Skip to main content
Springer Nature - PMC COVID-19 Collection logoLink to Springer Nature - PMC COVID-19 Collection
. 2012 Nov 18;6(3):171–179. doi: 10.1007/BF03259516

The Use of Antiallergic and Antiasthmatic Drugs in Viral Infections of the Upper Respiratory Tract

Nils Åberg 1,
PMCID: PMC7100695  PMID: 32226274

Summary

Despite their frequency, upper respiratory tract infections (URTIs) constitute an area with few, if any, effective treatment remedies. Asthma and airway allergies share similar pathogenetic mechanisms to URTIs and it is not surprising, therefore, that agents used to treat allergic disorders have also been studied in URTIs. Their possible effects, limitations and hypothetical modes of action in URTIs are reviewed. In controlled clinical trials of satisfactory scientific standard, symptom reductions in both experimental rhinovirus infections and natural colds have occurred with topical anticholinergics, oral antihistamines and topical chromones. Future treatment alternatives for URTIs may include the intranasal anticholinergic ipratropium bromide, new nonsedating antihistamines and sodium cromoglycate (cromolyn sodium). The latter has a record of safety and an absence of adverse effects that would make it an attractive alternative for this common but not particularly serious condition in otherwise healthy individuals.

Keywords: Allergy Clin Immunol, Sodium Cromoglycate, Ipratropium Bromide, Nedocromil, Nedocromil Sodium

References

  • 1.Barrow GI, Higgins PG, Al-Nakib W, et al. The effect of intranasal nedocromil sodium on viral upper respiratory tract infections in human volunteers. Clin Exp Allergy. 1990;20:45–51. doi: 10.1111/j.1365-2222.1990.tb02774.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2.Callow KA, Tyrell DAJ, Shaw RJ, et al. Influence of atopy on the clinical manifestations of coronovirus infections in adult volunteers. Clin Allergy. 1988;18:119–29. doi: 10.1111/j.1365-2222.1988.tb02851.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3.Eggleston PA, Hendley JO, Gwaltney JM., Jr Mediators of immediate hypersensitivity in nasal secretions during natural colds and rhinovirus infections. Acta Otolaryngol. 1984;413:23–35. doi: 10.3109/00016488409128538. [DOI] [PubMed] [Google Scholar]
  • 4.Skoner DP, Fireman P, Caliguiri L, et al. Plasma elevations of histamine and prostaglandin metabolite in acute bronchiolitis. Am Rev Respir Dis. 1990;142:359–64. doi: 10.1164/ajrccm/142.2.359. [DOI] [PubMed] [Google Scholar]
  • 5.Balfour-Lynn IM, Valman HB, Wellings R, et al. Tumour necrosis factor-αkotriene E4 production in wheezy infants. Clin Exp Allergy. 1994;24:121–6. doi: 10.1111/j.1365-2222.1994.tb00207.x. [DOI] [PubMed] [Google Scholar]
  • 6.Linden M, Greiff L, Andersson M, et al. Nasal cytokines in common cold and allergic rhinitis. Clin Exp Allergy. 1995;25:166–72. doi: 10.1111/j.1365-2222.1995.tb01022.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Farr BM, Gwaltney JM, Jr, Hendley JO, et al. A randomized controlled trial of glucocorticoid prophylaxis against experimental rhinovirus infection. J Infect Dis. 1990;162:1172–7. doi: 10.1093/infdis/162.5.1173. [DOI] [PubMed] [Google Scholar]
  • 8.Proud D, Gwaltney JM, Jr, Hendley JO, et al. Increased levels of interleukin-1 are detected in nasal secretions of volunteers during experimental rhinovirus colds. J Infect Dis. 1994;169:1007–13. doi: 10.1093/infdis/169.5.1007. [DOI] [PubMed] [Google Scholar]
