Skip to main content
Springer Nature - PMC COVID-19 Collection logoLink to Springer Nature - PMC COVID-19 Collection
. 2012 Oct 12;53(6):930–942. doi: 10.2165/00003495-199753060-00003

Lactulose, Disaccharides and Colonic Flora

Clinical Consequences

Mette Rye Clausen 1,, Per Brøbech Mortensen 1
PMCID: PMC7100287  PMID: 9179525

Summary

Lactulose is one of the most frequently utilised agents in the treatment of constipation and hepatic encephalopathy because of its efficacy and good safety profile. The key to understanding the possible modes of action by which lactulose achieves its therapeutic effects in these disorders lies in certain pharmacological phenomena: (a) lactulose is a synthetic disaccharide that does not occur naturally; (b) there is no disaccharidase on the microvillus membrane of enterocytes in the human small intestine that hydrolyses lactulose; and (c) lactulose is not absorbed from the small intestine. Thus, the primary site of action is the colon in which lactulose is readily fermented by the colonic bacterial flora with the production of short-chain fatty acids and various gases. The purpose of this review is to focus on some pertinent basic aspects of the clinical pharmacology of lactulose and to discuss the possible mechanisms by which lactulose benefits patients with constipation and hepatic encephalopathy.

Keywords: Disaccharide, Lactulose, Octanoate, Hepatic Coma, Faecal Output

References

  • 1.Cummings JH, Macfarlane GT. The control and consequences of bacterial fermentation in the human colon. J Appl Bacteriol. 1991;70:443–59. doi: 10.1111/j.1365-2672.1991.tb02739.x. [DOI] [PubMed] [Google Scholar]
  • 2.Carulli N, Salviolo GF, Manenti F. Absorption of lactulose in man. Digestion. 1972;6:139–45. doi: 10.1159/000197232. [DOI] [PubMed] [Google Scholar]
  • 3.Saunders DR, Wiggins HS. Conservation of mannitol, lactulose, and raffinose by the human colon. Am J Physiol. 1981;241:G397–402. doi: 10.1152/ajpgi.1981.241.5.G397. [DOI] [PubMed] [Google Scholar]
  • 4.Zarling EJ, Ruchim MA. Protein origin of the volatile fatty acids isobutyrate and isovalerate in human stool. J Lab Clin Med. 1987;109:566–70. [PubMed] [Google Scholar]
  • 5.Rasmussen HS, Holtug K, Mortensen PB. Degradation of amino acids to short chain fatty acids in humans: an in vitro study. Scand J Gastroenterol. 1988;23:178–82. doi: 10.3109/00365528809103964. [DOI] [PubMed] [Google Scholar]
  • 6.Florent C, Flourié B, Leblond A, et al. Influence of chronic lactulose ingestion on the colonic metabolism of lactulose in man (an in vivo study) J Clin Invest. 1985;75:608–13. doi: 10.1172/JCI111738. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Hove H, Mortensen PB. Colonic lactate metabolism and D-lactate acidosis. Dig Dis Sci. 1995;40:320–30. doi: 10.1007/BF02065417. [DOI] [PubMed] [Google Scholar]
  • 8.Bustos D, Pons S, Pernas JC, et al. Fecal lactate and short bowel syndrome. Dig Dis Sci. 1994;39:2315–9. doi: 10.1007/BF02087644. [DOI] [PubMed] [Google Scholar]
