Skip to main content
Springer Nature - PMC COVID-19 Collection logoLink to Springer Nature - PMC COVID-19 Collection
. 1988;166(1):1–23. doi: 10.1007/BF02714025

Plasma exudation and asthma

Carl G A Persson 1,
PMCID: PMC7100194  PMID: 3121940

Abstract

Several pieces of evidence support the view that exudation of plasma into the airway wall and into the airway lumen occurs in asthma. Vascular leakage of plasma results from inflammatory mediator-induced separation of endothelial cells in postcapillary venules belonging to the tracheobronchial circulation. Whereas proposed mediators of asthma induce reversible leakage, several antiasthma drugs exhibit antileakage effects in animals and humans. Potential consequences of plasma exudation are many. Mucosal/submucosal edema might contribute to airway hyperresponsiveness. Plasma exudate in the airway lumen in asthma may contribute to sloughing of epithelium, impairment of mucociliary transport, narrowing of small airways, and mucus plug formation. Exuded plasma may cause airway inflammation and constriction because of its content of powerful mediators, and chemoattractant factors and plasma proteins may condition the inflammatory cells abundant in asthmatic airways to release mediators in response to stimuli that otherwise would be innocuous to the cells. It is concluded that inflammatory stimulus-induced increase in macromolecular permeability of the tracheobronchial microvasculature and mucosa may be a significant pathogenetic mechanism in asthma and that the postcapillary venular endothelium and airway epithelium that regulate leakage of plasma are important effector cells in this disease.

Key words: Airway inflammation, Asthma pathology, Macromolecular leakage, Microvascular permeability, Mucosal permeability, Mediators, Antiasthma drugs

References

  • 1.Abe K, Watanabe N, Kumagai N, Mouri T, Seki T, Yoshinaga K. Circulating plasma kinin in patients with bronchial asthma. Experientia. 1967;23:626–627. doi: 10.1007/BF02144161. [DOI] [PubMed] [Google Scholar]
  • 2.Aitken ML, Verdugo P. Donnan mechanism of mucus hydration: effect of soluble proteins. Am Rev Respir Dis. 1986;133:A294. [Google Scholar]
  • 3.Akcasu A. The physiological and pharmacological characteristics of the tracheal muscle. Arch Int Pharmacodyn. 1959;122:201–207. [PubMed] [Google Scholar]
  • 4.Alexander HL. A historical account of death from asthma. J Allergy. 1963;34:305–313. doi: 10.1016/0021-8707(63)90039-X. [DOI] [PubMed] [Google Scholar]
  • 5.Anderson WH. Biochemical mediators: release, chemistry, and function. In: Weiss EB, Segal MS, Stein M, editors. Bronchial Asthma. 2nd ed. Boston: Little, Brown; 1985. pp. 57–87. [Google Scholar]
  • 6.Andersson TO, Riff LJM, Jackson GG. Immunoelectrophoresis of nasal secretions collected during a common cold: observations which suggest a mechanism of seroimmunity in viral respiratory infections. J Immunol. 1962;89:691–697. [PubMed] [Google Scholar]
  • 7.Arnold J. Uber die Kittsubstanz der Endothelien. Virchows Arch Pathol Anat. 1876;66:77–95. [Google Scholar]
  • 8.Aschheim E, Zweifach BW. Quantitative studies of protein and water shifts during inflammation. Am J Physiol. 1962;202:554–558. doi: 10.1152/ajplegacy.1962.202.3.554. [DOI] [PubMed] [Google Scholar]
  • 9.Baier H, Long WM, Wanner A. Bronchial circulation in asthma. Respiration. 1985;48:199–205. doi: 10.1159/000194830. [DOI] [PubMed] [Google Scholar]
  • 10.Baile EM, Dahlby RW, Wiggs BR, Paré PD. Role of tracheal and bronchial circulation in respiratory heat exchange. J Appl Physiol. 1985;58:217–222. doi: 10.1152/jappl.1985.58.1.217. [DOI] [PubMed] [Google Scholar]
  • 11.Baumgarten A, Melrose GJH, Vagg WJ. Interactions between histamine and bradykinin assessed by continuous recording of increased vascular permeability. J Physiol. 1970;208:669–675. doi: 10.1113/jphysiol.1970.sp009141. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Baumgarten CR, Togias AG, Naclerio RM, Lichtenstein LM, Norman PS, Proud D. Influx of kininogens into nasal secretions after antigen challenge of allergic individuals. J Clin Invest. 1985;76:191–197. doi: 10.1172/JCI111945. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Becker CG, Nachman RL. Contractile proteins of endothelial cells, platelets and smooth muscle. Am J Pathol. 1973;71:1–22. [PMC free article] [PubMed] [Google Scholar]