  • 9.Subauste MC, Jacoby DB, Richards SM, et al. Infection of a human respiratory cell line with rhinovirus: induction of cytokine release and modulation of susceptibility to infection by cytokine exposure. J Clin Invest. 1995;96:549–7. doi: 10.1172/JCI118067. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.Szentivanyi A. The β-adrenergic theory of atopic abnormality in asthma. J Allergy. 1968;42:203–33. doi: 10.1016/S0021-8707(68)90117-2. [DOI] [Google Scholar]
  • 11.Busse WW. Decreased granulocyte response to isoproterenol in asthma during upper respiratory infections. Am Rev Respir Dis. 1977;115:783–91. doi: 10.1164/arrd.1977.115.5.783. [DOI] [PubMed] [Google Scholar]
  • 12.Busse WW, Anderson CL, Dick EC, et al. Reduced granulocyte response to isoproterenol, histamine, prostaglandin E, after in vitro incubation with rhinovirus 16. Am Rev Respir Dis. 1980;122:641–6. doi: 10.1164/arrd.1980.122.4.641. [DOI] [PubMed] [Google Scholar]
  • 13.Cockcroft DW, Bersheid BA, Murdock KY. Unimodal distribution of bronchial responsiveness in a random population. Chest. 1983;83:751–4. doi: 10.1378/chest.83.5.751. [DOI] [PubMed] [Google Scholar]
  • 14.Empey DW, Laitinen LA, Jacobs L, et al. Mechanisms of bronchial hyperreactivity in normal subjects after respiratory tract infection. Am Rev Respir Dis. 1976;113:131–9. doi: 10.1164/arrd.1976.113.2.131. [DOI] [PubMed] [Google Scholar]
  • 15.Fryer AD, Al-Fakahany EE, Jacoby DB. Parainfluenza virus type 1 reduces the affinity of agonists for muscarinic receptors in guinea-pig lung and heart. Eur J Pharmacol. 1990;181:51–8. doi: 10.1016/0014-2999(90)90244-Z. [DOI] [PubMed] [Google Scholar]
  • 16.Fryer AC, Jacoby DB. Parainfluenza virus infection damages inhibitory M2-muscarinic receptors on pulmonary parasympathic nerves in the guinea-pig. Br J Pharmacol. 1991;102:267–71. doi: 10.1111/j.1476-5381.1991.tb12164.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Saban R, Dick EC, Fishleder RJ, et al. Enhancement by parainfluenza 3 infection of contractile responses to substance P and capsaicin in airway smooth muscle from the guinea pig. Am Rev Respir Dis. 1987;136:131–39. doi: 10.1164/ajrccm/136.3.586. [DOI] [PubMed] [Google Scholar]
  • 18.Jacoby DB, Tamaoki J, Bornson BD, et al. Influenza infection causes airway hyperresponsiveness by decreasing enkephalinase. J Appl Physiol. 1988;64:2653–58. doi: 10.1152/jappl.1988.64.6.2653. [DOI] [PubMed] [Google Scholar]
  • 19.MacDonald DM. Respiratory tract infections increase susceptibility to neurogenic inflammation in the rat trachea. Am Rev Respir Dis. 1988;137:1432–40. doi: 10.1164/ajrccm/137.6.1432. [DOI] [PubMed] [Google Scholar]
  • 20.Canonica GW, Ciprandi G, Buscaglia S, et al. Adhesion molecules of allergic inflammation: recent insights into their functional roles. Allergy. 1994;49:135–41. doi: 10.1111/j.1398-9995.1994.tb00815.x. [DOI] [PubMed] [Google Scholar]
  • 21.Staunton DE, Merluzze VJ, Rohlein R, et al. A cell adhesion molecule, ICAM-1, is the major surface receptor for rhino-viruses. Cell. 1989;56:848–53. doi: 10.1016/0092-8674(89)90689-2. [DOI] [PubMed] [Google Scholar]
