Skip to main content
Springer Nature - PMC COVID-19 Collection logoLink to Springer Nature - PMC COVID-19 Collection
. 2003;20(1):16–23. doi: 10.1023/A:1022234305600

Novel Ethanol-in-Fluorocarbon Microemulsions for Topical Genetic Immunization

Zhengrong Cui 1, William Fountain 1, Michael Clark 1, Michael Jay 1, Russell J Mumper 1,
PMCID: PMC7101539  PMID: 12608531

Abstract

Purpose. Traditionally, vaccines have been administered by needle injection. Topical immunization through the intact skin with either protein- or DNA-based vaccines has attracted much attention recently. We sought to enhance the immune responses induced by DNA-based vaccines after topical application by developing novel ethanol-in-fluorocarbon (E/F) microemulsion systems to aid in the delivery of plasmid DNA (pDNA).

Methods. Ten different fluorosurfactants were selected or synthesized and screened by pseudo-phase-diagram construction for their ability to form E/F microemulsions. Plasmid DNA was successfully incorporated into E/F microemulsions using several different fluorosurfactants and perfluorooctyl bromide as the continuous fluorocarbon phase. For several reasons, Zonyl® FSN-100 (an ethoxylated nonionic fluorosurfactant) was selected for further studies. In vivo studies were performed in mice to assess pDNA expression in skin and immunologic responses after topical application of this system using a luciferase-encoding plasmid (CMV-luciferase) and a CMV-β-galactosidase-encoding plasmid, respectively.

Results. Plasmid DNA incorporated into E/F microemulsion using FSN-100 as the surfactant was found to be stable. After topical application of this E/F microemulsion system, significant enhancements in luciferase expression and antibody and T-helper type-1 biased immune responses were observed relative to those of “naked” pDNA in saline or ethanol. For example, with the E/F microemulsion system, the specific serum IgG and IgA titers were increased by 45-fold and over 1000-fold, respectively.

Conclusion. A novel fluorocarbon-based microemulsion system for potential DNA vaccine delivery was developed.

Keywords: skin, perflubron, DNA vaccine, topical, β-galactosidase

REFERENCES

  • 1.Ulmer J. B., Sadoff J. C., Liu M. A. DNA vaccines. Curr. Opin. Immunol. 1996;8:531–536. doi: 10.1016/s0952-7915(96)80042-2. [DOI] [PubMed] [Google Scholar]
  • 2.Mumper R. J., Ledebur H. C. Dendritic cell delivery of plasmid DNA: application for controlled genetic immunization. Mol. Biotech. 2001;19:79–95. doi: 10.1385/MB:19:1:079. [DOI] [PubMed] [Google Scholar]
  • 3.Bancherau J., Steinman R. M. Dendritic cells and the control of immunity. Nature. 1998;392:245–252. doi: 10.1038/32588. [DOI] [PubMed] [Google Scholar]
  • 4.Braun R., Babiuk L. A., van Brunen Little Van den hurk S. Enhanced immune response to an intradermally delivered DNA vaccine expressing a secreted form of HBV-1 gD. Vaccine Res. 1998;6:151–164. [Google Scholar]
  • 5.Degano P., