Skip to main content
Springer Nature - PMC COVID-19 Collection logoLink to Springer Nature - PMC COVID-19 Collection
. 2012 Jan 18;82(1):209–224. doi: 10.1007/s40011-011-0016-7

Anti-Viral Activity of Indian Plants

B N Dhawan 1,
PMCID: PMC7099914  PMID: 32226204

Abstract

Plants continue to be a major source for new chemical entities to develop novel therapeutic agents. Large number of plants has been shown to be active in vitro against a variety of human pathogenic viruses or their near congeners. In several cases the active compounds have been isolated and characterized. Very few of them, however, have been investigated in detail in vivo or taken to the clinic. Pure compounds like andrographolide, curcumin and glycyrrhizic acid as well as extracts of Azadirachta indica have shown activity against several viruses and should be investigated further for their therapeutic potential. An analysis of available data from several hundred species indicates that antiviral activity is more likely to be found in plants belonging to certain families. It is necessary to screen more plants of these families which are available in India to obtain further leads.

Keywords: Antiviral activity, Indian plants, Herpes simplex, Viral hepatitis, Human immunodeficiency virus, Respiratory viruses, Interferon inducers

Introduction

Natural products have been, and continue to be, a major source of new chemical entities (NCE) for development of better therapeutic agents against infective and non-infective disorders. The bio-molecules are more stable, clinically more specific and available from renewable source [1]. Plants of Indian origin have provided several novel leads in the past [2] and are likely to yield more NCE in future also.

The contribution of natural products to anti-viral chemotherapy, however, has been more modest. Several factors have contributed to this scenario. Viral infections like the common cold are self limited and require only symptomatic treatment. Public health measures like vector control have succeeded in controlling vector transmitted infections. Similarly, development of effective vaccines has played a major role in eliminating diseases like small pox, near eradication of poliomyelitis and treatment of rabies. A major reason for limited input from Indian plants has been the non-availability of strict containment facility needed for such work at most institutions in the country. A large number of plants found in India have, therefore been investigated and found active in Japan, South Korea, US, etc. Data on all such plants also has been included in the present review along with analysis of data generated within the country. Plants active in viruses closely related to human virus [e.g. feline Human Immunodeficiency Virus (HIV) or duck hepatitis] have also been included. Maximum plants have been screened against Ranikhet disease (RNA) virus (RDV) and vaccinia (DNA virus) followed by herpes, HIV and hepatitis. The data in following sections has been arranged in the same order.

Most of the studies have used in vitro test systems and crude extracts of various parts of the plants. Pure compounds have been tested in some cases and in vivo procedures have been used in very few cases. In limited number of cases clinical studies also have been done. In several cases the name of the plant or family has been changed now. The name given in the original publication has been retained in the present review to avoid confusion but the names of family have been revised.

Ranikhet Disease and Vaccinia Viruses

CSIR Central Drug Research Institute Lucknow (CDRI) has been the pioneer institute to undertake large scale screening of Indian plants for anti-microbial and other biological activities using about 80 in vitro and in vivo tests. The program has used 50% ethanolic extracts of botanically authenticated plant samples. The extracts have been screened in vitro against one RNA virus (Ranikhet disease virus) and one DNA virus (vaccinia virus). Some samples have also been screened against encephalomyocarditis (EMCV), Japanese Encephalitis B (JE) and Semiliki Forest (SFV) viruses. Extracts showing high degree of activity were fractionated according to a standardized protocol to localize activity in one or more fractions. The results of testing 3,789 samples from 3,482 plants belonging to 233 families have been reported in a series of publications [314]. In addition, 967 of these plants were also tested for interferon-like activity against RD and vaccinia viruses [15]. A mid-term review of the work has also been published [16]. Antiviral activity was observed in 242 samples belonging to 96 families. The results have been summarized in Table 1. The plants have been listed under the appropriate families which have been arranged alphabetically. It also indicates plants where activity has been confirmed further in fractions or those exhibiting anticancer activity also.

Table 1.