  • 22.Wegner CD, Gundel RH, Reilly P, et al. Intercellular adhesion molecule (ICAM-1) in the pathogenesis of asthma. Science. 1990;247:456–9. doi: 10.1126/science.1967851. [DOI] [PubMed] [Google Scholar]
  • 23.Pober JS, Gimbrone MA, Jr, Lapierre LA, et al. Overlapping patterns of activation of human endothelial cells by interleukin 1, tumour necrosis factor and immune interferon. J Immunol. 1986;137:1893–6. [PubMed] [Google Scholar]
  • 24.Dustin ML, Singer KH, Tuck DT, et al. Adhesion of T lymphocytes to epidermal keratinocytes is regulated by IFN-γ and is mediated by ICAM-1. J Exp Med. 1988;167:1323–40. doi: 10.1084/jem.167.4.1323. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25.Churchill L, Gundel RH, Letts LG, et al. Contribution of specific cell-adhesive glycoproteins to airway and alveolar inflammation and dysfunction. Am Rev Respir Dis. 1993;148:83S–7S. doi: 10.1164/ajrccm/148.6_Pt_2.S83. [DOI] [PubMed] [Google Scholar]
  • 26.Minor TE, Dicks EC, DeMeo AN, et al. Viruses as precipitants of asthmatic attacks in children. JAMA. 1974;227:292–98. doi: 10.1001/jama.1974.03230160020004. [DOI] [PubMed] [Google Scholar]
  • 27.Gaffey MJ, Kaiser DL, Hayden FG. Ineffectiveness of oral terfenadine in natural colds: evidence against histamine as a mediator of common cold symptoms. Pediatr Infect Dis J. 1988;7:223–8. doi: 10.1097/00006454-198803000-00032. [DOI] [PubMed] [Google Scholar]
  • 28.Kroegel C, Herzog V, Knöchel B, et al. Anti-inflammatory actions of histamine H1 receptor antagonists unrelated to H1 receptor blockade. Clin Immunother. 1996;5(6):449–64. doi: 10.1007/BF03259340. [DOI] [Google Scholar]
  • 29.Smith MBH, Feldman W. Over-the-counter cold medications: a critical review of clinical trials between 1950 and 1991. JAMA. 1993;269:2258–63. doi: 10.1001/jama.1993.03500170088039. [DOI] [PubMed] [Google Scholar]
  • 30.Howard JC, Kantner TR, Lillenfield LS, et al. Effectiveness of antihistamines in the symptomatic management of the common cold. JAMA. 1979;242:2414–7. doi: 10.1001/jama.1979.03300220026017. [DOI] [PubMed] [Google Scholar]
  • 31.Crutcher JE, Kantner TR. The effectiveness of antihistamines in the common cold. J Clin Pharmacol. 1981;21:9–15. doi: 10.1007/BF00609581. [DOI] [PubMed] [Google Scholar]
  • 32.Doyle WJ, McBride TP, Skoner DP, et al. A double-blind, placebo-controlled clinical trial of the effect of chlorpheniramine on the response of the nasal airway, middle ear and eustachian tube to provocative rhinovirus challenge. Pediatr Infect Dis J. 1988;7:229–38. doi: 10.1097/00006454-198803000-00033. [DOI] [PubMed] [Google Scholar]
  • 33.Gaffey MJ, Gwaltney JM, Sastre A, et al. Intranasally and orally administered antihistamine treatment of experimental rhino-virus colds. Am Rev Respir Dis. 1987;136:556–60. doi: 10.1164/ajrccm/136.3.556. [DOI] [PubMed] [Google Scholar]
  • 34.US Naval Medical Research Unit N4 The prophylaxis and treatment of acute respiratory diseases with antihistaminic drugs. J Lab Clin Med. 1950;36:555–75. [PubMed] [Google Scholar]
  • 35.Bye CE, Cooper J, Empey DW, et al. Effects of pseudoephedrine and triprolidine, alone and in combination, on symptoms of the common cold. BMJ. 1980;281:189–90. doi: 10.1136/bmj.281.6234.189. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36.Hennauer SA, Gluck U. Efficacy of terfenadine in the treatment of common cold: a double-blind comparison with placebo. Eur J Clin Pharmacol. 1988;34:35–40. doi: 10.1007/BF01061414. [DOI] [PubMed] [Google Scholar]