  • 14.Björk J, Hugli TE, Smedegård G. Microvascular effects of anaphylatoxins C3a and C5a. J Immunol. 1985;134:1115–1119. [PubMed] [Google Scholar]
  • 15.Bonomo L, D’Addabbo A. 131I Albumin turnover and loss of protein into the sputum in chronic bronchitis. Clin Chim Acta. 1964;10:214–222. doi: 10.1016/0009-8981(64)90138-X. [DOI] [PubMed] [Google Scholar]
  • 16.Bortkiewicz J. Arginine esterase activity of the plasma in different types of bronchial asthma. Arch Immunol Ther Exp. 1983;31:71–73. [PubMed] [Google Scholar]
  • 17.Boucher RC, Bromberg PA, Gatzy JT. Airway mucosal permeability. In: Hargreave F, editor. Airway Reactivity. Mississauga: Astra Canada; 1980. pp. 40–48. [Google Scholar]
  • 18.Brogan TD, Ryley HC, Neale L, Yassa J. Soluble proteins of bronchopulmonary secretions from patients with cystic fibrosis, asthma, and bronchitis. Thorax. 1975;30:72–79. doi: 10.1136/thx.30.1.72. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.Bult H, Herman AG. Vascular responses and their suppression: the role of endothelium. In: Bonta IL, Bray MA, Parnham MJ, editors. The Pharmacology of Inflammation. Handbook of Inflammation 5. Amsterdam: Elsevier; 1985. pp. 83–105. [Google Scholar]
  • 20.Burke JF, Miles AA. The sequence of vascular events in early infective inflammation. J Pathol Bacteriol. 1958;76:1–19. doi: 10.1002/path.1700760102. [DOI] [PubMed] [Google Scholar]
  • 21.Burnett D, Stockley RA. Serum and sputum α2 macroglobulin in patients with chronic obstructive airways disease. Thorax. 1981;36:512–516. doi: 10.1136/thx.36.7.512. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.Cardell BS, Pearson RSB. Death in asthmatics. Thorax. 1959;14:341–52. [Google Scholar]
  • 23.Chambers R, Zweifach BW. Intercellular cement and capillary permeability. Physiol Rev. 1947;27:436–463. doi: 10.1152/physrev.1947.27.3.436. [DOI] [PubMed] [Google Scholar]
  • 24.Cohnheim J. Vorlesungen uber Allgemeine Pathologie I. Berlin: August Hirschwald; 1882. pp. 232–367. [Google Scholar]
  • 25.Cole P. Modification of inspired air. In: Proctor DF, Andersen I, editors. The Nose. Amsterdam: Elsevier; 1982. pp. 351–376. [Google Scholar]
  • 26.Coleridge HM, Coleridge JCG. Afferent vagal C-fibres in the dog lung. Their discharge during spontaneous breathing and their stimulation by alloxan and pulmonary congestion. In: Paintal AS, Gill-Kumar P, editors. Krogh Centenary Symposium of Respiratory Adaptions, Capillary Exchange and Reflex Mechanisms. Delhi: University of Delhi; 1977. pp. 369–406. [Google Scholar]
  • 27.Cotran RS. Studies on inflammation. Ultrastructure of the prolonged vascular response induced byClostridium oedematiens toxin. Lab Invest. 1967;17:39–60. [PubMed] [Google Scholar]
  • 28.Cottrel TS, Levine OR, Senoir RM, Wiener J, Spiro D, Fishman AP. Electron microscopic alterations at the alveolar level in pulmonary edema. Circ Res. 1967;21:783–798. doi: 10.1161/01.res.21.6.783. [DOI] [PubMed] [Google Scholar]
  • 29.Craig JP, Miles AA. Some properties of the iota-toxin of clostridium welchii including its action on capillary permeability. J Pathol Bacteriol. 1961;81:481–493. doi: 10.1002/path.1700810221. [DOI] [PubMed] [Google Scholar]
  • 30.Cutz E, Levison H, Cooper DM. Ultrastructure of airways in children with asthma. Histopathology. 1978;2:407–421. doi: 10.1111/j.1365-2559.1978.tb01735.x. [DOI] [PubMed] [Google Scholar]
  • 31.Daly I de B, Hebb C. Pulmonary and Bronchial Vascular Systems. London: Edward Arnold; 1966. pp. 42–88. [Google Scholar]
  • 32.Dixon FJ, Warren S. Antigen tracer studies and histologic observations in anaphylactic shock in the guinea-pig. II Am J Med Sci. 1950;219:414–421. [PubMed] [Google Scholar]