Plants showing anti-viral activity in CDRI’s biological screening program

No. Family & plant Part Activity References
Acanthaceae
1. Adhatoda vasica Rt R [3]
2. Barleria cuspidata Pl R, r [7, 15]
3. Niligirianthus ciliatus Pxa V [12]
4. Strobilanthus wightianus Px R, r [7, 15]
Anacardiaceae
5. Cotinus coggygria Px R [3]
6. Pistacia integerrima Sb R [3]
7. Rhus parviflora Px V, v, C [5, 15]
8. Rhus succedanea Lf R, r [3, 15]
9. Rhus succedanea Px R [12]
Annonaceae
10. Miliusa macrocarpa Px R [12]
Apiaceae
11. Pimpinella diversifolia Pl R [3]
Apocynaceae
12. Ichnocarpus frutescens Pl R [3]
Aquifoliaceae
13. Ilex wightiana Pxa V [12]
Araliaceae
14. Hedera colchica Px R [5]
15. Schefflera rostrata Lf, In R [12]
16. Schefflera wallichiana St R [12]
Asclepiadeaceae
17. Hemidesmus indicus Pl R, r [3, 15]
Aspidiaceae
18. Polystichum biaristatum Pla R [12]
Asteraceae
19. Artemesia parviflora Pl V [6]
20. Cnicus walichii Pl R [3]
21. Conyza visicidula Pl V, [5]
22. Eclipta alba Pl R [3]
23. Lagascea molis Pl r, V [6, 15]
24. Laggera pierodanta Pl R [5]
25. Saussurea obvallata Fl R [11]
26. Siegesbeckia orientalis Pl R, r [3, 15]
27. Senecio tenuifolius Pl R, r, v, C [8, 15]
28. Tagetes erecta Pl R [4]
29. Tagetes minuta Pl R, r [4, 15]
30. Vernonia cineria Pl R [3]
31. Vittadinia australis Pl V [4]
Berberidaceae
32. Berberis lyceum Rt R [3]
Betulaceae
33. Alnus nepalensis Px R [12]
34. Alnus nitida Sb R, V [6]
Bignoniaceae
35. Heterophragma adenophyllum Px V [5]
36. Stereospermum suaveolens Rt R, r, C [3, 15]
Bixaceae
37. Bixa orellana Fra V [12]
Bombacaceae
38. Salmalia malabarica Fl R, r [3, 15]
Brassicaceae
39. Descurainia sophia Pl R [10]
Caesalpiniaceae
40. Caesalpinia bonducella Rt V [3]
41. Cassia auriculata Pxa R, r [3, 15]
42. Cassia auriculata Rt V, v [3, 15]
43. Cassia fistula Sba R, r, v, C [3, 15]
44. Cassia fistula Pda R, V [3]
45. Cassia tora Pl R [3]
46. Caesalpinia sepiaria Rt R,V [4]
47. Hardwickia binata Pl R, r, v [5, 15]
48. Tamarindus indica Fl R [3]
Capparaceae
49. Capparis multiflora Px R [12]
50. Capparis longispina Px R [3]
Caprifoliaceae
51. Lonicera leschenaultii Px R [11]
Celastraceae
52. Euonymus angulatus Pxa R [13]
53. Salacia roxburghii Px R, r [6, 15]
Combretaceae
54. Terminalia chebula Fr R [3]
55. Terminalia chebula Lf R [11]
56. Terminalia chebula Sw R, r [11, 15]
57. Terminalia paniculata Pxa R, C [12]
Connaraceae
58. Connarus wighti Px R [6]
Convolvulaceae
59. Cuscuta reflexa Px R, r [4, 15]
Cucurbitaceae
60. Cucumis callosus Px R,V [12]
Cupressaceae
61. Cupressus torulosa Px R, [7]
Cyperaceae
62. Carex obscura Pl R [10]
63. Cyperus niveus Pl R, r [3, 15]
64. Cyperus pangorei Pla V [12]
Dilleniaceae
65. Dillenia pentagyna Sba R [14]
Dipterocarpaceae
66. Shorea robusta Pxa R [10]
Ebenaceae
67. Diospyros chloroxylon Px R [6]
68. Diospyros marmorata Pxa R [13]
69. Diospyros peregrina Sb R, r [3, 15]
70. Maba nigrescens Px R, r, V, v [6, 15]
Elaeagnaceae
71. Hippophae salicifolia Sba R [11]
Elaeocarpaceae
72. Elaeocarpus tectorius Lfa R, V [11]
73. Elaeocarpus glandulosus Px R, C [12]
Ericaceae
74. Agapetes odonalocera Tua R [12]
75. Rhododendron arboreum Pxa R [14]
Euphorbiaceae
76. Aporosa villosula Px R [13]
77. Baccaurea ramiflora Fr S [14]
78. Bridelia retusa Sba R, r, C [5, 15]
79. Bridelia squamosa Px R [6]
80. Euphorbia prolifera Pl R, C [3]
81. Euphorbia royleana St R [3]
82. Glochidion hohenackerii Px R [3]
83. Glochidion subsessile Px R [12]
84. Glochidion zeylanicum Pxa R [12]
85. Jatropha glandulifera Px R, r [10, 15]
86. Kirganelia reticulata Px R [3]
87. Kirganelia tanarius Px R,V [12]
88. Mallotus resinosus Px R,V [12]
89. Margaritaria indica Px V [12]
90. Ricinus communis Lf V [3]
91. Emblica officinalis Fr R [3]
Fabaceae
92. Crotolaria semperflorens Px R [11]
93. Dunbaria ferruginea Pxa R [12]
94. Indigofera pulchella Rt V [3]
95. Indigofera cassioides Pxa R [12]
96. Mundulea sericeae Px R, r [6, 15]
97. Ougeinia oojeinensis Sb R [3]
98. Phaseolus trilobus Pl V [5]
99. Sesbania procumbens Px R [14]
100. Sesbania sesban Px R [6]
101. Sophora glauca Px R [7]
102. Uraria lagopoides Pl R, r [4, 15]
103. Wisteria chinensis Px R [12]
Fagaceae
104. Castanea sativa Sb R [3]
105. Castanopsis indica Sb R, r, C [7, 15]
106. Fagus sylvatica Px r, V [5, 15]
107. Lithocarpus dealbatus Sb R [11]
108. Lithocarpus dealbatus Fr R [11]
109. Lithocarpus dealbatus Lf, Tw R [11]
110. Quercus himalayana Px V [11]
111. Quercus lamellosa Sb R, r, V, v [3, 15]
112. Quercus lanceafolia Sb R, r, V, v [3, 15]
113. Quercus lineata Sb R [3]
114. Quercus pachyphylla Sb R [3]
115. Quercus thomsonii Pxa R [12]
Gentianaceae
116. Canscora diffusa Pl R [4]
Guttiferae
117. Garcinia talbotii Pl r, V [5, 15]
Hippocrateaceae
118. Loeseneriella arnottiana Pxa R [13]
Juglandaceae
119. Juglans regia Lf V [6]
Lamiaceae
120. Leonurus sibiricus Pl V [5]
121. Leucas prostrata Pla V [12]
122. Rabdosia coetsa Px R [11]
123. Teucrium quadrifarium Pl r, V [6, 15]
124. Teucrium royleanum Pl R [10]
Lauraceae
125. Cinnamomum iners Px R, r [6, 15]
126. Lindera pulcherrima Px R [9]
127. Litsea coriacea Px R [13]
128. Machilus gamblei Lf R [3]
Liliaceae
129. Scilla hyacinthiana Bu S [14]
Loranthaceae
130. Dendrophthoe falcata Px R, r [4, 15]
131. Dendrophthoe falcata Px V [5]
132. Helixanthera wallichiana Pxa R, V [13]
Lythraceae
133. Lagerstroemia speciosa Px R [4]
134. Wodfordia fruticosa Pl R [3]
Malvaceae
135. Thespesia populnea Fr R, r, C [3, 15]
Melastomataceae
136. Melastoma normale Pl r, V [4, 15]
137. Memecylon umbellatum Lf R, C [3]
Meliaceae
138. Aglaia anamallayana Pxa R [13]
139. Amoora wallichi St R, r, V, v [3, 15]
140. Melia azaderach Sb R, r [4, 15]
Menispermaceae
141. Cocculus pendulus Px R, C [4]
142. Tinospora cardifolia St R [3]
Mimosaceae
143. Abarema ungulata Px R [13]
144. Acacia auriculiformis Px, Sb r, v [15]
145. Acacia catechu St R [3]
146. Acacia raddiana Px R [11]
147. Albizzia procera Px r, V, C [5, 15]
148. Mimosa pudica Pl r, V [4, 15]
Moraceae
149. Ficus hirta Pxa V [12]
150. Ficus religiosa Sb R, r [3, 15]
Moringaceae
151. Moringa oleifera Fr V [3]
Myricaceae
152. Myrica nagi Sb R [3]
Myristicaceae
153. Knema linifolia Sb R [14]
Myrsinaceae
154. Maesa chisea Px R [7]
155. Maesa indica Px V, v [4, 15]
Myrtaceae
156. Eugenia codyensis Pxa R [12]
157. Eugenia mangifolia Px R [11]
158. Eugenia thwaitesii Pxa R [12]
159. Syzygium densiflorum Px R [11]
160. Syzygium kurzii Pxa S [14]
161. Syzygium occidentalis Px R [12]
162. Syzygium samarangense Px R,V [12]
163. Syzygium tetragonum Px R [11]
Ochnaceae
164. Ochna integerrima Px R [14]
Oleaceae
165. Olea polygama Px r, v [17]
166. Nyctanthes arbor-tristis Fr E [14]
167. Ximenia americana Px R [6]
Onagraceae
168. Jussiaea suffruticosa Pl R, r, C [7, 15]
169. Ludwiga perensis Pl R, r [4, 15]
Orchidaceae
170. Vanda spathulata Pl R, r [7, 15]
Papavaraceae
171. Argemone mexicana Pl R [3]
Passifloraceae
172. Passiflora mollissima Px R [11]
Pinaceae
173. Cryptomeria japonica Px V [4]
Pittosporaceae
174. Pittosporum tetraspermum Px R [12]
Plumbaginaceae
175. Vogelia indica Pl R [4]
Poaceae
176. Cynodon dactylon Pxa V [3]
177. Hordeum vulgare Sd R, r [3, 15]
178. Imperata cylindrica Px R, r [5, 15]
179. Isachne kunthiana Pl R [12]
180. Saccharum species Lf R [11]
Polygonaceae
181. Polygonum glabrum Px R, r [4, 15]
Polypodiaceae
182. Adiantum caudatum Pl R [3]
183. Asplenium nidus Px R, V [12]
184. Pseudodrynaria coronans Rha R [12]
Primulaceae
185. Anagallis arvensis Pl R, r [5, 15]
Proteaceae
186. Hakea saligna Px R [7]
Ranunculaceae
187. Clematis buchanana Px V [4]
188. Clematis gouriyana Px R [3]
Rhamnaceae
189. Scutia myrtima Px R, V [3]
190. Zizyphus glaberrima Px R, r [6, 15]
191. Zizyphus rugosa Pxa R [13]
Rosaceae
192. Cotoneaster bacillaris Px R, r, V, v [6, 15]
193. Photinia integrifolia Px r, V [5, 15]
194. Prunus cornuta Px R, r [6, 15]
195. Rosa leschenaultii Px R [11]
196. Rubus hexagonus Px R [11]
Rubiaceae
197. Cinchona ledgeriana Lf V, v [6, 15]
198. Gardenia jasminoides Px R, r [4, 15]
199. Gardenia turgida Fr R, C [3]
200. Ixora arborea Px r, V [5, 15]
201. Ixora nigricans Px R [5]
202. Psychotria truncata Px R, r, [6, 15]
203. Randia dumetorum Sb R [3]
204. Uncaria pilosa Px R [12]
Rutaceae
205. Atalantia racemosa Px R, r [5, 15]
206. Evodia lunu-ankenda Sb R, r, [7, 15]
207. Paramignya monophylla Px R, C [12]
Sabiaceae
208. Meliosma simplicifolia Px R [11]
Salicaceae
209. Salix alba Sb R [6]
210. Salix babylonica Pl r, V [4, 15]
Samydaceae
211. Casearia tomentosa Px R [4]
Santalaceae
212. Osyris arborea Lf R [3]
Sapindaceae
213. Allophylus serratus Px R, r [6, 15]
Sarauiaceae
214. Saurauia roxburghii Px R [7]
Saxifragaceae
215. Bergenia ligulata Rh R [11]
Scrophulariaceae
216. Celsia coromandeliana Pl V, C [4]
217. Limnophila racemosa Pl V [4]
Solanaceae
218. Atropa belladonna Lf R, r [3, 15]
219. Nicotiana plumbaginifolia Pl R, r, C [4, 15]
220. Solanum xanthocarpum Pl R, r, C [3, 15]
221. Withania somnifera Pl R, V [3]
Staphyleaceae
222. Turpinea pomifera Sba J [14]
Sterculiaceae
223. Byttneria grandifolia Pxa R [14]
Symplocaceae
224. Symplocos paniculata Lf R, r [3, 15]
Theaceae
225. Camellia japonica Pxa R [12]
Thymelaeaceae
226. Lasiosiphon eriocephalus St R [3]
Tiliaceae
227. Erinocarpus nimmonii Lf R, v [11, 15]
228. Grewia hirsuta Px R [5]
229. Grewia latifolia Px R, r [4, 15]
230. Tilia europaea Px R, r, C [5, 15]
Ulmaceae
231. Ulmus wallichiana Sb R, r [6, 15]
Urticaceae
232. Urtica dioica Pl R, [10]
Verbenaceae
233. Gmelina arborea Sb R [3]
234. Vitex diversifolia Px R [12]
Vitaceae
235. Cayratia auriculata Fr R [12]
236. Lea indica Lf R, r [3, 15]
237. Lea macrophylla Px V [10]
Zingiberaceae
238. Cautleya spicata Rt, Rh R [3]
239. Costus speciosus Pl R, r, V, v [6, 15]
240. Zingiber capitatum Pl r, v [15]
241. Zingiber zerumbet Rh R [11]
Zygophyllaceae
242. Fagonia critica Px R [3]

Part used: Bu bulb, Fl flower, Fr fruit, Lf leaf, In inflorescence, Pd pod, Pl plant, Px plant without root, Rh rhizome, Rt root, Sb stem bark, St stem, Sw stem wood, Tu tuber, Tw twig

Activity: E encephalomyocarditis virus, J Japanese B encephalitis virus, R Ranikhet disease virus, r interferon induction, S semliki forest virus, V vaccinia virus, v interferon induction, C anticancer

aActivity confirmed in fractions

Some of the active plants have been followed up at CDRI for isolation and characterization of the active constituents. The antiviral activity of (+) odorinol isolated from Aglaia roxburghiana has been reported by Joshi et al. [17]. Subsequently two new triterpinoids also have been isolated and characterized [18]. Lupeol has been identified as the active moiety of hexane fraction of Vicoa indica. It was effective against EMCV, RDV and SFV. Lupeol isolated from same fraction was active against RDV only [19]. Furomolligin isolated from Rubia cardifolia was active against EMCV [20].

The interferon like activity of five plants (Acacia auriculiformis, Cassia fistula, Olex polyama, Senecio tenuifolius and Zingiber capitatum) has been investigated further. The classical fractionation failed to localize activity in a particular fraction. The activity could be localized in each case in non-dialyzable fraction. It was destroyed on treating the fraction with trypsin. These results suggest the presence of an interferon-like or interferon inducing substance in the non-dialyzable fraction [15].

CDRI has also tested plants used as hepato-protective agents in traditional systems of Indian medicine for their anti-hepatitis B virus surface antigen (HBsAg) activity in serum of patients or carriers. Promising results were obtained with Phyllanthus amarus [21] and Picrorhiza kurroa [2226]. These have been reviewed in the section on hepatitis virus.

Herpes Virus

Activity against herpes virus has been reported in 49 Indian plants. These have been listed in Table 2. The activity is distributed widely and the plants belong to 34 families. Most of them have been reported active against herpes-1 virus though a few are active against both herpes-1 and 2. In 12 cases the strain used has not been mentioned. Only four publications have reported in vivo activity. Pure isolated compounds have been tested in 26 cases. Two of the compounds glycyrrhizin and lupeol are active against other human viruses also and this has been indicated at appropriate places in this review. Unfortunately none of them appear to have been followed up further. The results have been published in 43 papers and only 9 of them are from Indian laboratories. Table 2 includes only those plants from foreign publications which are found in India.

Table 2.