  • 9.Cummings JH, Pomare EW, Branch WJ, et al. Short chain fatty acids in human large intestine, portal, hepatic and venous blood. Gut. 1987;28:1221–7. doi: 10.1136/gut.28.10.1221. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.Mortensen PB, Hove H, Clausen MR, et al. Fermentation to short-chain fatty acids and lactate in human faecal batch cultures. Intra-and inter-individual variations versus variations caused by changes in fermented saccharides. Scand J Gastroenterol. 1991;26:1285–94. doi: 10.3109/00365529108998626. [DOI] [PubMed] [Google Scholar]
  • 11.McNeil NI, Cummings JH, James WPT. Short chain fatty acid absorption by the human large intestine. Gut. 1978;19:819–22. doi: 10.1136/gut.19.9.819. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Ruppin H, Bar-Meir S, Soergel KH, et al. Absorption of short-chain fatty acids by the colon. Gastroenterology. 1980;78:1500–7. [PubMed] [Google Scholar]
  • 13.Roediger WEW. Role of anaerobic bacteria in the metabolic welfare of the colonie mucosa in man. Gut. 1980;21:793–8. doi: 10.1136/gut.21.9.793. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Clausen MR, Mortensen PB. Kinetic studies on the metabolism of short-chain fatty acids and glucose by isolated rat colonocytes. Gastroenterology. 1994;106:423–32. doi: 10.1016/0016-5085(94)90601-7. [DOI] [PubMed] [Google Scholar]
  • 15.Clausen MR, Mortensen PB. Kinetic studies on colonocyte metabolism of short-chain fatty acids and glucose in ulcerative colitis. Gut. 1995;37:684–9. doi: 10.1136/gut.37.5.684. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.McNeil NI. The contribution of the large intestine to energy supplies in man. Am J Clin Nutr. 1984;39:338–42. doi: 10.1093/ajcn/39.2.338. [DOI] [PubMed] [Google Scholar]
  • 17.Vince A, Killingley M, Wrong OM. Effect of lactulose on ammonia production in a fecal incubation system. Gastroenterology. 1978;74:544–9. [PubMed] [Google Scholar]
  • 18.Mortensen PB, Holtug K, Rasmussen HS. Short-chain fatty acid production from mono-and disaccharides in a fecal incubation system: implications for colonie fermentation of dietary fiber in humans. J Nutr. 1988;118:321–5. doi: 10.1093/jn/118.3.321. [DOI] [PubMed] [Google Scholar]
  • 19.Mortensen PB, Rasmussen HS, Holtug K. Lactulose detoxifies in vitro short-chain fatty acid production in colonie contents induced by blood: implications for hepatic coma. Gastroenterology. 1988;94:750–4. doi: 10.1016/0016-5085(88)90250-8. [DOI] [PubMed] [Google Scholar]
  • 20.Peters SG, Pomare EW, Fisher CA. Portal and peripheral blood short chain fatty acid concentrations after caecal lactulose instillation at surgery. Gut. 1992;33:1249–52. doi: 10.1136/gut.33.9.1249. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.Bond JH, Levitt MD. Use of pulmonary hydrogen measurements to quantitate carbohydrate absorption: study of partially gastrectomized patients. J Clin Invest. 1972;51:1219–25. doi: 10.1172/JCI106916. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.Strocchi A, Corazza G, Ellis CJ, et al. Detection of malabsorption of low doses of carbohydrates: accuracy of various breath H2 criteria. Gastroenterology. 1993;105:1404–10. doi: 10.1016/0016-5085(93)90145-3. [DOI] [PubMed] [Google Scholar]
  • 23.Bown RL, Gibson JA, Sladen GE, et al. Effects of lactulose and other laxatives on ileal and colonie pH as measured by a radiotelemetry device. Gut. 1974;15:999–1004. doi: 10.1136/gut.15.12.999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Bircher J, Müller J, Guggenheim P, et al. Treatment of chronic portal-systemic encephalopathy with lactulose. Lancet. 1966;I:890–3. doi: 10.1016/s0140-6736(66)91573-x. [DOI] [PubMed] [Google Scholar]