  • 33.Dolovich J, Back N, Arbesman CE. Kinin-like activity in nasal secretions of allergic patients. Int Arch Allergy Appl Immunol. 1970;38:337–344. doi: 10.1159/000230287. [DOI] [PubMed] [Google Scholar]
  • 34.Don Barton A, Lourenço RV. Bronchial secretions and mucociliary clearance. Arch Intern Med. 1973;131:140–144. doi: 10.1001/archinte.131.1.140. [DOI] [PubMed] [Google Scholar]
  • 35.Dulfano MJ, Ishikawa S. Sputum in bronchial asthma. In: Weiss EB, Segal MS, Stein M, editors. Bronchial Asthma. 2nd ed. Boston: Little, Brown; 1985. pp. 548–561. [Google Scholar]
  • 36.Dulfano MJ, Luk CK. Sputum and ciliary inhibition in asthma. Thorax. 1982;37:646–651. doi: 10.1136/thx.37.9.646. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 37.Dunnill MS. The pathology of asthma with special reference to changes in the bronchial mucosa. J Clin Pathol. 1960;13:27–33. doi: 10.1136/jcp.13.1.27. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 38.Dunnill MS. The pathology of asthma. In: Middleton E, Reed CE, Ellis EF, editors. Allergy Principles and Practice II. St. Louis: CV Mosby; 1978. pp. 678–686. [Google Scholar]
  • 39.Dunnill MS, Massarella GR, Andersson JA. A comparison of the quantitative anatomy of the bronchi in normal subjects, in status asthmaticus, in chronic bronchitis, and in emphysema. Thorax. 1969;24:176–179. doi: 10.1136/thx.24.2.176. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 40.Elwood RK, Kennedy S, Belzberg A, Hogg JC, Paré PD. Respiratory mucosal permeability in asthma. Am Rev Respir Dis. 1983;128:523–527. doi: 10.1164/arrd.1983.128.3.523. [DOI] [PubMed] [Google Scholar]
  • 41.Erjefält I, Persson CGA. Effects of adrenaline and terbutaline on mediator-increased vascular permeability in the cat trachea. Br J Pharmacol. 1982;77:399P. [Google Scholar]
  • 42.Erjefält I, Persson CGA. Anti-asthma drugs attenuate inflammatory leakage of plasma into airway lumen. Acta Physiol Scand. 1986;128:653–654. doi: 10.1111/j.1748-1716.1986.tb08027.x. [DOI] [PubMed] [Google Scholar]
  • 43.Fabbi LM, Boschetto P, Zocca E, Milani G, Pivirotto F, Plebani M, Burlina A, Licata B, Mapp C (1987) Bronchoalveolar neutrophilia during TDI-induced late asthmatic reactions. Am Rev Respir Dis (in press) [DOI] [PubMed]
  • 44.Florey HW. General Pathology. 4th ed. London: Lloyd-Luke; 1970. [Google Scholar]
  • 45.Florey H, Carleton HM, Wells AQ. Mucus secretion in the trachea. Br J Exp Pathol. 1932;13:269–284. [Google Scholar]
  • 46.Fraenkel A. Zur Pathologie des Bronchialasthma. Dtsch Med Wochenschr. 1900;17:269–272. doi: 10.1055/s-0029-1203812. [DOI] [Google Scholar]
  • 47.Gerberick GF, Jaffe HA, Willoughby JB, Willoughby WF. Relationships between pulmonary inflammation, plasma transudation, and oxygen metabolic secretion by alveolar macrophages. J Immunol. 1986;137:114–121. [PubMed] [Google Scholar]
  • 48.Gerdin B, Saldeen T. Effect of fibrin degradation products on microvascular permeability. Thrombos Res. 1978;13:995–1006. doi: 10.1016/0049-3848(78)90228-1. [DOI] [PubMed] [Google Scholar]
  • 49.Gleich GG. The role of the eosinophilic leukocyte in bronchial asthma. Clin Respir Physiol. 1986;22(suppl 7):62–69. [PubMed] [Google Scholar]
  • 50.Grant L. The sticking and emigration of white blood cells in inflammation. In: Zweifach BW, Grant L, McCluskey RT, editors. The Inflammatory Process. 2nd ed. New York: Academic Press; 1973. pp. 205–250. [Google Scholar]
  • 51.Greaves M, Shuster S. Responses of skin blood vessels to bradykinin, histamine and 5-hydroxytryptamine. J Physiol. 1967;193:255–267. doi: 10.1113/jphysiol.1967.sp008356. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 52.Guirgis HA, Townley RG. Biochemical study on sputum in asthma and emphysema. J Allergy Clin Immunol. 1973;51:86–86. doi: 10.1016/S0091-6749(73)80020-X. [DOI] [Google Scholar]
  • 53.Hanicki Z, Koj A. Plasma albumin loss due to bronchopathy. Clin Chim Acta. 1965;11:581–583. doi: 10.1016/0009-8981(65)90017-3. [DOI] [PubMed] [Google Scholar]
  • 54.Harkavy J. Spasm-producing substance in the sputum of patients with bronchial asthma. Arch Intern Med. 1930;45:641–646. [Google Scholar]