Indian plants active against herpes simplex viruses in vitro

Plant Family Product Strain References
1. Adansonia digitata Bombaceae Ext HSV [27]
2. Aglai odorata Meliaceae Ext 1a [28]
3. Aloe vera Liliaceae Ext 2 [29]
4. Andrographis paniculata Acanthaceae Diterpenes 1 [30]
5. Atlantia sp. Rutaceae Pyrophorbide 2 [31]
6. Azadirachta indica Meliaceae Ext 1 [32]
7. Barleria lupulina Acanthaceae Iridoid glycoside 1 [33]
8. Bauhinia racemosa Caesalpiniaceae Ext HSV [34]
9. Bauhinia variegate Ext 1,2 [35]
10. Bidens pilosa Asteraceae Ext 1,2 [36]
11. Cedrus libani Pinaceae Ext, oil 1 [37]
12. Cissus quadrangularis Vitaceae Ext 1,2 [38]
13. Conyza aegyptica Asteraceae Ext HSV [27]
14. Cyperus rotundus Cyperaceae Ext 1 [39]
15. Euphorbia peplus Euphorbiaceae Diterpene esters 2 [40]
16. Glycyrrhiza glabra Fabaceae Glycyrrhizin HSV [41]
17. Heliotropium marifolium Boraginaceae Alkaloid HSV [42]
18. Holoptelea integrifolia Ulmaceae Ext HSV [43]
19. Houttuynia cordata Sarauiaceae Ext 1,2 [36]
Pure compounds 1 [44]
20. Hypericum hookerianum Hyperaceae Ext 1 [45]
21. Hypericum mysorense Ext 1 [45]
22. Lippia alba Verbenaceae Ext 1 [46]
23. Melia azaderach Meliaceae Ext 2a [47]
Meliacine 1 [48]
24. Mentha piperata Lamiaceae Essential oil 1,2 [49]
25. Momordia charantia Cucurbitaceae Ext 1 [50]
26. Moringa oleifera Moringaceae Ext 1a [28]
27. Myrica rubra Myricaceae Pure compounds 2 [51]
28. Neerium indicum Apocynaceae Ext HSV [43]
29. Pandanus amaryllifolius Pandanaceae Pandanin 1 [52]
30. Peganum harmala Rutaceae Ext 1 [53]
31. Phyllanthus emblica Euphorbiaceae Pure compounds HSV [54]
32. Phyllanthus urinaria Pure compounds 1,2 [55]
33. Pinus massoniana Pinaceae Ext HSV [56]
34. Plantago major Plantaginaceae Ext HSV [56]
35. Portulaca oleracea Portulacaceae Polysaccharides 2 [57]
36. Salvia officinalis Lamiaceae Ext 1,2 [58]
37. Santalum album Santalaceae Oil 1,2 [59]
38. Scinaia hatei Liagonaceae Polysaccharides HSV [60]
39. Scoparia dulcis Scrophulariaceae Scopadulcic acid 1 [61]
40. Solanum torvum Solanaceae Torvanol A 1 [62]
Torvoside H 1
41. Sorghum bicolor Poaceae Peptide 1 [63]
42. Strobilanthus cusia Acanthaceae Lupeol 1 [64]
43. Swertia chirata Gentinaceae Ext 1 [65]
44. Syzygium aromaticum Myrtaceae Eugenin 1 [66]
45. Syzygium jambos Ext 1 [67]
46. Taracetium vulgare Asteraceae Ext, Parthenolide 1,2 [68]
47. Usnea complanta Usneaceae Ext 1 [45]
48. Ventilago denticulate Rhamnaceae Ext 1a [28]
49. Withania somnifera Solanaceae Ext 1 [69]

Ext crude extracts in different solvents; HSV unspecified strain, 1 or 2 HSV-1 or HSV-2

aTested in vivo

Human Immunodeficiency Virus

Large number of papers has been published in recent years reporting anti-HIV activity in numerous natural products, partly because of the large screening program of US National Cancer Institute. Activity has been reported only in 38 Indian plants in 32 papers. These have been shown in Table 3 and belong to 28 families. Data on 41 materials has been reported and 24 of them are pure compounds. Most investigators (26) have studied the activity on HIV-1 and in 10 cases the strain has not been mentioned. HIV-2 has been included in two studies only. Two of the reported plants have been found active against feline immunodeficiency virus (FIV), a close congener of HIV. Most of the publications in this case also are from foreign laboratories and there are only seven Indian publications. There have been claims of usefulness of Ayurvedic and Siddha formulations in treatment of AIDS but no reliable clinical data is available either with these formulations or with the plants listed in Table 3. Data with Curcuma longa has not been included in this table because curcumin isolated from this plant and its several semi-synthetic and synthetic analogues have been tested. The data has been included in concluding remarks.

Table 3.

Indian plants with in vitro anti-HIV activity

Plant Family Product Strain References
1. Acacia nilotica Mimosaceae Ext HIV [70]
2. Acacia tortilis Ext 1 [71]
3. Ailanthus allisima Simaroubaceae Ocotillone 1 [72]
4. Alpinia galanga Zingiberaceae Ext 1 [73]
5. Anisomeles indica Lamiaceae Ovatodiolide HIV [74]
6. Artemesia caruifolia Asteraceae Coumaryl spermines 1 [75]
7. Camellia japonica Theaceae Camelliatannin H 1 [76]
8. Cardiospermum helicabum Sapindaceae Ext 1,2 [77]
9. Chrysanthemum morifolium Asteraceae Flavonoids 1 [78]
10. Cinnamomum cassia Lauraceae Ext 1,2 [77]
11. Desmos sp. Annonaceae Flavonoids HIV [79]
12. Ficus glomerata Moraceae Ext 1 [80]
13. Glycyrrhiza glabra Fabaceae Glycyrrhizin 1 [41]
14. Harrisonia perforate Simaroubaceae Ext 1 [80]
15. Hyssopus officinalis Lamiaceae Ext 1 [81]
16. Illicium verum Illiaceae Illicinone-A HIV [82]
17. Justicia replans Acanthaceae Ext HIV [83]
18. Lippia javanica Verbenaceae Piperitenone 1 [84]
19. Mimusops elengli Sapotaceae Mimusopic acid HIV [85]
20. Momordia charantia Cucurbitaceae Lectin 1 [86]
Protein MRK 29 1 [87]
21. Morinda citrifolia Rubiaceae Ext 1 [88]
22. Nelumbo nucifera Nymphaceae Cocalaurine HIV [89]
Nuciferine HIV
23. Pedilanthus sp. Euphorbiaceae Pedilotanin 1 [90]
24. Pericampylus glaucus Menispermaceae Periglaucines 1 [91]
25. Phaseolus vulgaris Fabaceae Lectin 1 [86]
26. Polyalthea suberosa Annonaceae Furans HIV [92]
27. Polygonum viscosum Polygonaceae Quercitin 1 [93]
28. Ricinus communis Euphorbiaceae Lectins 1 [86]
29. Rhus sinensis Anacardiaceae Benzofuranones 1 [94]
Rhuscholide A HIV [95]
30. Sambucus nigra Caprifoliaceae Ext HIV(f) [96]
31. Schisandra rubriflora Schisandraceae Rubrifloxine 1 [97]
32. Scoparia dulcis Scrophulariaceae Ext 1 [98]
33. Sida sp. Malvaceae Ext HIV [99]
34. Sophora flavescens Fabaceae Ext 1 [76]
35. Terminalia chebula Combretaceae Galloyl glucose 1 [100]
36. Urtica dioica Urticaceae Ext FIV [96]
37. Ximenia americana Oleaceae Ext 1 [101]
38. Zingiber officinale Zingiberaceae Ext 1 [73]

Ext crude extract in different solvents; HIV strain not specified; 1, 2 HIV I or II strain; FIV feline immunodeficiency virus (has many common features with HIV) [96]

Hepatitis Viruses

Large number of medicinal plants has been used for treatment of hepatic disorders in most traditional system of medicine. The parameters generally followed were clearance of jaundice and return of liver function tests to normalcy. Clearance of viraemia in infective hepatitis, the commonest hepatic disorder, became an important parameter after the demonstration of carrier stage and possible induction of malignancy in such persons. One of the earliest demonstrations of viral clearance was provided by the pioneering studies of Thyagarajan et al. [106] with Phyllanthus amarus. This led to screening of large number of plants for activity against the virus. The availability of the duck model for in vivo studies materially facilitated these studies. Protective effect has been reported with 17 Indian plants belonging to 14 families. These have been listed in Table 4. Most of the plants have been tested against hepatitis B virus by several in vitro procedures. The active compound has been isolated and characterised in nine of these plants.

Table 4.

Indian plants active against hepatitis virus in vitro

Plant Family Product Strain References
1. Agrimonia eupatoria Rosaceae Ext B [102]
2. Alpinea galanga Zingiberaceae Ext C [73]
3. Bupleurum sp. Apiaceae Saikosaponins B [103]
4. Glycyrrhiza glabra Fabaceae Glycyrrhizin B, Ca [41]
5. Hypericum perforatum Hypericaceae Hypericin Ca [104]
6. Oenanthe javanica Apiaceae Phenolics B [105]
7. Pericampylus glaucus Menispermaceae Periglaucines B [91]
8. Phyllanthus amarus Euphorbiaceae Ext Ba [21,106]
9. Phyllanthus urinaria Ext Ba [107]
10. Picrorhiza kurroa Scrophulariaceae Picroliv B [22]
11. Potentila anserine Rosaceae Triterpine saponins B, E [108]
12. Ranunculus scleratus Ranunculaceae Apigenins B [109]
13. Rubia cardifolia Rubiaceae Naphthoquinones B [110]
14. Saussurea lappa Asteraceae Ext B [111]
15. Terminalia chebula Combretaceae Ext B [112]
16. Wrightia tinctoria Apocynaceae Ext C [113]
17. Zingiber officinale Zingiberaceae Ext C [73]

Ext crude extract in different solvents; B, C, E the strain of virus used

aClinical study

Several hepatoprotective plants have been tested for anti-hepatitis B virus surface antigen (HBsAg) activity in vitro using serum from patients or asymptomatic carriers harbouring the infection. Neutralizing activity has been reported with extract of Phyllanthus amarus [21]. A purified standardized extract (Picroliv) and a pure compound catalpol isolated from Picrorhiza kurroa were also found active while andrographolide (active constituent of Andrographis paniculata) and silymarin were inactive [22].

Clinical studies have been undertaken with some of the active plants in patients of infective hepatitis. As already reported above [23] efficacy of Picroliv has been demonstrated in Phase III multicentric trials. Beneficial effects have been reported with Phyllanthus amarus and glycyrrhizin also. These and other studies have been reviewed by Handa in a comprehensive publication [114] on hepatoprotective activity of Indian medicinal plants.

Respiratory Viruses

Interest in respiratory virus has increased following the recent epidemics of SARS and H1N1 infection. Activity has been reported in 18 Indian plants belonging to 16 families. Pure compounds isolated from plants have been tested in nine cases. Activity has been reported against five respiratory viruses. Activity against influenza has been observed in seven samples and against H1N1 in four cases. One sample was active against SARS. The data about active plants has been summarized in Table 5.

Table 5.