  • 37.Berkowitz RB, Tinkelman DG. Evaluation of oral terfenadine for treatment of the common cold. Ann Allergy. 1991;67:593–7. [PubMed] [Google Scholar]
  • 38.Shanon A, Feldman W, Leikin L, et al. Comparison of CNS adverse effects between astemizole and chlorpheniramine in children: a randomized, double-blind study. Dev Pharmacol Ther. 1993;20:239–46. doi: 10.1159/000457568. [DOI] [PubMed] [Google Scholar]
  • 39.Orr TSC. Nedocromil sodium: a new therapeutic option for reversible obstructive airways disease. Br J Clin Pract. 1987;41(Suppl11):9–12. [PubMed] [Google Scholar]
  • 40.Leung KBP, Flint KC, Brostoff J, et al. Effects of sodium cromoglycate and nedocromil sodium on histamine secretion from human lung mast cells. Thorax. 1988;43:756–61. doi: 10.1136/thx.43.10.756. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 41.Rainey DK. Evidence for the antiinflammatory effect of nedocromil sodium. Clin Exp Allergy. 1992;22:976–79. doi: 10.1111/j.1365-2222.1992.tb03023.x. [DOI] [PubMed] [Google Scholar]
  • 42.Kay AB, Walsh GM, Moqbel R, et al. Disodium cromoglycate inhibits activation of human inflammatory cells in vitro. J Allergy Clin Immunol. 1987;80:1–8. doi: 10.1016/S0091-6749(87)80183-5. [DOI] [PubMed] [Google Scholar]
  • 43.Norris AA, Alton EWFW. Chloride transport and the action of sodium cromoglycate and nedocromil sodium in asthma. Clin Exp Allergy. 1996;26(2):50–3. [PubMed] [Google Scholar]
  • 44.Dixon CM, Barnes PJ. Bradykinin-induced bronchoconstriction: inhibition by nedocromil sodium and sodium cromoglycate. Br J Pharmacol. 1989;27:831–6. doi: 10.1111/j.1365-2125.1989.tb03446.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 45.Hoshima M, Nakamura Y. The effect of disodium cromoglycate (DSCG) on infiltration of inflammatory cells into bronchial mucosa and on expression of adhesion molecules in asthmatics. Jap J Allergol. 1995;44:593–601. [PubMed] [Google Scholar]
  • 46.Barnes PJ, Holgate ST, Laitinen LA, et al. Asthma mechanisms, determinants of severity and treatment: the role of nedocromil sodium. Clin Exp Allergy. 1995;25:771–87. doi: 10.1111/j.1365-2222.1995.tb00016.x. [DOI] [PubMed] [Google Scholar]
  • 47.Bissonette EY, Befus AD. Immunopharmacology of the gastrointestinal system. London: Academic Press; 1993. Modulation of mast cell function in the gastrointestinal tract; pp. 95–103. [Google Scholar]
  • 48.Marini M, Soloperto M, Zheng Y, et al. Protective effect of nedocromil sodium on the IL-1-induced release of GM-CSF from cultured human bronchial epithelial cells. Pulmon Pharmacol. 1992;5:61–5. doi: 10.1016/0952-0600(92)90019-D. [DOI] [PubMed] [Google Scholar]
  • 49.Vittori E, Sciacca F, Colotta F, et al. Protective effect of nedocromil sodium on the IL-1 induced production of interleukin-8 in human bronchial epithelial cells. J Allergy Clin Immunol. 1992;90:76–84. doi: 10.1016/S0091-6749(06)80013-8. [DOI] [PubMed] [Google Scholar]
  • 50.Devalia JL, Rusznak C, Calderon M, et al. The effect of nedocromil sodium on ozone-induced synthesis of cytokines by human bronchial epithelial cell cultures in vitro. Am J Respir Crit Care Med. 1994;149:317A. [Google Scholar]
  • 51.Åberg N, Åberg B, Alestig K. The effect of inhaled and intranasal sodium cromoglycate on symptoms of upper respiratory tract infections. Clin Exp Allergy. In press [DOI] [PMC free article] [PubMed]