  • 55.Heilpern S, Rebuck AS. Effect of disodium cromoglycate (Intal) on sputum protein composition. Thorax. 1972;27:726–728. doi: 10.1136/thx.27.6.726. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 56.Herxheimer H, Stresemann E. The effect of bradykinin aerosol in guinea-pigs and in man. J Physiol. 1961;158:38–39. [Google Scholar]
  • 57.Hilding AC. The relation of ciliary insufficiency to death from asthma and other respiratory diseases. Ann Otol Rhinol Laryng. 1943;52:5–19. [Google Scholar]
  • 58.Hogg JC. The pathology of asthma. Clin Chest Med. 1984;5:567–571. [PubMed] [Google Scholar]
  • 59.Holter JF, Weiland JE, Pacht ER, Gadek JE, Davis WB. Protein permeability in the adult respiratory distress syndrome. Loss of size selectivity of the alveolar epithelium. J Clin Invest. 1986;78:1513–1522. doi: 10.1172/JCI112743. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 60.Houston JC, De Navasquez S, Trounce JR. A clinical and pathological study of fatal cases of status asthmaticus. Thorax. 1953;8:207–213. doi: 10.1136/thx.8.3.207. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 61.Huber HL, Koessler KK. The pathology of bronchial asthma. Arch Intern Med. 1922;30:689–760. [Google Scholar]
  • 62.Hultström D, Svensjö E. Intravital and electron microscopic study of bradykinininduced vascular permeability changes using FITC-dextran as a tracer. J Pathol. 1980;129:125–133. doi: 10.1002/path.1711290304. [DOI] [PubMed] [Google Scholar]
  • 63.Hurley JV (1982) Types of pulmonary microvascular injury. In: Malik AB, Staub NC (eds) Lung microvascular injury. Ann NY Acad Sci 384:269-286 [DOI] [PubMed]
  • 64.Hurley JV. Acute Inflammation. 2nd ed. Edinburgh: Churchill Livingstone; 1983. [Google Scholar]
  • 65.Hutt G, Wick H. Bronchial-lumen und Atemwiderstand. Z Aerosol Forsch Ther. 1956;5:131–140. [Google Scholar]
  • 66.Ishii M, Matsumoto N, Fuyuki T, Hida W, Ichinose M, Inoue H, Takishima T. Effects of hemodynamic edema formation on peripheral vs. central airway mechanics. J Appl Physiol. 1985;59:1578–1584. doi: 10.1152/jappl.1985.59.5.1578. [DOI] [PubMed] [Google Scholar]
  • 67.Jarnum S. Protein-Losing Gastroenteropathy. Oxford: Blackwell; 1963. pp. 1–232. [Google Scholar]
  • 68.Keal EE. Biochemistry and rheology of sputum in asthma. Postgrad Med J. 1971;47:171–177. doi: 10.1136/pgmj.47.545.171. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 69.Kennedy SM, Elwood RK, Wiggs BJR, Paré PD, Hogg JC. Increased airway mucosal permeability of smokers. Relationship to airway reactivity. Am Rev Respir Dis. 1984;129:143–148. doi: 10.1164/arrd.1984.129.1.143. [DOI] [PubMed] [Google Scholar]
  • 70.Kröll F, Karlsson J-A, Persson CGA. Bronchial circulation perfused via the pulmonary artery in guinea-pig isolated lungs. Acta Physiol Scand. 1987;129:437–440. doi: 10.1111/j.1365-201x.1987.tb10614.x. [DOI] [PubMed] [Google Scholar]
  • 71.Laitinen LA, Laitinen A. Is asthma also a vascular disease? Am Rev Respir Dis. 1987;135:A474. doi: 10.1164/arrd.1987.135.6P2.S67. [DOI] [PubMed] [Google Scholar]
  • 72.Laitinen LA, Laitinen A, Widdicombe JG (1987) Effects of inflammatory and other mediators on airway vascular beds. Am Rev Respir Dis June Suppl [DOI] [PubMed]
  • 73.Laitinen LA, Robinson NP, Laitinen A, Widdicombe JG. Relationship between tracheal mucosal thickness and vascular resistance in dogs. J Appl Physiol. 1986;61:2186–2193. doi: 10.1152/jappl.1986.61.6.2186. [DOI] [PubMed] [Google Scholar]
  • 74.Leme GJ, Wilhelm DL. The effects of adrenalectomy and corticosterone on vascular permeability responses in the skin of the rat. Br J Exp Pathol. 1975;56:402–407. [PMC free article] [PubMed] [Google Scholar]
  • 75.Lam S, Leriche JC, Kijek K, Phillips RT. Effect of bronchial lavage volume on cellular and protein recovery. Chest. 1985;88:856–859. doi: 10.1378/chest.88.6.856. [DOI] [PubMed] [Google Scholar]