Indian plants active in vitro against respiratory viruses

Plant Family Product Virus References
1. Alpinia officinarium Zingiberaceae Diaryl heptanoids H1N1 [115]
2. Andrographis paniculata Acanthaceae Andrographolide Influenza [116]a
H1N1
3. Avicennia marina Avecenniaceae Ext Newcastle [117]
4. Barleria prionitis Acanthaceae Iridoids Resp. Syn.b [118]
5. Berginia ligulata Saxifragaceae Ext Influenza [43]
6. Caesalpinea sappan Cesalpineaceae Sappan chalcones Influenza [119]
7. Curcuma longa Zingiberaceae Curcumin Newcastle [120]
8. Ephedra sinica Ephedraceae Catechinc H1N1 [121]
9. Gardenia sp. Rubiaceae Ext Influenza [122]d
10. Glycyrrhiza glabra Fabaceae Glycyrrhizin Influenza [41]
Resp. Syn.
SARS
11. Hottuynia cordata Piperaceae Ext SARS [123]
12. Neerium indicum Apocynaceae Ext Influenza [43]
13. Nigelia sativa Ranunculaceae Ext Newcastle [117]
14. Pandanus amaryllifoius Pandanaceae Pandanin H1N1 [52]
15. Phyllanthus amarus Euphorbiaceae Ext Newcastle [120]
16. Punica granatum Puniaceae Ext Influenza [124]
17. Wickstroemia indica Thymelaceae Daphnoretin Resp. Syn. [125]
18. Zizyphus spira-christi Rhamnaceae Ext Newcastle [117]

Ext crude extract in different solvents

aTested in vivo

bRespiratory synticial virus

cMain source of catechin is Acacia catechu [126]

dTested in vitro and in vivo

Pox Viruses

Interest in this group of viruses has continued because of continued occurrence of chicken-pox and measles infection. Only 14 plants have been reported active against a variety of pox viruses. These plants belong to 13 families. Glycyrrhizin from Glycyrrhiza glabra is the only pure compound reported active. Extract from Hibiscus sabdariffa is the only product showing activity against measles. Most of the extracts have been found active against fowl pox. Details of activity have been shown in Table 6.

Table 6.

Indian plants active in vitro against pox viruses

Plant Family Product Virus References
1. Acacia nilotica Fabaceae Ext Fowl pox [117]
2. Aristolochia bracteolate Aristolocheaceae Ext Fowl pox [117]
3. Avicenna marina Avecennaceae Ext Fowl pox [117]
4. Azadirachta indica Meliaceae Ext Buffalo pox [127]
Fowl pox [128]
Measles
Vaccinia
5. Bauhinia variegata Ceasalpineaceae Ext Vaccinia [35]
6. Cissus quadrangularis Vitaceae Ext Fowl pox [117]
7. Eugenia jambolana Myrtaceae Ext Buffalo pox [129]
8. Glycyrrhiza glabra Fabaceae Glycyrrhizin Vaccinia [41]
Varicella [130]
9. Hibiscus sabdariffa Malvaceae Ext Measles [131]
10. Ipomea carnea Convolvulaceae Ext Fowl pox [117]
11. Maerua oblongifolia Capparidaceae Ext Fowl pox [117]
12. Ocimum sanctum Lamiaceae Ext Vaccinia [3]
13. Prosposis chilensis Mimosaceae Ext Fowl pox [117]
14. Trebulus terrestris Zygophyllaceae Ext Fowl pox [117]
15. Trigonella foenum graecum Fabaceae Ext Fowl pox [117]

Ext crude extract in different solvents

Other Viruses

Activity in several Indian plants has also been reported against a variety of other viruses causing human infection or their close congeners. Table 7 shows such plants belonging to 24 families. In 10 cases pure compounds isolated from plants have been found active. The list includes 12 viruses. The preparations showing activity against chikungunya, Japanese encephalitis and rotavirus are of particular interest due to wide occurrence of these infections in the country and need to be investigated on a priority basis.

Table 7.

Indian plants active in vitro against other human viruses

Plant Family Product Virus References
1. Adansonia digitata Bombacaceae Ext Polio [27]
Sindbis
2. Aegle marmelos Rutacaeae Ext Coxsackie [132]
3. Alpinea galanga Zingiberaceae Ext Cytomegalus [73]
4. Artocarpus integrifolia Moraceae Ext Rotavirus [133]
5. Azadirachta indica Meliaceae Ext Chikungunya [128]
Coxsackie [134]
6. Baccaurea ramiflora Euphorbiaceae Ext Semilikia [14]
7. Bauhinia variegate Caesalpineaceae Ext Ves Stomatitisb [35]
8. Berberis aristata Berberidaceae Berberine Friends Leuc [25]
9. Camelia sinensis Theaceae Triterpinoids Epstein Barr [135]
10. Conyza aegyptica Asteraceae Ext Polio [27]
Sindbis
11. Curcuma longa Zingiberaceae Curcumin Epstein Barr [136]
Friends Leu [25]
HPVd [136]
Polio [120]
12. Glycyrrhiza glabra Fabaceae Glycyrrhizin JEe [137]
Polio [138]
Ves Stomatitis [41]
13. Heliotropium marifolium Boraginaceae Alkaloids Coxsackie [42]
Polio
14. Hernandia ovigera Hernandiaceae Lignans Epstein Barr [139]
15. Kalanchoe pinnata Crassulaceae Bryophyllin A Epstein Barr [140]
16. Lippa alba Verbenaceae Ext Polio [64]
17. Mallotus philippensis Euphorbiaceae Triterpinoids Epstein Barr [141]
18. Momordia charantia Cucurbitaceae Ext Sindbis [50]
19. Myristica fragrans Myristicaceae Ext Rotavirus [134]
20. Nyctanthes arbor-tristis Oleaceae Ext EMCVf [14]
21. Paedaria scandens Rubiaceae Paederoside Epstein Barr [26]
22. Phyllanthus amarus Euphorbiaceae Ext Polio [120]
23. Picrorhiza kurroa Scrophulariaceae Ext Epstein Barr [26]
Picroliv EMCV [24]
Friends Leuk [25]
24. Plumbago zeylanica Plumbaginaceae Ext Coxsackie [46]
25. Scilla hyacinthine Liliaceae Ext Semiliki [14]
26. Spondias lutea Anacardiaceae Ext Rotavirus [132]
27. Syzigium jambos Myrtaceae Ext Ves Stomatitis [67]
28. Turpinea pomifera Staphleaceae Ext JE [14]
29. Zingiber officinale Zingiberaceae Ext Cytomegalus [73]

Ext crude extract in different solvents

aSemiliki Forest virus

bVesicular stomatitis

cFriends leukemia

dHuman papilloma virus

eJapanese encephalitis

fEncephalomyocarditis virus

Concluding Remarks

The broad based biological screening program of CDRI had included tests for several other activities also with the same standardized protocol. An analysis of the results has shown that each particular activity was preferentially observed in certain families. The top 11 families for anti-viral activity and three other major activities have been arranged in rank order in Table 8. It will be observed that rank order is different for different activities even though some families exhibit more than one type of activity. The top 11 families in each case contain 35–45% of the plants for the concerned activity. The 11 families identified for anti-viral activity contain about 41% of the 242 active plants from 96 families. About 27% plants reported active against other viruses and included in Tables 2, 3, 4, 5, 6 and 7 also belong to these 11 families. It should be useful to screen other plants of these families to obtain more active plants. It will be evident from data in Tables 1 and 8 that many plants and families have both anti-viral and anticancer properties. It may be mentioned also that several smaller countries like Egypt [39], Nepal [43], Sudan [54] and Togo [27] have undertaken systematic evaluation of their flora for anti-viral activity following the lead given by CDRI.

Table 8.

Top 11 families for selected pharmacological activities in CDRI plants

Anti-viral Anti-cancer CNS active Hypoglycemic
No. of active plants
 239 131 639 156
No. in top 11 families
 98 58 228 61
% in top 11 families
 41.0 44.2 35.7 39.1
Rank order of top 11 families
 Euphorbiaceae Asteraceae Ericaceae Cucurbitaceae
 Fabaceae Euphorbiaceae Minosaceae Fagaceae
 Asteraceae Fabaceae Fabaceae Zingiberaceae
 Fagaceae Combretaceae Euphorbiaceae Rutaceae
 Myrtaceae Lamiaceae Rosaceae Verbenaceae
 Rubiaceae Meliaceae Lauraceae Euphorbiaceae
 Rosaceae Anacardiaceae Malvaceae Fagaceae
 Caesalpineaceae Celastraceae Rubiaceae Acanthaceae
 Lamiaceae Convolvulaceae Lamiaceae Lamiaceae
 Lauraceae Acanthaceae Asteraceae Rubiaceae
 Anacardiaceae Rosaceae Poaceae Asteraceae

It is evident from the data reviewed above that little effort has been made to study the marine flora around the vast Indian coast line for antiviral compounds. Several Indian mangrove plants (Ceriops decandra, Excocaria agallocha and three species of Rhizophora i.e. lamarckii, mucoranata and spiculata) have been reported to exhibit potent anti-HIV activity [142] highlighting the need of further exploration of this valuable resource.

Most of the data reported in this review is from in vitro studies and the leads do not appear to have been followed up. This is partly because of lack of suitable animal models for several infections and partly due to lack of the requirement containment facility in majority of Indian institutions. It is suggested that multi-pronged strategy should be adopted to utilise these leads. There are certain viral infections like Japanese encephalitis, chikungunya or rotavirus which are major national concern. Only few leads are available against them and these need to be followed.

A number of pure compounds have demonstrated activity against several viral infections. These are compounds of varying chemical complexity ranging from simple compounds like curcumin to complicated structures like iridoids glycosides. Adequate attention has not been paid to use them as basic templates to optimise the activity in synthetic or semi-synthetic derivatives. Successful use of this strategy has been made in the case of andrographolide [143] and curcumin [136], for example.

Activity has also been reported in certain compounds which have undergone extensive clinical evaluation in non-viral diseases. Their available safety and dosage regimen data would help in initiating clinical evaluation in viral infection where in vitro or in vivo activity data is available. Andrographolide is a potent hepatoprotective agent [114] besides being active against herpes [30], influenza and H1N1 infections [116]. Dehydroandrographolide succinic acid monoester is active against HIV [143]. Another clinically authenticated hepatoprotective agent Picroliv [23] is also active against several viral infections including hepatitis B [2426]. Curcumin has received the maximum attention after its activity against HIV was demonstrated. Large number of semi-synthetic or synthetic derivatives have been prepared and tested for anti-HIV activity. Its boron complexes; semi-synthetic reduced curcumin, allyl curcumin and tocopheryl-curcumin and synthetic analogues dicafferoyl methane and rosemarinic acid are highly active against HIV in a variety of in vitro protocols. Curcumin is active against herpes simplex 2 in a mouse model and Human papilloma and Epstein Barr viruses in vitro. These activities have been reviewed recently by Krishnaswamy [136]. Its in vitro activity against Friends leukaemia [25], Newcastle and Poliomyelitis viruses [120] has also been reported. Fiore et al. [41] in a recent review have provided reference for activity of glycyrrhizin and its analogues against herpes, hepatitis (including clinical trial), influenza, respiratory syncytial, SARS and vesicular stomatitis viruses. Other investigators have found it active against Japanese encephalitis [137], poliomyelitis [138], vaccinia and varicella [130]. It perhaps has the widest spectrum of antiviral activity among the natural products so far investigated. Adequate clinical evaluation is necessary to assess its role in treatment of viral disorders. Azadirachta indica also is a promising plant, even though most of the studies have used its extract. It has a variety of compounds and also has a long history of use in traditional medicine in many countries of the world. The viruses against which the extracts or some of the isolated compounds have shown activity include chikungunya, fowl pox, measles, vaccinia [128], buffalo pox [127], Coxsackie [134] and herpes [32]. Detailed studies against some of these viruses, specially herpes and chikungunya are strongly warranted. In conclusion it may be stated that the rich and valuable resource of Indian plants needs to be more extensively exploited to provide new drugs for the treatment of viral disorders.