  • 52.Frick O, Brooks DL. Immunoglobulin E antibodies to pollen augmented in dogs by virus vaccines. Am J Vet Res. 1983;44:440–5. [PubMed] [Google Scholar]
  • 53.Stark JM, Busse WW. Respiratory virus infection an airway hyperreactivity in children. Pediatr Allergy Immunol. 1991;2:95–110. doi: 10.1111/j.1399-3038.1991.tb00191.x. [DOI] [Google Scholar]
  • 54.Loh RKS, Jabara HH, Geha RS. Disodium cromoglycate inhibits Sμ → Sε deletional switch recombination and IgE synthesis in human B cell. J Exp Med. 1994;180:663–71. doi: 10.1084/jem.180.2.663. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 55.Ellul-Micallef R. Glucocorticosteroids. In: Barnes PJ, Rodger IW, Thomson NC, editors. Asthma: basic mechanisms and management. 2. London: Academic Press; 1992. pp. 613–57. [Google Scholar]
  • 56.Persson CGA. Plasma exudation in airway tissue and lumen. In: Barnes PJ, Rodger IW, Thomson NC, editors. Asthma: basic mechanisms and management. 2. London: Academic Press; 1992. pp. 208–24. [Google Scholar]
  • 57.Aucott JN. Glucocorticoids and infection. Endocrinol Metab Clin North Am. 1994;23:655–70. [PubMed] [Google Scholar]
  • 58.Black PH. Central nervous system-immune system interactions: psychoneuroendocrinology of stress and its immune consequences. Antimicrob Agents Chemother. 1994;38:1–6. doi: 10.1128/AAC.38.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 59.Pariser DM. Topical steroids: a guide for the use in the elderly patient. Geriatrics. 1991;46:51–63. [PubMed] [Google Scholar]
  • 60.Shane SA, Wollman M, Claasen D. Herpes simplex dissemination following glucocorticoids for upper airway obstruction in an adolescent girl. Pediatr Emerg Care. 1994;10:160–2. doi: 10.1097/00006565-199406000-00010. [DOI] [PubMed] [Google Scholar]
  • 61.Abzug MJ. Cotton MR Severe chickenpox after intranasal use of corticosteroids. J Pediatr. 1993;123:577–9. doi: 10.1016/S0022-3476(05)80954-0. [DOI] [PubMed] [Google Scholar]
  • 62.MacKenzie CA, Tsanakas J, Tabachnik E, International Study Group et al. An open study to assess the long-term safety of fluticasone propionate 50 micrograms twice daily in asthmatic children. Br J Clin Pract. 1994;48:15–8. [PubMed] [Google Scholar]
  • 63.Wolthers OD, Pedersen S. Short term growth in children with allergic rhinitis treated with oral antihistamine, depot or intranasal glucocorticosteroids. Acta Paediatr. 1992;82:635–40. doi: 10.1111/j.1651-2227.1993.tb18030.x. [DOI] [PubMed] [Google Scholar]
  • 64.Dahl IL, Grufman M, Hellberg C, et al. Absenteeism because of illness at daycare centers and in three-family systems. Acta Paediatr Scand. 1991;80:436–5. doi: 10.1111/j.1651-2227.1991.tb11879.x. [DOI] [PubMed] [Google Scholar]
  • 65.Marone G, Kagey-Sobotka A, Lichtenstein LM. Effects of arachidonic acid and its metabolites on antigen-induced histamine release from human basophils in vitro. J Immunol. 1979;123:1669–77. [PubMed] [Google Scholar]
  • 66.Peters SP, Schulman ES, Schlemer RP, et al. Dispersed human lung mast cells: pharmacological aspects and comparison with human lung tissue fragments. Am Rev Respir Dis. 1982;126:1034–9. doi: 10.1164/arrd.1982.126.6.1034. [DOI] [PubMed] [Google Scholar]