  • 76.List SJ, Findlay BP, Forstner GG, Forstner JF. Enhancement of the viscosity of mucin by serum albumin. Biochem J. 1978;175:565–571. doi: 10.1042/bj1750565. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 77.Macklem PT, Proctor DF, Hogg J. The stability of peripheral airways. Respir Physiol. 1970;8:191–203. doi: 10.1016/0034-5687(70)90015-0. [DOI] [PubMed] [Google Scholar]
  • 78.Majno G, Palade GE. Studies on inflammation I. J Biophys Biochem Cytol. 1961;11:571–605. doi: 10.1083/jcb.11.3.571. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 79.Malik AB, Selig WM, Burhop KE. Cellular and humoral mediators of pulmonary edema. Lung. 1985;163:193–219. doi: 10.1007/BF02713821. [DOI] [PubMed] [Google Scholar]
  • 80.Marchesi VT. The site of leukocyte emigration during inflammation. Q J Exp Physiol. 1961;46:115–133. doi: 10.1113/expphysiol.1961.sp001522. [DOI] [PubMed] [Google Scholar]
  • 81.McLaughlin RF. Bronchial artery distribution in various mammals and in humans. Am Rev Respir Dis. 1983;128:S57–58. doi: 10.1164/arrd.1983.128.2P2.S57. [DOI] [PubMed] [Google Scholar]
  • 82.Mellander S. Contribution of small vessel tone to the regulation of blood volume and formation of edema. Proc R Soc Med. 1968;61:55–61. [PMC free article] [PubMed] [Google Scholar]
  • 83.Mendes E, Strauss A, Ferri RG, Cintra ABU. Immunochemical studies of the asthmatic sputum. Acta Allergol. 1963;18:17–25. doi: 10.1111/j.1398-9995.1963.tb03138.x. [DOI] [PubMed] [Google Scholar]
  • 84.Menkin V. Effect of adrenal cortex extract on capillary permeability. Am J Physiol. 1940;129:691–697. [Google Scholar]
  • 85.Messer JW, Peters GA, Bennet WA. Causes of death and pathologic findings in 304 cases of bronchial asthma. Dis Chest. 1960;38:616–624. doi: 10.1378/chest.38.6.616. [DOI] [PubMed] [Google Scholar]
  • 86.Michel O, Sergysels R, Duchateau J. Complement activation in asthma evaluated by the C3d/C3 index. Ann Allergy. 1986;57:405–408. [PubMed] [Google Scholar]
  • 87.Miles AA. Large molecular substances as mediators of the inflammatory reaction. Ann NY Acad Sci. 1964;116:855–890. doi: 10.1111/j.1749-6632.1964.tb52551.x. [DOI] [PubMed] [Google Scholar]
  • 88.Miles AA, Wilhelm DL. Enzyme-like globulins from serum reproducing the vascular phenomena of inflammation. Br J Exp Pathol. 1955;36:71–81. [PMC free article] [PubMed] [Google Scholar]
  • 89.Miles AA, Wilhelm DL. The activation of endogenous substances inducing pathological increases of capillary permeability. In: Stoner HB, Threlfall CJ, editors. The Biochemical Response to Injury. Oxford: Blackwell; 1960. pp. 51–83. [Google Scholar]
  • 90.Miller WS. The Lung. Springfield: Charles C Thomas; 1947. pp. 74–88. [Google Scholar]
  • 91.Moore WF. Ciliary inhibition or destruction in tracheobronchial asthma. Am J Med Sci. 1925;169:799–806. doi: 10.1097/00000441-192506000-00004. [DOI] [Google Scholar]
  • 92.Moretti M, Giannico G, Marchioni CF, Bisetti A. Effects of methylprednisolone on sputum biochemical components in asthmatic bronchitis. Eur J Respir Dis. 1984;65:365–370. [PubMed] [Google Scholar]
  • 93.Morrison HM, Afford SC, Stockley RA. Inhibitory capacity of alpha1 antitrypsin in lung secretions: variability and the effect of drugs. Thorax. 1984;39:510–516. doi: 10.1136/thx.39.7.510. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 94.Movat HZ. Kinins and the kinin system as inflammatory mediators. In: Houck JC, editor. Chemical Messengers of the Inflammatory Process. Handbook of Inflammation, 1. Amsterdam: Elsevier; 1979. pp. 47–112. [Google Scholar]
  • 95.Mygind N, Wihl JÅ. Concentrations of immunoglobulins in nasal secretion from children with recurrent infections in the upper airways. Acta Otolaryngol. 1976;82:216–218. doi: 10.3109/00016487609120887. [DOI] [PubMed] [Google Scholar]
  • 96.Naclerio RM, Bartenfelder D, Proud D, Togias AG, Meyers DA, Kagey-Sobotka A, Norman PS, Lichtenstein LM. Theophylline reduces the response to nasal challenge with antigen. Am J Med. 1985;79(suppl 6A):43–47. doi: 10.1016/0002-9343(85)90087-7. [DOI] [PubMed] [Google Scholar]
  • 97.Nadel JA, Holtzmann MJ. Regulation of airway responsiveness and secretion: role of inflammation. In: Kay AB, Austen KF, Lichtenstein LM, editors. Asthma. London: Academic Press; 1984. pp. 129–153. [Google Scholar]