  • 25.Conn HO, Leevy CM, Vlahcevic ZR, et al. Comparison of lactulose and neomycin in the treatment of chronic portal-systemic encephalopathy: a double blind controlled trial. Gastroenterology. 1977;72:573–83. [PubMed] [Google Scholar]
  • 26.Holtug K, Clausen MR, Hove H, et al. The colon in carbohydrate malabsorption: short-chain fatty acids, pH, and osmotic diarrhoea. Scand J Gastroenterol. 1992;27:545–52. doi: 10.3109/00365529209000118. [DOI] [PubMed] [Google Scholar]
  • 27.Conn HO, Floch MH. Effects of lactulose and lactobacillus acidophilus on the fecal flora. Am J Clin Nutr. 1970;23:1588–94. doi: 10.1093/ajcn/23.12.1588. [DOI] [PubMed] [Google Scholar]
  • 28.Vince A, Zeegen R, Drinkwater JE, et al. The effect of lactulose on the faecal flora of patients with hepatic encephalopathy. J Med Microbiol. 1974;7:163–8. doi: 10.1099/00222615-7-2-163. [DOI] [PubMed] [Google Scholar]
  • 29.Riggio O, Varriale M, Testore GP, et al. Effect of lactitol and lactulose administration on the fecal flora in cirrhotic patients. J Clin Gastroenterol. 1990;12:433–6. doi: 10.1097/00004836-199008000-00016. [DOI] [PubMed] [Google Scholar]
  • 30.Flourié B, Briet F, Florent C, et al. Can diarrhea induced by lactulose be reduced by prolonged ingestion of lactulose. Am J Clin Nutr. 1993;58:369–75. doi: 10.1093/ajcn/58.3.369. [DOI] [PubMed] [Google Scholar]
  • 31.Stephen AM, Cummings JH. Mechanism of action of dietary fibre in the human colon. Nature. 1980;284:283–4. doi: 10.1038/284283a0. [DOI] [PubMed] [Google Scholar]
  • 32.Weber FL. The effect of lactulose on urea metabolism and nitrogen excretion in cirrhotic patients. Gastroenterology. 1979;77:518–23. [PubMed] [Google Scholar]
  • 33.Mortensen PB. The effect of oral-administered lactulose on co-Ionic nitrogen metabolism and excretion. Hepatology. 1992;16:1350–6. doi: 10.1002/hep.1840160608. [DOI] [PubMed] [Google Scholar]
  • 34.Kot TV, Pettit-Young NA. Lactulose in the management of constipation: a current review. Ann Pharmacother. 1992;26:1277–82. doi: 10.1177/106002809202601017. [DOI] [PubMed] [Google Scholar]
  • 35.Weijers HA, van de Kamer JH, Dicke WK, et al. Diarrhoea caused by deficiency of sugar splitting enzymes. Acta Paediatr. 1961;50:55–71. doi: 10.1111/j.1651-2227.1961.tb08022.x. [DOI] [PubMed] [Google Scholar]
  • 36.Haemmerli UP, Kistler H, Ammann R, et al. Acquired milk intolerance in the adult caused by lactose malabsorption due to a selective deficiency of intestinal lactase activity. Am J Med. 1965;38:7–30. doi: 10.1016/0002-9343(65)90156-7. [DOI] [PubMed] [Google Scholar]
  • 37.Bustos Fernández L, Gonzalez E, Marzi A, et al. Fecal acidorrhea. N Engl J Med. 1971;284:295–8. doi: 10.1056/NEJM197102112840603. [DOI] [PubMed] [Google Scholar]
  • 38.Christopher NL, Bayless TM. Role of the small bowel and colon in lactose-induced diarrhea. Gastroenterology. 1971;60:845–52. [PubMed] [Google Scholar]