References

  • 1.Dhawan BN. Biodiversity as a source of new chemical entities. In: Tandon P, Sharma M, Swaroop R, editors. Biodiversity status and prospects. New Delhi: Narosa Publishing House; 2005. pp. 25–34. [Google Scholar]
  • 2.Mukherjee PK, Rai S, Kumar V, Hylands PJ, Hider RC. Plants of Indian origin in drug discovery. Expert Opin Drug Discov. 2007;2:637–653. doi: 10.1517/17460441.2.5.633. [DOI] [PubMed] [Google Scholar]
  • 3.Dhar ML, Dhar MM, Dhawan BN, Mehrotra BN, Ray C. Screening of Indian plants for biological activity. Part I. Indian J Exp Biol. 1968;6:232–247. [PubMed] [Google Scholar]
  • 4.Bhakuni DS, Dhar ML, Dhar MM, Dhawan BN, Mehrotra BN. Screening of Indian plants for biological activity. Part II. Indian J Exp Biol. 1969;7:250–262. [PubMed] [Google Scholar]
  • 5.Bhakuni DS, Dhar ML, Dhar MM, Dhawan BN, Gupta B, Srimal RC. Screening of Indian plants for biological activity. Part III. Indian J Exp Biol. 1971;9:91–102. [PubMed] [Google Scholar]
  • 6.Dhar ML, Dhar MM, Dhawan BN, Mehrotra BN, Srimal RC, Tandon JS. Screening of Indian plants for biological activity. Part IV. Indian J Exp Biol. 1973;11:43–54. [PubMed] [Google Scholar]
  • 7.Dhar ML, Dhawan BN, Prasad CR, Rastogi RP, Singh KK, Tandon JS. Screening of Indian plants for biological activity. Part V. Indian J Exp Biol. 1974;12:512–523. [PubMed] [Google Scholar]
  • 8.Dhawan BN, Patnaik GK, Rastogi RP, Singh KK, Tandon JS. Screening of Indian plants for biological activity. Part VI. Indian J Exp Biol. 1977;15:208–219. [PubMed] [Google Scholar]
  • 9.Dhawan BN, Dubey MP, Mehrotra BN, Rastogi RP, Tandon JS. Screening of Indian plants for biological activity. Part IX. Indian J Exp Biol. 1980;18:594–606. [PubMed] [Google Scholar]
  • 10.Aswal BS, Bhakuni DS, Goel AK, Kar K, Mehrotra BN, Mukherjee KC. Screening of Indian plants for biological activity. Part X. Indian J Exp Biol. 1984;22:312–332. [PubMed] [Google Scholar]
  • 11.Aswal BS, Bhakuni DS, Goel AK, Kar K, Mehrotra BN. Screening of Indian plants for biological activity. Part XII. Indian J Exp Biol. 1986;24:48–68. [PubMed] [Google Scholar]
  • 12.Bhakuni DS, Goel AK, Jain S, Mehrotra BN, Patnaik GK, Prakash V. Screening of Indian plants for biological activity. Part XIII. Indian J Exp Biol. 1988;26:883–904. [PubMed] [Google Scholar]
  • 13.Bhakuni DS, Goel AK, Goel AK, Jain S, Mehrotra BN, Srimal RC. Screening of Indian plants for biological activity. Part XIV. Indian J Exp Biol. 1990;28:619–697. [PubMed] [Google Scholar]
  • 14.Aswal BS, Goel AK, Kulshreshtha DK, Mehrotra BN, Patnaik GK. Screening of Indian plants for biological activity. Part XV. Indian J Exp Biol. 1996;34:444–467. [PubMed] [Google Scholar]
  • 15.Babbar OP, Joshi MN, Madan AR. Evaluation of plants for antiviral activity. Indian J Med Res. 1982;76(S):54–65. [PubMed] [Google Scholar]
  • 16.Rastogi RP, Dhawan BN. Anticancer and antiviral activities in Indian medicinal plants: a review. Drug Dev Res. 1990;19:1–12. [Google Scholar]
  • 17.Joshi MN, Chowdhary BL, Vishnoi SP, Shoeb A, Kapil RS. Antiviral activity of (+)-oderinal. Planta Med. 1987;53:254–255. doi: 10.1055/s-2006-962695. [DOI] [PubMed] [Google Scholar]
  • 18.Vishnoi SP, Shoeb A, Kapil RS. New cycloarterenol derivatives from Aglaia roxburghiana. Planta Med. 1988;54:40–41. doi: 10.1055/s-2006-962328. [DOI] [PubMed] [Google Scholar]
  • 19.Chowdhary BL, Hussaini FA, Shoeb A. Antiviral constituents from Vicoa indica. Int J Crude Drug Res. 1990;28:121–124. [Google Scholar]
  • 20.Rastogi SN, Kulshreshtha DK (eds) (2001) Fifty years of research and development 1951–2001. Vol. 2 Drug development. Central Drug Research Institute, Lucknow, p 320
  • 21.Mehrotra R, Rawat S, Kulshreshtha DK, Goyal P, Patnaik GK, Dhawan BN. In vitro effect of Phyllanthus amarus on hepatitis B virus. Indian J Med Res. 1991;93:71–74. [PubMed] [Google Scholar]
  • 22.Mehrotra R, Rawat S, Kulshreshtha DK, Patnaik GK, Dhawan BN. In vitro studies on the effect of certain natural products against hepatitis B virus. Indian J Med Res. 1990;92:133–138. [PubMed] [Google Scholar]
  • 23.CSIR-CDRI Newslett (2011) 3:2
  • 24.Dhawan BN. Picroliv—a new hepatoprotective agent from an Indian medicinal plant, Picrorhiza kurroa. Med Chem Res. 1995;5:595–605. [Google Scholar]
  • 25.Harikumar KB, Kuttan G, Kuttan R. Inhibition of progression of erythroleukemia induced by Friend’s virus in BALB-C mice by natural products—berberine, curcumin and picroliv. J Exp Ther Oncol. 2008;7:275–284. [PubMed] [Google Scholar]
  • 26.Kapadia GJ, Sharma SC, Tokuda H, Nishio H, Veda S. Inhibitory effect of iridoids on Epstein-Barr virus activation by a short term assay for antitumor promoters. Cancer Lett. 1996;102:223–226. doi: 10.1016/0304-3835(96)04184-5. [DOI] [PubMed] [Google Scholar]
  • 27.Ananil K, Hudson JB, de Souzal C, Akpaganal K, Tower GHN, Arnason JT, Gbeassor M. Investigation of medicinal plants of Togo for antiviral and antimicrobial activities. Pharm Biol. 2000;38:40–45. doi: 10.1076/1388-0209(200001)3811-BFT040. [DOI] [PubMed] [Google Scholar]
  • 28.Lipipun V, Kurokawa M, Suttisri R, Taweechotipatr P, Pramyothin P, Hattori M, Shiraki K. Efficacy of Thai medicinal plant extracts against herpes simplex virus type 1 infection in vitro and in vivo. Antiviral Res. 2003;60:175–180. doi: 10.1016/s0166-3542(03)00152-9. [DOI] [PubMed] [Google Scholar]
  • 29.Zandi K, Zadeh MA, Sartavi K, Rastian Z. Antiviral activity of Aloe vera against herpes simplex virus type 2, an in vitro study. Afr J Biotechnol. 2007;6:170–1773. [Google Scholar]
  • 30.Jarukamjorn K, Nemoto N. Pharmacological aspects of Andrographis paniculata on health and its major diterpinoid constituent andrographolide. J Health Sci. 2008;54:370–381. [Google Scholar]
  • 31.Pavitra PS, Sreevidya N, Verma RS. A review of chemistry and biological activity of genus Atlantia (Rutaceae) J Med Aromat Plant Sci. 2009;31:63–72. [Google Scholar]
  • 32.Tewari V, Darmani NA, Yue By JT, Shykla D. In vitro antiviral activity of neem (Azadirachta indica) bark extract against herpes simplex type-1 infection. Phytother Res. 2010;24:1132–1140. doi: 10.1002/ptr.3085. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 33.Suksamram S, Wongkrajang K, Kritikara K, Suksamram A. Iridoid glycosides from flowers of Barleria lupulina. Planta Med. 2003;69:877–879. doi: 10.1055/s-2003-43223. [DOI] [PubMed] [Google Scholar]
  • 34.Jain R, Nagpal S, Jain S, Jain SC. Chemical and biological evaluation of Bauhinia species. J Med Aromat Plant Sci. 2004;26:48–50. [Google Scholar]
  • 35.Parmar KA, Prajapati SN. HPTLC-aided phytochemical finger printing analysis as a tool for evaluation and antiviral activity using Hela cell cultures of Bauhinia variegata plant. Asian J Exp Chem. 2009;4:74–77. [Google Scholar]
  • 36.Chiang C-C, Chang J-S, Chen C-C, Ng L-T, Lin C-C. Anti-herpes simplex virus activity of Bidens pilosa and Hottuynia cordata. Am J Chin Med. 2003;31:355–362. doi: 10.1142/S0192415X03001090. [DOI] [PubMed] [Google Scholar]
  • 37.Loizzo MR, Saab A, Tundis R, Stalli Ga, Lampronti H, Menchini F, Gambiari R, Cinalt J, Doern HW. Phytochemical analysis and in vitro evaluation of the biological activity against herpes simplex type 1 (HSV-1) of Cedrus libani A. rich. Phytomedicine. 2008;15:79–83. doi: 10.1016/j.phymed.2007.03.013. [DOI] [PubMed] [Google Scholar]
  • 38.Balasubramanian P, Jayalakshmi K, Vidhya N, Prasad R, Khaleefatullah S, Kathiravan G, Rajagopal K, Sureban SM. Antiviral activity of ancient system of ayurvedic medicinal plant Cissus quadrangularis L. (Vitaceae) J Basic Clin Pharm. 2010;1:37–40. [PMC free article] [PubMed] [Google Scholar]
  • 39.Soltan MM, Zaki AK. Antiviral screening of forty-two Egyptian medicinal plants. J Ethnopharmacol. 2009;126:102–107. doi: 10.1016/j.jep.2009.08.001. [DOI] [PubMed] [Google Scholar]
  • 40.Hohmann J, Redei D, Mathe I, Molnar J, Musi I, Evanics F, Dombi G. Diterpene polyesters with antiviral activity from Euphorbia peplus and Euphorbia serrulata. Phytomedicine. 2000;7(S II):85. [Google Scholar]
  • 41.Fiore C, Eisenhut M, Krausse R, Ragazzi E, Pellati D, Armanini D, Bielenberg J. Antiviral effects of Glycyrrhiza species. Phytother Res. 2008;22:141–148. doi: 10.1002/ptr.2295. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 42.Singh B, Sharma PA. Antineoplastic and antiviral activities of pyrrolizidine alkaloids from Heliotropium marcifolium Koen. cc Retz. Proc Natl Acad Sci India Sect B. 2007;71B:197–205. [Google Scholar]