  • 98.Nagata S, Glovsky MM, Adams JS, Kebo D, Alfaro C, Sharma O. Anaphylatoxins C3a, C4a and C5a are produced by human alveolar macrophages in culture and are found in sputum of asthmatics. J Allergy Clin Immunol. 1986;77(1:2):126–126. [Google Scholar]
  • 99.Nelson RM, McIntyre BR, Egan EA. Solute permeability of the alveolar epithelium in alloxan edema in dogs. J Appl Physiol. 1978;44:353–357. doi: 10.1152/jappl.1978.44.3.353. [DOI] [PubMed] [Google Scholar]
  • 100.Nordin U. The trachea and cuff-induced tracheal injury. Acta Laryngol. 1977;83(suppl 345):1–71. [PubMed] [Google Scholar]
  • 101.Northover AM. Action of histamine on endothelial cells of guinea-pig isolated hepatic portal vein and its modification by indomethacin or removal of calcium. Br J Exp Pathol. 1975;56:52–61. [PMC free article] [PubMed] [Google Scholar]
  • 102.Oyvin IA, Gaponynk PY, Volodin VM, Oyvin VI, Tokaryev OY. Mechanisms of blood vessel permeability derangement under the influence of permeability factors (histamine, serotonin, kinins) and inflammatory agents. Biochem Pharmacol. 1972;21:89–95. doi: 10.1016/0006-2952(72)90253-5. [DOI] [PubMed] [Google Scholar]
  • 103.Parsons GH, Kramer GC, Link DP, Lantz BMT, Gunther RA, Green JF, Cross CE. Studies of reactivity and distribution of bronchial blood flow in sheep. Chest. 1985;87:180S–182S. doi: 10.1378/chest.87.2.180. [DOI] [Google Scholar]
  • 104.Pennington JE, Reynolds HY. Concentrations of gentamicin and carbenicilin in bronchial secretions. J Infect Dis. 1973;128:63–68. doi: 10.1093/infdis/128.1.63. [DOI] [PubMed] [Google Scholar]
  • 105.Persson CGA. Role of plasma exudation in asthmatic airways. Lancet. 1986;2:1126–1129. doi: 10.1016/S0140-6736(86)90533-7. [DOI] [PubMed] [Google Scholar]
  • 106.Persson CGA. Overview of effects of theophylline. J Allergy Clin Immunol. 1986;78:780–787. doi: 10.1016/0091-6749(86)90061-8. [DOI] [PubMed] [Google Scholar]
  • 107.Persson CGA (1987) Cromoglicate, plasma exudation and asthma. Trends Pharmacol Sci (in press)
  • 108.Persson CGA (1987) Xanthines as airway antiinflammatory drugs. J Allergy Clin Immunol (submitted) [DOI] [PubMed]
  • 109.Persson CGA. Bronchial microcirculation. In: Barnes PJ, Rodger IW, Thomson NC, editors. Asthma: Basic Mechanisms and Clinical Management. London: Academic Press; 1987. [Google Scholar]
  • 110.Persson CGA, Karlsson J-A. In vitro response to bronchodilator drugs. In: Jenne J, Murphy T, editors. Drug Therapy for Asthma. Lung Biology in Health and Disease, Lenfant C (ed) New York: Marcel Dekker; 1987. pp. 129–176. [Google Scholar]
  • 111.Persson CGA, Erjefält I. Inflammatory leakage of macromolecules from the vascular compartment into the tracheal lumen. Acta Physiol Scand. 1986;126:615–616. doi: 10.1111/j.1748-1716.1986.tb07863.x. [DOI] [PubMed] [Google Scholar]
  • 112.Persson CGA, Erjefält I. Non-neural and neural regulation of airway microvascular leakage of macromolecules. In: Kaliner MA, Barnes P, editors. Neural Regulation of the Airways in Health and Disease. Lung Biology in Health and Disease, Lenfant C (ed) New York: Marcel Dekker; 1987. [Google Scholar]
  • 113.Persson CGA, Erjefält I, Andersson P. Leakage of macromolecules from guinea pig tracheobronchial microcirculation. Effects of allergen, leukotrienes, tachykinins, and antiasthma drugs. Acta Physiol Scand. 1986;127:95–106. doi: 10.1111/j.1748-1716.1986.tb07880.x. [DOI] [PubMed] [Google Scholar]
  • 114.Persson CGA, Erjefält I, Grega GJ, Svensjö E. The role ofβ-receptor agonists in the inhibition of pulmonary edema. Ann NY Acad Sci. 1982;384:544–557. doi: 10.1111/j.1749-6632.1982.tb21399.x. [DOI] [PubMed] [Google Scholar]
  • 115.Persson CGA, Erjefält I, Sundler F. Airway microvascular and epithelial leakage of plasma induced by PAF-acether and capsaicin. Am Rev Respir Dis. 1987;135:A401. [Google Scholar]
  • 116.Persson CGA, Svensjö E. Vascular responses and their suppression: drugs interfering with venular permeability. In: Bonta IL, Bray MA, Parnham MJ, editors. Handbook of Inflammation, Volume 5: The Pharmacology of Inflammation. Amsterdam: Elsevier; 1985. pp. 61–81. [Google Scholar]