  • 39.Hammer HF, Santa Ana CA, Schiller LR, et al. Studies of osmotic diarrhea induced in normal subjects by ingestion of polyethylene glycol and lactulose. J Clin Invest. 1989;84:1056–62. doi: 10.1172/JCI114267. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 40.Argenzio RA, Moon HW, Kemeny LJ, et al. Colonic compensation in transmissible gastroenteritis of swine. Gastroenterology. 1984;86:1501–9. doi: 10.1016/S0016-5085(84)80165-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 41.Launiala K. The mechanism of diarrhoea in congenital disaccharide malabsorption. Acta Paediat Scand. 1968;57:425–32. doi: 10.1111/j.1651-2227.1968.tb07315.x. [DOI] [PubMed] [Google Scholar]
  • 42.Perman JA, Modler S, Olson AC. Role of pH in production of hydrogen from carbohydrates by colonic bacterial flora: studies in vivo and in vitro. J Clin Invest. 1981;67:643–50. doi: 10.1172/JCI110079. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 43.Mortensen PB, Holtug K, Bonnén H, et al. The degradation of amino acids, proteins, and blood to short-chain fatty acids in colon is prevented by lactulose. Gastroenterology. 1990;98:353–60. doi: 10.1016/0016-5085(90)90825-l. [DOI] [PubMed] [Google Scholar]
  • 44.Phillips SF, Giller J. The contribution of the colon to electrolyte and water conservation in man. J Lab Clin Med. 1973;81:733–46. [PubMed] [Google Scholar]
  • 45.Bond JH, Levitt MD. Quantitative measurement of lactose absorption. Gastroenterology. 1976;70:1058–62. [PubMed] [Google Scholar]
  • 46.Debongnie JC, Phillips SF. Capacity of the human colon to absorb fluid. Gastroenterology. 1978;74:698–703. [Google Scholar]
  • 47.Chauve A, Devroede G, Bastin E. Intraluminal pressures during perfusion of the human colon in situ. Gastroenterology. 1976;70:336–40. [PubMed] [Google Scholar]
  • 48.Zieve L. The mechanism of hepatic coma. Hepatology. 1981;1:360–5. doi: 10.1002/hep.1840010414. [DOI] [PubMed] [Google Scholar]
  • 49.Vince A, Down PF, Murison J, et al. Generation of ammonia from non-urea sources in a faecal incubation system. Clin Sci Mol Med. 1976;51:313–22. doi: 10.1042/cs0510313. [DOI] [PubMed] [Google Scholar]
  • 50.Haemmerli UP, Bircher J. Wrong idea, good results. (The lactulose story.) N Engl J Med. 1969;281:441–2. doi: 10.1056/NEJM196908212810810. [DOI] [PubMed] [Google Scholar]
  • 51.Zeegen R, Drinkwater JE, Fenton JCB, et al. Some observations on the effects of treatment with lactulose on patients with chronic hepatic encephalopathy. Q J Med. 1970;39:245–63. [PubMed] [Google Scholar]
  • 52.Agostini L, Down PF, Murison J, et al. Faecal ammonia and pH during lactulose administration in man: comparison with other cathartics. Gut. 1972;13:859–66. doi: 10.1136/gut.13.11.859. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 53.Weber FL, Banwell JG, Fresard KM, et al. Nitrogen in fecal bacterial, fiber, and soluble fractions of patients with cirrhosis: effects of lactulose and lactulose plus neomycin. J Lab Clin Med. 1987;110:259–63. [PubMed] [Google Scholar]
  • 54.Samson FE, Dahl N, Dahl DR. A study on the narcotic action of the short chain fatty acids. J Clin Invest. 1956;35:1291–8. doi: 10.1172/JCI103384. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 55.White RP, Samson FE. Effects of fatty acid anions on the electroencephalogram of unanesthetized rabbits. Am J Physiol. 1956;186:271–4. doi: 10.1152/ajplegacy.1956.186.2.271. [DOI] [PubMed] [Google Scholar]