  • 43.Rajbhandari M, Wegner U, Julich M, Schopke T, Mentel R. Screening of Nepalese plants for antiviral activity. J Ethnopharmacol. 2001;76:251–255. doi: 10.1016/s0378-8741(00)00374-3. [DOI] [PubMed] [Google Scholar]
  • 44.Chou SC, Su CR, Ku YC, Wu TS. The constituents and their bioactivities of Houttuyniacordata. Chem Pharm Bull. 2009;57:1227–1230. doi: 10.1248/cpb.57.1227. [DOI] [PubMed] [Google Scholar]
  • 45.Vijayan P, Raghu C, Ashok G, Dhanraj SA, Suresh B. Antiviral activity of medicinal plants of Nilgiris. Indian J Med Res. 2004;120:24–29. [PubMed] [Google Scholar]
  • 46.Gebre-Mariam T, Neubert R, Schimdt PC, Wutzler P, Schmidtke M. Antiviral activities of some Ethiopian medicinal plants used for the treatment of dermatological disorders. J Ethnopharmacol. 2006;104:182–187. doi: 10.1016/j.jep.2005.08.071. [DOI] [PubMed] [Google Scholar]
  • 47.Petrera E, Cotoce CE. Therapeutic effect of meliacine, an antiviral derived rom Melia azaderach L in mice genital herpes infection. Phytother Res. 2009;23:1771–1777. doi: 10.1002/ptr.2850. [DOI] [PubMed] [Google Scholar]
  • 48.Alche LE, Banquero AA, Sanjuan NA, Coto CE. An antiviral principle present in a purified fraction from Melia azaderach L leaf aqueous extract restrains herpes simplex virus type I propagation. Phytother Res. 2002;16:348–352. doi: 10.1002/ptr.895. [DOI] [PubMed] [Google Scholar]
  • 49.Schumacher A, Reichling J, Schnitzler P. Virucidal effect of peppermint oil on enveloped viruses herpes simplex type I & II in vitro. Phytomedicine. 2003;10:504–510. doi: 10.1078/094471103322331467. [DOI] [PubMed] [Google Scholar]
  • 50.Belvin A, Gbeassor M, Akpagane K, de Sousa K, Kaumaglo K, Arnason JT. Ethnomedical uses of Momordia charantia (Cucurbitaceae) in Togo and relation to its phytochemistry and biological activity. J Ethnopharmacol. 2005;96:49–55. doi: 10.1016/j.jep.2004.08.009. [DOI] [PubMed] [Google Scholar]
  • 51.Cheng HY, Lin TC, Ishimaru Y, Yang CM, Wang KC, Lin CC. In vitro antiviral activity of prodelphinirdin B-2,3,3′-Di-O-gallate from Myrica rubra. Planta Med. 2003;69:53–56. doi: 10.1055/s-2003-45108. [DOI] [PubMed] [Google Scholar]
  • 52.Ooi LSM, Sun SSM, Ooi VEC. Purification and characterization of a new antiviral protein from the leaves of Pandanus amaryllifolius (Pandanaceae) Int J Biochem Cell Biol. 2004;36:1440–1446. doi: 10.1016/j.biocel.2004.01.015. [DOI] [PubMed] [Google Scholar]
  • 53.Rasham IJ, Aday MH, Khazraji ALT. In vitro antiviral activity of the aqueous extract from the seeds of Peganum harmala. Fitoterapia. 1989;60:365–367. [Google Scholar]
  • 54.Xiang Y, Rei Y, Qb C, Lai Z, Xiong S, Zhang Y, Yang C, Wang D, Liu Q, Kitazato K, Wang Y. In vitro anti herpes simplex activity of 1,2,4,6-tetra-O-galloyl-β-d-glucose from Phyllanthus emblica (Euphorbiaceae) Phytother Res. 2011;25:975–982. doi: 10.1002/ptr.3368. [DOI] [PubMed] [Google Scholar]
  • 55.Yang CM, Cheng HY, Lin TC, Chiang LC, Lin CC. The in vitro activity of geranium and 1,3,4,6-tetra-O-galloyl-β-d-glucose isolated from Phyllanthus urinaria against herpes simplex virus type I and type II infection. J Ethnopharmacol. 2007;110:555–558. doi: 10.1016/j.jep.2006.09.039. [DOI] [PubMed] [Google Scholar]
  • 56.Linn CC, Cheng HY, Fang BJ. Anti-herpes virus type 2 activity of herbal medicines from Taiwan. Pharm Biol. 2003;41:259–262. [Google Scholar]
  • 57.Ding CX, Hayashi K, Lee JB, Hayashi T. Characterization of structures and antiviral effects of polysaccharides from Portulaca oleracea L. Chem Pharm Bull. 2010;58:507–510. doi: 10.1248/cpb.58.507. [DOI] [PubMed] [Google Scholar]
  • 58.Schnitzler P, Nolkemps S, Stintzing FC, Reichling J. Comparative in-vitro study on the antiherpetic effect of phytochemically characterized aqueous and ethanolic extracts of Salvia officinalis grown at two different locations. Phytomedicine. 2008;15:62–70. doi: 10.1016/j.phymed.2007.11.013. [DOI] [PubMed] [Google Scholar]
  • 59.Benencia F, Coureges MC. Antiviral activity of sandal wood oil against herpes simplex viruses-1 and -2. Phytomedicine. 1999;6:119–123. doi: 10.1016/S0944-7113(99)80046-4. [DOI] [PubMed] [Google Scholar]
  • 60.Mandal P, Pujot CA, Carlucci MJ, Chattopadhyaya K, Damonte EB, Ray B. Anti-herpetic activity of a sulfated oxylomannon from Scinaia hatei. Phytochemistry. 2008;31:2193–2199. doi: 10.1016/j.phytochem.2008.05.004. [DOI] [PubMed] [Google Scholar]
  • 61.Riel MA, Kyle DE, Milhous WK. Efficacy of scopaduleic acid A against Plasmodium falciparum in vitro. J Nat Prod. 2002;65:614–615. doi: 10.1021/np0105275. [DOI] [PubMed] [Google Scholar]
  • 62.Arthan D, Svasti J, Kiltakoop P, Pittayakhachonwu D, Tarticharoen M, Thebtaranonth Y. Antiviral isoflavonoid sulfate and steroidal glycosides from the fruits of Solanum torvum. Phytochemistry. 2002;59:459–463. doi: 10.1016/s0031-9422(01)00417-4. [DOI] [PubMed] [Google Scholar]
  • 63.Filho IC, Cortez DAG, Uedo-Nakamura T, Nakamura CV, Filho BPD. Antiviral activity and mode of action of a peptide isolated from Sorghum bicolor. Phytomedicine. 2008;15:202–208. doi: 10.1016/j.phymed.2007.07.059. [DOI] [PubMed] [Google Scholar]
  • 64.Andrighetti-Frohnerv CR, Sincero TCM, de Silva AC, Savi LA, Gaido CM, Bettega JMR, Mancini M, de Almeida MTR, Barbose RA, Faries MR. Antiviral evaluation of plants from Brazilian Atlantic tropical forest. Fitoterapia. 2005;76:374–378. doi: 10.1016/j.fitote.2005.03.010. [DOI] [PubMed] [Google Scholar]
  • 65.Verma H, Patil PR, Kolhapure RM, Goplakrishna V. Antiviral activity of the Indian medicinal plant extract, Swertia chirata against herpes simplex viruses: a study by in vitro and molecular approach. Indian J Med Microbiol. 2008;26:322–326. [PubMed] [Google Scholar]
  • 66.Kurokawa K, Hozumi T, Basnet P, Nakano M, Kadota S, Namba T, Kawana T, Shiraki K. Purification and characterization of eugenin as an anti-herpes virus compound from Geum japonicum and Syzygium aromaticum. J Pharmacol Exp Ther. 1998;284:728–735. [PubMed] [Google Scholar]
  • 67.Abad MJ, Bermejo P, Villar A, Sanchez Palomino S, Carracis l. Antiviral activity of medicinal plant extracts. Phytother Res. 1997;11:198–202. [Google Scholar]
  • 68.Alvarez AL, Habtemariam S, Juan-Badaturgue M, Jackson C, Parro F. In vitro anti HSV-1and HSV-2 activity of Taracetum vulgare and isolated compounds. An approach to their mechanism of action. Phytother Res. 2011;25:203–296. doi: 10.1002/ptr.3382. [DOI] [PubMed] [Google Scholar]
  • 69.Kambizia L, Gooseb BM, Taylorc MB, Afolayana AJ. Anti-viral effects of Aloe ferox and Withania somnifera on herpes simplex virus type 1 in cell culture. S Afr J Sci. 2007;103:9–10. [Google Scholar]
  • 70.Khan TA, Tatke PA, Gabhe SY, Mahajan K, Tawde S, Kothari S, Deshmukh RA. Screening of methanol and water extracts of Acacia nilotica for in vitro anti-HIV activity. J Res Educ Indian Med. 2007;13:47–53. [Google Scholar]
  • 71.Maregesi S, Mlert SV, Panrecouque C, Haddad MHF, Hermans N, Wright CW, Villetinck Aj, Alpers S, Pieters L. Screening of Tanzanian plants against Plasmodium falciparum and human immunodeficiency virus. Planta Med. 2010;76:195–201. doi: 10.1055/s-0029-1186024. [DOI] [PubMed] [Google Scholar]
  • 72.Chang YS, Moon YH, Woo ER. Virus-cell fusion inhibitory compounds from Ailanthus altissima Swingle. Korean J Pharmacogn. 2003;34:28–32. [Google Scholar]
  • 73.Sookkongwaree K, Geitmann M, Roengsumran S, Petsom A, Danielson UH. Inhibition of viral proteases by Zingiberaceae extracts and flavones isolated from Kaemfaria parviflora. Die Pharmazie. 2006;61:717–721. [PubMed] [Google Scholar]
  • 74.Alam MS, Quader MA, Rashid MA. HIV-inhibitory diterpinoid from Anisomeles indica. Fitoterapia. 2000;71:574–576. doi: 10.1016/s0367-326x(00)00197-0. [DOI] [PubMed] [Google Scholar]
  • 75.Ma CM, Nakamura N, Hattori M. Inhibitory effect on HIV-protease of tri-p-coumaroyl-spermidine from Artemisia caruilifolia and related amides. Chem Pharm Bull. 2001;49:915–917. doi: 10.1248/cpb.49.915. [DOI] [PubMed] [Google Scholar]