  • 67.Butchers PR, Skidmore IF, Vardey CJ, et al. Characterization of the receptor mediating the anti-anaphylactic effects of beta-adrenoreceptor agonists in human lung tissue in vitro. Br J Pharmacol. 1980;59:663–7. doi: 10.1111/j.1476-5381.1980.tb10987.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 68.Borum P, Mygind N. Inhibition of the immediate allergic reaction in the nose by the β2-adrenostimulant fenoterol. J Allergy Clin Immunol. 1980;66:25–32. doi: 10.1016/0091-6749(80)90134-7. [DOI] [PubMed] [Google Scholar]
  • 69.Pavia D, Agnew JE, Sutton PP, et al. Effect of terbutaline administered from metered dose inhaler (2mg) and subcutaneously (0.25 mg) on tracheobronchial clearance in mild asthma. Br J Dis Chest. 1987;81:361–70. doi: 10.1016/0007-0971(87)90185-9. [DOI] [PubMed] [Google Scholar]
  • 70.Mossberg B, Strandberg K, Philipson K, et al. Tracheobronchial clearance in bronchial asthma: response to beta-adrenoreceptor stimulation. Scand J Respir Dis. 1976;57:119–28. [PubMed] [Google Scholar]
  • 71.Isawa T, Teshima T, Hirano T, et al. Does a β2-stimulator really facilitate mucociliary transport in the human lungs in vivo? Am Rev Respir Dis. 1990;141:715–20. doi: 10.1164/ajrccm/141.3.715. [DOI] [PubMed] [Google Scholar]
  • 72.Bateman JRM, Pavia D, Sheahan NF, et al. Effects of terbutaline sulphate aerosol on bronchodilator response and lung mucociliary clearance in patients with mild stable asthma. Br J Pharmacol. 1983;15:695–700. doi: 10.1111/j.1365-2125.1983.tb01552.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 73.Skoogh BE, Svedmyr N. β2-Adrenoreceptor stimulation inhibits ganglionic transmission in ferret trachea. Pulmon Pharmacol. 1989;1:167–72. doi: 10.1016/S0952-0600(89)80013-4. [DOI] [PubMed] [Google Scholar]
  • 74.Rhoden KJ, Meldrum LA, Barnes PJ. Inhibition of cholinergic neurotransmission in human airways by β2-adrenoreceptor. J Appl Physiol. 1988;65:700–5. doi: 10.1152/jappl.1988.65.2.700. [DOI] [PubMed] [Google Scholar]
  • 75.Smith CA, Adamson DL, Coudry NB, et al. The effect of altering airway tone on the sensitivity of the cough reflex in normal volunteers. Eur Respir J. 1991;4:1076–9. [PubMed] [Google Scholar]
  • 76.Katsumata U, Sakizawa K, Inoue H, et al. Inhibitory effects of procaterol, a beta-2-stimulant, on substance P-induced cough in normal subjects during upper respiratory tract infection. Tohuku J Exp Med. 1989;158:105–6. doi: 10.1620/tjem.158.105. [DOI] [PubMed] [Google Scholar]
  • 77.Hueston WJ. Albuterol delivered by metered-dose inhaler to treat acute bronchitis. J Fam Pract. 1994;39:437–0. [PubMed] [Google Scholar]
  • 78.Mertsola J, Viljanen MK, Ruuskanen O. Salbutamol in the treatment of whooping cough. Scand J Infect Dis. 1986;18:593–4. doi: 10.3109/00365548609021669. [DOI] [PubMed] [Google Scholar]
  • 79.Krantz I, Norrby SR, Trollfors B. Salbutamol vs. placebo for treatment of pertussis. Pediatr Infect Dis. 1985;4:638–40. doi: 10.1097/00006454-198511000-00008. [DOI] [PubMed] [Google Scholar]
  • 80.Shah PKD, Lakhotia M, Mehta S, et al. Clinical dysautonomia in patients with bronchial asthma, study with seven autonomic function tests. Chest. 1990;98:1408–13. doi: 10.1378/chest.98.6.1408. [DOI] [PubMed] [Google Scholar]
  • 81.Gross NJ, Co E, Skorodin MS. Cholinergic bronchomotor tone in COPD, estimates of its amount in comparison to normal. Chest. 1989;96:984–7. doi: 10.1378/chest.96.5.984. [DOI] [PubMed] [Google Scholar]