  • 117.Pietra GG, Szidon JP, Carpenter HA, Fishman AP. Bronchial venular leakage during endotoxin shock. Am J Pathol. 1974;77:387–402. [PMC free article] [PubMed] [Google Scholar]
  • 118.Pipkorn U, Proud D, Schleimer RP, Peters SP, Adkinson NF, Kagey-Sobotka A, Norman PS, Lichtenstein LM, Naclerio RN. Effect of systemic glucocorticoid treatment on human nasal mediator release after antigen challenge. J Allergy Clin Immunol. 1986;77(suppl):180–180. doi: 10.1172/JCI113188. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 119.Pirotzky R, Page C, Roubin R, Pfister A, Paul W, Bonnet J, Benviste J. Paf-acether induced plasma exudation in rat skin is independent of platelets and neutrophils. Microcirc Endothelium Lymphatics. 1984;1:107–112. [PubMed] [Google Scholar]
  • 120.Proud D, Togias A, Nacleiro RM, Crush SA, Norman PS, Lichtenstein LM. Kinins are generated in vivo following nasal airway challenge of allergic individuals with allergen. J Clin Invest. 1983;72:1678–1685. doi: 10.1172/JCI111127. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 121.Rossen RD, Butler WT, Cate TR, Szwed CF, Couch RB. Protein composition of nasal secretion during respiratory virus infection. Proc Soc Exp Biol Med. 1965;119:1169–1179. doi: 10.3181/00379727-119-30406. [DOI] [PubMed] [Google Scholar]
  • 122.Rous P, Smith F. The gradient of vascular permeability. J Exp Med. 1931;53:219–241. doi: 10.1084/jem.53.2.219. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 123.Ryley HC, Brogan TD. Variation in the composition of sputum in chronic chest diseases. Br J Exp Pathol. 1968;49:625–633. [PMC free article] [PubMed] [Google Scholar]
  • 124.Salter HH. On Asthma: Its Pathology and Treatment. 2nd Ed. London: Churchill; 1968. [Google Scholar]
  • 125.Salvato G. Some histological changes in chronic bronchitis and asthma. Thorax. 1968;23:168–172. doi: 10.1136/thx.23.2.168. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 126.Schneeberger EE, Hamelin M. Interaction of serum proteins with lung endothelial glycocalyx: its effect on endothelial permeability. Am J Physiol. 1984;247:H206–217. doi: 10.1152/ajpheart.1984.247.2.H206. [DOI] [PubMed] [Google Scholar]
  • 127.Sellick H, Widdicombe JG. The activity of lung irritatant receptors during pneumothorax, hypertonea and pulmonary vascular congestion. J Physiol. 1969;203:359–381. doi: 10.1113/jphysiol.1969.sp008868. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 128.de Shazo RD, Levinson AJ, Dvorak HF, Davis RW. The late phase skin reaction: evidence for activation of the coagulation system in an IgE-dependent reaction in man. J Immunol. 1979;122:692–698. [PubMed] [Google Scholar]
  • 129.Simani AS, Inoue S, Hogg JC. Penetration of the respiratory epithelium of guinea-pigs following exposure to cigarette smoke. Lab Invest. 1974;31:75–80. [PubMed] [Google Scholar]
  • 130.Simonsson B, Skoogh BE, Bergh NP, Andersson R, Svedmyr N. In vivo and in vitro effect of bradykinin on bronchial motor tone in normal subjects and patients with airways obstruction. Respiration. 1973;30:378–388. doi: 10.1159/000193051. [DOI] [PubMed] [Google Scholar]
  • 131.Simpson DL, Goodman M, Spector LS, Petty L. Long term follow-up and bronchial reactivity testing in survivors of the adult respiratory distress syndrome. Am Rev Respir Dis. 1978;117:449–454. doi: 10.1164/arrd.1978.117.3.449. [DOI] [PubMed] [Google Scholar]
  • 132.Sobin SS, Frasher WG, Tremer HM, Hadley GG. The microcirculation of the tracheal mucosa. Angiology. 1963;14:165–170. doi: 10.1177/000331976301400403. [DOI] [PubMed] [Google Scholar]
  • 133.Spector WG. The role of some higher peptides in inflammation. J Pathol Bacteriol. 1951;63:93–110. doi: 10.1002/path.1700630111. [DOI] [PubMed] [Google Scholar]