  • 76.Park JC, Hur JM, Park JG, Hatano T, Yoshida T, Miyashiro H, Min BS, Hattori M. Inhibitory effect of Korean medicinal plants and camelliatannin H from Camellia japonica on human immunodeficiency virus type 1 protease. Phytother Res. 2002;16:422–426. doi: 10.1002/ptr.919. [DOI] [PubMed] [Google Scholar]
  • 77.Premnathan M, Rajendran S, Ramnathan T, Kathiresan K, Nakashima H, Yamamoto M. A survey of some Indian medicinal plants for anti-human immunodeficiency virus (HIV) activity. Indian J Med Res. 2000;112:73–77. [PubMed] [Google Scholar]
  • 78.Lee IS, Kim HJ, Lee YS. A new anti-HIV flavonoid glucuronide from Chrysanthemum morifolium. Planta Med. 2003;69:859–861. doi: 10.1055/s-2003-43207. [DOI] [PubMed] [Google Scholar]
  • 79.Wu JH, Wang XH, Yi YH, Lee KH. Anti-aids agents 54. A potent anti-HIV chalcone and flavonoids from genus Desmos. Bioorg Med Chem Lett. 2003;13:1813–1815. doi: 10.1016/s0960-894x(03)00197-5. [DOI] [PubMed] [Google Scholar]
  • 80.Bunluepuech k, Tewtrakul S. Anti-HIV integrase activity of Thai medicinal plants. Songklanakarin J Sci Technol. 2009;31:289–292. [Google Scholar]
  • 81.Bedoya LM, Sanchez Palomino S, Abad MJ, Bermejo P, Alcami C. Screening of selected plant extracts for in vitro inhibitory activity on human immunodeficiency virus. Phytother Res. 2002;16:550–554. doi: 10.1002/ptr.992. [DOI] [PubMed] [Google Scholar]
  • 82.Song WY, Ma YB, Bai X, Zhang XM, Gu Q, Zhang YJ, Zhou J, Chen J. Two new compounds and anti-HIV constituents from Illicium verum. Planta Med. 2007;73:372–375. doi: 10.1055/s-2007-967162. [DOI] [PubMed] [Google Scholar]
  • 83.Bedoya LM, Alvarez A, Bermejo M, Gonzalez N, Bethran M, Sanchoz-Palomina S, Cruz SM, Gaitan I, del Olmo E, Escarcena R. Guatemalan plant extracts as virucides against HIV-1 infection. Phytomedicine. 2008;15:520–524. doi: 10.1016/j.phymed.2007.10.006. [DOI] [PubMed] [Google Scholar]
  • 84.Mujovo SF, Hussein AA, Meyer JJM, Fourie B, Muthivhi T, Lall N. Bioactive compounds from Lippia javanica and Hoslundia opposita. J Nat Prod Res. 2008;22:1047–1054. doi: 10.1080/14786410802250037. [DOI] [PubMed] [Google Scholar]
  • 85.Sahu NP, Mandal NB, Bannerji S, Siddiqui KA. Chemistry and biology of the triterpenes and saponins from the seeds of Mimusops elengi. J Herbs Spices Med Plant. 2002;24:29–37. [Google Scholar]
  • 86.Wang HX, Ng TB. Examination of lectins, polysaccharopeptide, polysaccharide, alkaloid, coumarin and trypsin inhibitors for inhibitory activity against human immunodeficiency virus reverse transcriptase and glycohydrolase. Planta Med. 2001;67:669–672. doi: 10.1055/s-2001-17359. [DOI] [PubMed] [Google Scholar]
  • 87.Jinatchariyakal W, Wivat C, Vongsakul M, Somanbandhu A, Leelamanit W, Fuju I, Suwanaroj N, Ebizuka Y. HIV inhibition from Thai bitter gourd. Planta Med. 2001;67:350–353. doi: 10.1055/s-2001-14323. [DOI] [PubMed] [Google Scholar]
  • 88.Selvan P. Studies on anti-HIV activity and cytotoxicity of leaf of Morinda citrifolia. Int J Chem Sci. 2010;8:249–252. [Google Scholar]
  • 89.Kashiwada Y, Aoshima A, Ikeshiro Y, Chen YP, Furukawa H, Itoigawa M, Fujioka T, Mihashi K, Cosentino LM, Morris-Natschke SL, Lee KH. Anti-HIV benzylisoquinoline alkaloids and flavonoids from the leaves of Nelumbo nucifera and structure–activity correlations with related alkaloids. Bioorg Med Chem. 2005;13:443–448. doi: 10.1016/j.bmc.2004.10.020. [DOI] [PubMed] [Google Scholar]
  • 90.Pelt Gr, Ducki S, Tan R, Gardella RS, MacMahon GB, Boyd MR, Petit GR, III, Blumberg PM, Lewin NE, Dinbek DL, Tackett LP, Williams MD. Isolation and structure of pedilstatin from a republic of Maldives Pedilanthus species. J Nat Prod. 2002;65:1262–1265. doi: 10.1021/np020115b. [DOI] [PubMed] [Google Scholar]
  • 91.Yan MH, Ching P, Jiang ZY, May B, Zhang XM, Zhang FX, Yang LM. Periglaucines A-D, Anti-HBV and -HIV-1 alkaloids from Pericampylus glaucus. J Nat Prod. 2008;71:760–763. doi: 10.1021/np070479+. [DOI] [PubMed] [Google Scholar]
  • 92.Tuchinda P, Pohmaktor M, Reutrakul V, Thanyachareon W, Sophason s, Yoosuk C, Sartisuk T, Pezzuto JM. 2-Substituted furans from Polyalthea suberosa. Planta Med. 2001;67:572–575. doi: 10.1055/s-2001-16469. [DOI] [PubMed] [Google Scholar]
  • 93.Dutta BK, Datta SK, Khan TH, Kundu JK, Rashid MA, Nahar L, Sarker SD. Anticholinergic, cytotoxic and anti-HIV1 activities of sesquiterpenes and a flavonoid glycoside from the aerial parts of Polygonum viscosum. Pharm Biol. 2004;42:18–23. doi: 10.1002/chin.200428184. [DOI] [PubMed] [Google Scholar]
  • 94.Wang RR, Gu Q, Wang YH, Zhang XM, Yang LM, Zhou J, Chen JJ, Zheng YT. Anti-HIV-1 activity of compounds isolated from medicinal plant Rhus chinensis. J Ethnopharmacol. 2008;117:249–256. doi: 10.1016/j.jep.2008.01.037. [DOI] [PubMed] [Google Scholar]
  • 95.Gu Q, Wang RR, Zhang XM, Wang YH, Zheng YT, Zhou T, Chen JJ. A new benzofuranone and anti-HIV constituents from the stem of Rhus chinensis. Planta Med. 2007;73:279–282. doi: 10.1055/s-2007-967113. [DOI] [PubMed] [Google Scholar]
  • 96.Marganelli REU, Zaccaro L, Tomei PE. Antiviral activity in vitro of Urtica dioica, Pariteria diffusa M. et. K. and Sambucus nigra L. J Ethnopharmacol. 2005;98:323–327. doi: 10.1016/j.jep.2005.01.021. [DOI] [PubMed] [Google Scholar]
  • 97.Xiao WL, Li X, Wang RR, Yang LM, Li LM, Huang SX, Zheng YT, Li RT, Sun HD. Triterpinoids from Schisandra rubriflora. J Nat Prod. 2007;70:1056–1059. doi: 10.1021/np0700927. [DOI] [PubMed] [Google Scholar]
  • 98.Porika M, Ailemi M, Kokkirala VR, Gadidasu K, Umate P, Rao AV, Devarakonda RK, Abhagani S. In vitro HIV type-1 reverse transcriptase inhibitory activity from leaf extracts of Scoparia dulcis L. J Herbs Spices Med Plant. 2009;15:241–247. [Google Scholar]
  • 99.Khare M, Srivastava MK, Singh AK. Chemistry and pharmacology of genus Sida (Malvaceae)—a review. J Med Aromat Sci. 2002;24:430–440. [Google Scholar]
  • 100.Ahn MJ, Kim CY, Lee JS, Kim J, Kim SH, Lee CK, Lee BB, Shin CG, Huh H, Kim L. Inhibition of HIV-1 integrase by galloyl glucose from Terminalia chebula and flavonol glycoside gallates from Euphorbia pekinensis. Planta Med. 2002;68:457–459. doi: 10.1055/s-2002-32070. [DOI] [PubMed] [Google Scholar]
  • 101.Asres KF, Bucar F, Kartnig T, Witvrouw M, Pannecouque C, De Clen E. Antiviral activity against human immunodeficiency virus (HIV-1) and type 2 (HIV-2) of ethnobotanically selected Ethopian medicinal plants. Phytother Res. 2001;15:62–69. doi: 10.1002/1099-1573(200102)15:1<62::aid-ptr956>3.0.co;2-x. [DOI] [PubMed] [Google Scholar]
  • 102.Kown DH, Kwon HY, Kim HJ, Chang EJ, Kim MB, Yoon SK, Song EY, Yoon DY, Lee YH, Choi IS, Choi YK. Inhibition of hepatitis-B virus by aqueous extract of Agrimonia eupatoria L. Phytother Res. 2005;19:355–358. doi: 10.1002/ptr.1689. [DOI] [PubMed] [Google Scholar]
  • 103.Likhitwitaywuid K, Sritulanak B, Bencharak K, Lipipun V, Mathew J, Schinazi RF. Phenolics with antiviral activity from Milletia erythrocalyx and Artocarpus lakoocha. Nat Prod Res. 2005;19:177–182. doi: 10.1080/14786410410001704813. [DOI] [PubMed] [Google Scholar]
  • 104.Jacobson JM, Feinman L, Liebes L, Ostrow N, Koslowski V, Tobia A. Pharmacokinetics, safety and antiviral effects of hypericin, a derivative of St. John’s wort plant, in patients with chronic hepatitis-C virus infection. Antimicrob Agents Chemother. 2001;45:517–524. doi: 10.1128/AAC.45.2.517-524.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 105.Han YQ, Huang ZM, Yang XB, Liu HZ, Wu GK. In vivo and in vitro anti-hepatitis B virus activity of total phenolics from Oenanthe javanica. J Ethnopharmacol. 2008;118:148–153. doi: 10.1016/j.jep.2008.03.024. [DOI] [PubMed] [Google Scholar]
  • 106.Thyagarajan SP, Subramanian S, Thirumalasundari T, Venkateswaran PS, Blumberg BS. Effect of Phyllanthus amarus on chronic carriers of hepatitis B virus. Lancet. 1988;2:764–766. doi: 10.1016/s0140-6736(88)92416-6. [DOI] [PubMed] [Google Scholar]
  • 107.Wang M, Cheng H, Li Y, Meng L, Zhao G, Mai K. Herbs of the genus Phyllanthus in the treatment of chronic hepatitis B: observations with three preparations from different geographic sites. J Lab Clin Med. 1995;126:350–352. [PubMed] [Google Scholar]
  • 108.Zhao YL, Cai GM, Hong X, Shan LM, Xiao XH. Antihepatitis-B virus activities of triterpinoid saponin compounds from Potentilla anserine L. Phytomedicine. 2008;15:253–258. doi: 10.1016/j.phymed.2008.01.005. [DOI] [PubMed] [Google Scholar]