  • 82.Nadel JA, Widdicombe JH, Peatfield AC. Regulation of airway secretions, ion transport, and water movement. In: Fishman AP, Fisher AB, editors. Handbook of physiology: the respiratory system. Bethesda: The American Physiological Society; 1985. pp. 419–5. [Google Scholar]
  • 83.Gaffey MJ, Gwaltney JM, Dressier WE, et al. Intranasally administered atropine methonitrate treatment of experimental rhinovirus colds. Am Rev Respir Dis. 1987;136:241–4. doi: 10.1164/ajrccm/136.3.556. [DOI] [PubMed] [Google Scholar]
  • 84.Borum P. Intranasal ipratropium: inhibition of metacholine induced hypersecretion. Rhinology. 1978;16:225–33. [PubMed] [Google Scholar]
  • 85.Gaffey MJ, Hayden FG, Boyd JC, et al. Ipratropium bromide treatment of experimental rhinovirus infection. Antimicrob Agents Chemother. 1988;32:1644–7. doi: 10.1128/AAC.32.11.1644. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 86.Mygind N, Borum P. Anticholinergic treatment of watery rhinorrhea. Am J Rhinol. 1990;16:225–33. [Google Scholar]
  • 87.Dockhorn R, Grossman J, Posner M, et al. A double-blind, placebo-controlled study of the safety and efficacy of ipratropium bromide nasal spray versus placebo in patients with the common cold. J Allergy Clin Immunol. 1992;90:1076–82. doi: 10.1016/0091-6749(92)90126-M. [DOI] [PubMed] [Google Scholar]
  • 88.Gwaltney JM., Jr Combined antiviral and antimediator treatment of rhinovirus colds. J Infect Dis. 1992;166:776–82. doi: 10.1093/infdis/166.4.776. [DOI] [PubMed] [Google Scholar]
  • 89.Howell RE. Multiple mechanisms of xanthine actions on airway reactivity. J Pharmacol Exp Ther. 1990;255:1008–13. [PubMed] [Google Scholar]
  • 90.Poison JB, Krzanowski JJ, Szentivanyi A. Inhibition of a high affinity cyclic AMP phosphodiesterase and relaxation of canine tracheal smooth muscle. Biochem Pharmacol. 1982;31:3403–6. doi: 10.1016/0006-2952(82)90618-9. [DOI] [PubMed] [Google Scholar]
  • 91.Mathys H, Köhler D. Effect of theophylline on mucociliary clearance in man. Eur J Respir Dis. 1980;61(Suppl. 109):98. [PubMed] [Google Scholar]
  • 92.Sutton PP, Pavia D, Bateman JRM, et al. The effect of oral aminophyllin on lung mucociliary clearance in man. Chest. 1981;80:889. [PubMed] [Google Scholar]
  • 93.Martin GL, Atkins PC, Dynsky EG, et al. Effects of theophylline, terbutaline and prednisone on antigen-induced bronchospasm and mediator release. J Allergy Clin Immmunol. 1980;66:204. doi: 10.1016/0091-6749(80)90040-8. [DOI] [PubMed] [Google Scholar]
  • 94.Pauwels R, Van Renterghem D, Van der Straeten M, et al. The effect of theophylline and enprofylline on allergen-induced bronchoconstriction. J Allergy Clin Immunol. 1985;76:583–90. doi: 10.1016/0091-6749(85)90779-1. [DOI] [PubMed] [Google Scholar]
  • 95.Persson CGA, Svensjö E. Airway hyperreactivity and microvascular permeability to larger molecules. Eur J Respir Dis. 1986;64(Suppl. 131):183. [PubMed] [Google Scholar]
  • 96.Aymard M, Chomel JJ, Allard JP, et al. Epidemiology of viral infections and evaluation of the potential benefit of OM-85 B V on the virologic status of children attending day-care centers. Respiration. 1994;61(Suppl. 1):24–31. doi: 10.1159/000196377. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Clinical Immunotherapeutics are provided here courtesy of Nature Publishing Group

RESOURCES