  • 56.Oldendorf WH. Carrier-mediated blood-brain barrier transport of short-chain monocarboxylic organic acids. Am J Physiol. 1973;224:1450–3. doi: 10.1152/ajplegacy.1973.224.6.1450. [DOI] [PubMed] [Google Scholar]
  • 57.Linscheer WG, Blum AL, Platt RR. Transfer of medium chain fatty acids from blood to spinal fluid in patients with cirrhosis. Gastroenterology. 1970;58:509–15. [PubMed] [Google Scholar]
  • 58.Dahl DR. Short chain fatty acid inhibition of rat brain Na-K adenosine triphosphatase. J Neurochem. 1968;15:815–20. doi: 10.1111/j.1471-4159.1968.tb10327.x. [DOI] [PubMed] [Google Scholar]
  • 59.Trauner DA. Regional cerebral Na+K+ ATPase activity following octanoate administration. Pediatr Res. 1980;14:844–5. doi: 10.1203/00006450-198006000-00014. [DOI] [PubMed] [Google Scholar]
  • 60.Muto Y, Takahashi Y. Gas Chromatographie determination of plasma short chain fatty acids in diseases of the liver. J Jpn Soc Int Med 1964; 53: 82839. Cited in Postgrad Med. 1965;37:A158. doi: 10.2169/naika.53.828. [DOI] [PubMed] [Google Scholar]
  • 61.Lai JCK, Silk DBA, Williams R. Plasma short-chain fatty acids in fulminant hepatic failure. Clin Chim Acta. 1977;78:305–10. doi: 10.1016/0009-8981(77)90320-5. [DOI] [PubMed] [Google Scholar]
  • 62.Clausen MR, Mortensen PB, Bendtsen F. Serum levels of short-chain fatty acids in cirrhosis and hepatic coma. Hepatology. 1991;14:1040–5. doi: 10.1002/hep.1840140616. [DOI] [PubMed] [Google Scholar]
  • 63.Hommes FA, Kuipers JRG, Elema JD, et al. Propionicacidemia, a new inborn error of metabolism. Pediatr Res. 1968;2:519–24. doi: 10.1203/00006450-196811000-00010. [DOI] [PubMed] [Google Scholar]
  • 64.Branski D, Gale R, Gross-Kieselstein E, et al. Propionic acidemia and anorectal anomalies in three siblings. Am J Dis Child. 1977;131:1379–81. doi: 10.1001/archpedi.1977.02120250061009. [DOI] [PubMed] [Google Scholar]
  • 65.Hillman RE. Simple, rapid method for determination of propionic acid and other short-chain fatty acids in serum. Clin Chem. 1978;24:800–3. [PubMed] [Google Scholar]
  • 66.Budd MA, Tanaka K, Holmes LB, et al. Isovaleric acidemia: clinical features of a new genetic defect of leucine metabolism. N Engl J Med. 1967;277:321–7. doi: 10.1056/NEJM196708172770701. [DOI] [PubMed] [Google Scholar]
  • 67.Duran M, van Sprang FJ, Drewes JG, et al. Two sisters with isovaleric acidaemia, multiple attacks of ketoacidosis and normal development. Eur J Pediatr. 1979;131:205–11. doi: 10.1007/BF00538944. [DOI] [PubMed] [Google Scholar]
  • 68.Scheppach W, Richter F, Joeres R, et al. Systemic availability of propionate and acetate in liver cirrhosis. Am J Gastroenterol. 1988;83:850–3. [PubMed] [Google Scholar]
  • 69.Linscheer W, Castell DO, Platt RR. A new method for evaluation of portosystemic shunting. Gastroenterology. 1969;57:415–23. [PubMed] [Google Scholar]
  • 70.Zieve FJ, Zieve L, Doizaki WM, et al. Synergism between ammonia and fatty acids in the production of coma: implications for hepatic coma. J Pharmacol Exp Ther. 1974;191:10–6. [PubMed] [Google Scholar]
  • 71.Zieve L, Doizaki WM, Zieve FJ. Synergism between mercaptans and ammonia or fatty acids in the production of coma: a possible role for mercaptans in the pathogenesis of hepatic coma. J Lab Clin Med. 1974;83:16–28. [PubMed] [Google Scholar]

Articles from Drugs are provided here courtesy of Nature Publishing Group

RESOURCES