  • 109.Li H, Zhou CX, Pan Y, Gao X, Wu X, Bai H, Zhou L, Chen Z, Zhang S, Shi S, Luo J, Xu J, Chen L, Zheng X, Zhao Y. Evaluation of antiviral activity of compounds isolated from Ranunculus seiboldi and Ranunculus scleratus. Planta Med. 2005;71:1128–1130. doi: 10.1055/s-2005-873169. [DOI] [PubMed] [Google Scholar]
  • 110.Li-Kang H, Ming-Jaw D, Hua-Chien C, Sheau-Farn Y, Jau-Ming C. Inhibition of hepatitis B surface antigen secretion on human hepatoma cells by components from Rubia cardifolia. J Nat Prod. 1996;59:330–333. doi: 10.1021/np960200h. [DOI] [PubMed] [Google Scholar]
  • 111.Hua-Chien C, Cen-Kung C, Shou-Dong L, Ju-Chun W, Sheau-Farn Y. Active compounds from Saussurea lappa Clarks that suppress hepatitis B virus surface antigen gene expression in human hepatoma cills. Antiviral Res. 1995;27:99–109. doi: 10.1016/0166-3542(94)00083-k. [DOI] [PubMed] [Google Scholar]
  • 112.Chung TH, Kim JC, Lee CY, Moon MK, Choe SC, Lee IS, Kim SH, Hahn KS, Lee IP. Potential antiviral effects of terminalia chebula, Sanguisorba officinalis, Rubus coreanus and Rheum palmatum against duck hepatitis B virus (DHBV) Phytother Res. 1997;11:179–182. [Google Scholar]
  • 113.Sathyanarayanan S, Selvam P, Jose A, George RM, Revikumar KG, Neyts J. Preliminary phytochemical screening and study of antiviral activity and cytotoxicity of Wrightia tinctoria. Int J Chem Sci. 2009;7:1–5. [Google Scholar]
  • 114.Handa SS, editor. Perspectives of Indian medicinal plants in the management of liver disorders. New Delhi: Indian Council of Medical Research; 2008. [Google Scholar]
  • 115.Sawamura R, Sun Y, Yasukawa K, Shimizu T, Watanabe W, Kurokowa M. Antiviral activity of diaryheptanoids against influenza virus in vitro. J Nat Med. 2010;64:117–120. doi: 10.1007/s11418-009-0372-2. [DOI] [PubMed] [Google Scholar]
  • 116.Chen JX, Xue HJ, Wen-Cai Y, Bing-Hu F, Ya-Hong L, Shao-Hua Y, Yu P, Yu-Quang W. Activity of andrographolide and its derivatives against influenza virus in vivo and in vitro. Biol Pharm Bull. 2009;32:1385–1391. doi: 10.1248/bpb.32.1385. [DOI] [PubMed] [Google Scholar]
  • 117.Mohamed IET, El Nur EBES, Abdelrahman MEN. The antibacterial, antiviral activities and photochemical screening of some Sudanese medicinal plants. Eurasian J Biosci. 2010;4:8–16. [Google Scholar]
  • 118.Chen JL, Blanc P, Stoddart CA, Bogan M, Rozhon EJ, Parkinson N, Ye Z, Cooper R, Balick M, Nanakorn W, Kernan MR. New iridoids from the medicinal plant Barleria prionitis with potent activity against respiratory syncitial virus. J Nat Prod. 1998;61:1295–1297. doi: 10.1021/np980086y. [DOI] [PubMed] [Google Scholar]
  • 119.Liu AL, Shu SH, Quin HL, Lee SMY, Wang YT, Du GH. In vitro anti-influenza viral activities of constituents from Caesalpinia sappan. Planta Med. 2009;75:337–339. doi: 10.1055/s-0028-1112208. [DOI] [PubMed] [Google Scholar]
  • 120.Harikumar KB, Kuttan R. Antiviral activity of Phyllanthus amarus and curcumin. Amla Res Bull. 2006;26:198–205. [Google Scholar]
  • 121.Martani N, Imanishi N, Kawamata H, Terasawa K, Ochiai H. Inhibitory effect of (+)-catechin on the growth of influenza A/PR/8 in MDCK cells. Planta Med. 2001;67:240–243. doi: 10.1055/s-2001-12009. [DOI] [PubMed] [Google Scholar]
  • 122.Wang Y-Z, Cui X-L, Gao Y-J, Guo S-S, Wang X-K, Huang Y, Zhao Y. Antivirus effects of extract from Gardenia. Zhongguo Zhongayo Zazhi. 2006;31:1176–1178. [PubMed] [Google Scholar]
  • 123.Lau KM, Lee KM, Koon CM, Cheung CSF, Lau CP, Ho HM, Lee MYH, Au SWN, Cheng CHK. Immunomodulatory and anti-SARS activities of Houttuynia cordata. J Ethnopharmacol. 2008;118:79–85. doi: 10.1016/j.jep.2008.03.018. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 124.Vidal A, Fallarero A, Pena BR, Medina ME, Gra B, Rivera F, Guttierrz Y, Vuorela PM. Studies on the toxicity of Punica granatum L (Punicacaeae) whole fruit extracts. J Ethnopharmacol. 2003;89:295–300. doi: 10.1016/j.jep.2003.09.001. [DOI] [PubMed] [Google Scholar]
  • 125.Ho W-S, Xue J-Y, Sun VEC, Li YL. Antiviral activity of daphnoretin isolated from Wikstroemia indica. Phytother Res. 2010;24:657–661. doi: 10.1002/ptr.2935. [DOI] [PubMed] [Google Scholar]
  • 126.Tandon N, editor. Quality standards of Indian medicinal plants. New Delhi: Indian Council of Medical Research; 2011. p. 5. [Google Scholar]
  • 127.Jassim SAA, Naji MA. Novel antiviral agents: a medicinal plants perspective. J Appl Microbiol. 2003;95:412–427. doi: 10.1046/j.1365-2672.2003.02026.x. [DOI] [PubMed] [Google Scholar]
  • 128.Dhawan BN, Patnaik GK. Pharmacological studies for therapeutic potential. In: Randhawa NS, Parmar BS, editors. Neem research and development. New Delhi: Society of Pesticide Science, India; 1993. pp. 242–249. [Google Scholar]
  • 129.Bhanuprakash V, Hosamani M, Balamurugan V, Singh RK, Swarup D. In vitro antiviral activity of Eugenia jambolana plant extract on buffalo pox virus: conventional and qPCR methods. Int J Trop Med. 2007;2:3–9. [Google Scholar]
  • 130.Pompei R, Pari A, Flore O, Marcialis MA, Lodd OB. Antiviral activity of glycyrrhizic acid. Experientia. 1980;36:304–305. doi: 10.1007/BF01952290. [DOI] [PubMed] [Google Scholar]
  • 131.Sunday OA, Munir AB, Akeeb OY, Bolanle AA, Badaru SO. Antiviral effect of Hibiscus sabdariffa and Celosia argentea on measles virus. Afr J Microbiol Res. 2010;4:293–296. [Google Scholar]
  • 132.Badam L, Bedekar S, Sonawane KB, Joshi SP. In vitro antiviral activity of bael (Aegle marmalos) upon human Coxsackie virus B1–B6. J Commun Dis. 2002;34:88–99. [PubMed] [Google Scholar]
  • 133.Goncalves JLS, Lopes RC, Oliviera DB, Costa SS, Mirandas MMFS, Romanos MTV, Santo NSO, Wigg MD. In vitro anti-rotavirus activity of some medicinal plants used in Brazil against diarrhea. J Ethnopharmacol. 2005;99:403–407. doi: 10.1016/j.jep.2005.01.032. [DOI] [PubMed] [Google Scholar]
  • 134.Badam L, Bedekar SS, Joshi SP. ‘In-vitro’ antiviral activity of neem (Azadirachta indica A. Juss) leaf extract against group B Coxsackie viruses. J Commun Dis. 1999;31:79–90. [PubMed] [Google Scholar]
  • 135.Akihisa T, Tokuda H, Ukiya M, Suzuki T, Erjo F, Koike K, Nikaido T, Nishino H. 3-Epicabrale hydroxylactone and other triterpinoids from Camellia oil and their inhibitory effects on Epstein-Barr virus activation. Chem Pharm Bull. 2004;52:153–156. doi: 10.1248/cpb.52.153. [DOI] [PubMed] [Google Scholar]
  • 136.Krishnaswamy K. Turmeric: the salt of orient is the spice of life. Mumbai: Allied Publishers Private Ltd; 2008. pp. 175–178. [Google Scholar]
  • 137.Badam L. In vitro antiviral activity of indigenous glycyrrhizin, licorice and glycyrrhizic acid on Japanese encephalitis virus. J Commun Dis. 1997;29:91–98. [PubMed] [Google Scholar]
  • 138.Badam L. In vitro studies on the effect of glycyrrhizin from Indian Glycyrrhiza glabra Linn on some RNA and DNA viruses. Indian J Pharm. 1994;26:194–199. [Google Scholar]
  • 139.Ito C, Itoigaiva M, Ogata M, Mou XY, Tokuda H, Nishino HF. Lignans as anti-tumor promoter from the seeds of Hernandia ovigera. Planta Med. 2001;67:166–168. doi: 10.1055/s-2001-11501. [DOI] [PubMed] [Google Scholar]
  • 140.Supratman U, Fujita T, Akiyama K, Hayashi H, Murakami A, Sakai H, Koshimitzu K, Obigashi H. Anti-tumor promoting activity of bufadienolids from Kalanchoe pinnata and Kalanchoe daigremontiana × tubiflora. Biosci Biotechnol Biochem. 2001;65:947–951. doi: 10.1271/bbb.65.947. [DOI] [PubMed] [Google Scholar]
  • 141.Tanaka R, Nakata T, Yamaguchi C, Wada SI, Yamada T, Tokude H. Potential anti-tumor activity of 3-alpha-hydroxy-D: a-friesdooleanan-2-one from stem bark of Mallotus philippensis. Planta Med. 2008;74:413–416. doi: 10.1055/s-2008-1034347. [DOI] [PubMed] [Google Scholar]
  • 142.Premnathan M, Nakashima H, Kathiresan K. In vitro anti-human immunodeficiency virus activity of mangrove plants. Indian J Med Res. 1996;103:278–281. [PubMed] [Google Scholar]
  • 143.Chang RS, Ding L, Chen GQ, Pan QC, Zhao ZI, Smith KM. Dehydroandrographolide succinic acid monoester as an inhibitor against the human immunodeficiency virus. Proc Soc Exp Biol Med. 1991;197:59–66. doi: 10.3181/00379727-197-43225. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences, India. Section B are provided here courtesy of Nature Publishing Group

RESOURCES