  • 134.Spector WG, Willoughby DA. The inflammatory response. Bacteriol Rev. 1963;27:117–154. doi: 10.1128/br.27.2.117-154.1963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 135.Stockley RA, Mistry M, Bradwell AR, Burnett D. A study of plasma proteins in the sol phase of sputum from patients with chronic bronchitis. Thorax. 1979;34:777–782. doi: 10.1136/thx.34.6.777. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 136.Svensjö E. Bradykinin and prostaglandin E1, E2 and F2-induced macromolecular leakage in the hamster cheek pouch. Prostaglandins Med. 1978;1:397–410. doi: 10.1016/0161-4630(78)90126-X. [DOI] [PubMed] [Google Scholar]
  • 137.Svensjö E, Joyner WL. The effects of intermittent and continuous stimulation of microvessels in the cheek pouch of hamsters with histamine and bradykinin on the development of venular leaky sites. Microcirc Endothelium Lymphatics. 1984;1:381–396. [PubMed] [Google Scholar]
  • 138.Thomas G. Mechanism of ionophore A23187 induction of plasma protein leakage and of its inhibition by indomethacin. Eur J Pharmacol. 1982;81:35–39. doi: 10.1016/0014-2999(82)90598-2. [DOI] [PubMed] [Google Scholar]
  • 139.Thurlbeck WM, Hendersson JA, Fraser RG, Bates DV. Chronic obstructive lung disease. A comparison between clinical roentgenologic, functional and morphologic criteria in chronic bronchitis, emphysema, asthma and bronchiectasis. Medicine. 1970;49:81–145. doi: 10.1097/00005792-197003000-00001. [DOI] [Google Scholar]
  • 140.Wanner A. Mucociliary function in bronchial asthma. In: Weiss EB, Segal MS, Stein M, editors. Bronchial Asthma. 2nd ed. Brown, Boston: Little; 1985. pp. 270–279. [Google Scholar]
  • 141.Ward PA, Hugli TE, Chenoweth DE. Complement and chemotaxis. In: Houck JC, editor. Chemical Messengers of the Inflammatory Process. Handbook of Inflammation, 1. Amsterdam: Elsevier; 1979. pp. 153–178. [Google Scholar]
  • 142.Wedmore CV, Williams TJ. Control of vascular permeability by polymorphonuclear leukocytes in inflammation. Nature. 1981;289:646–650. doi: 10.1038/289646a0. [DOI] [PubMed] [Google Scholar]
  • 143.Wiggins J, Elliot JA, Stevenson RD, Stockley RA. Effect of corticosteroids on sputum sol-phase protease inhibitors in chronic obstructive pulmonary disease. Thorax. 1982;37:652–656. doi: 10.1136/thx.37.9.652. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 144.Wiggins RC, Cochrane CG. Hageman factor and the contact activation system. In: Houck JC, editor. Chemical Messengers of the Inflammatory Process. Amsterdam: Elsevier; 1979. pp. 179–196. [Google Scholar]
  • 145.Wilhelm DL. Chemical mediators. In: Zweifach BW, Grant L, McCluskey RT, editors. The Inflammatory Process. 2nd ed. New York: Academic Press; 1973. pp. 251–302. [Google Scholar]
  • 146.Williams DA, Leopold JG. Death from bronchial asthma. Acta Allerg. 1959;14:83–86. [Google Scholar]
  • 147.Williams TJ. Vascular responses and their suppression: vasodilation and edema. In: Bonta IL, Bray MA, Parnham MJ, editors. The Pharmacology of Inflammation. Amsterdam: Elsevier; 1985. pp. 49–60. [Google Scholar]
  • 148.Willoughby DA, Giroud JP. The role of polymorphonuclear leucocytes in acute inflammation in agranulocytic rats. J Pathol. 1969;98:53–60. doi: 10.1002/path.1710980107. [DOI] [PubMed] [Google Scholar]
  • 149.Willoughby DA, Spector WG. Inflammation in agranulocytotic rats. Nature. 1968;219:1258–1258. doi: 10.1038/2191258a0. [DOI] [PubMed] [Google Scholar]
  • 150.Wilson GB, Fudenberg HH. Ciliary dyskinesia factors in cystic fibrosis and asthma. Nature. 1977;266:463–464. doi: 10.1038/266463a0. [DOI] [PubMed] [Google Scholar]
  • 151.Woodward DF, Weichman BM, Gill CA, Wasserman MA. The effect of synthetic leukotrienes on tracheal microvascular permeability. Prostaglandins. 1983;25:131–142. doi: 10.1016/0090-6980(83)90142-9. [DOI] [PubMed] [Google Scholar]
  • 152.Zweifach BW. Pathophysiology of the blood vascular barrier. Angiology. 1962;13:345–355. [Google Scholar]
  • 153.Zweifach BW. Microvascular aspects of tissue injury. In: Zweifach BW, Grant L, McCluskey RT, editors. The Inflammatory Process. 2nd ed. New York: Academic Press; 1973. pp. 3–46. [Google Scholar]

Articles from Lung are provided here courtesy of Nature Publishing Group

RESOURCES