-antigen reveals basis for escape from negative selection. EMBO J. 2011;30:1137–1148. doi: 10.1038/emboj.2011.21. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 98.Cole DK, et al. Germ line-governed recognition of a cancer epitope by an immunodominant human T-cell receptor. J. Biol. Chem. 2009;284:27281–27289. doi: 10.1074/jbc.M109.022509. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 99.Gras S, et al. The shaping of T cell receptor recognition by self-tolerance. Immunity. 2009;30:193–203. doi: 10.1016/j.immuni.2008.11.011. [DOI] [PubMed] [Google Scholar]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.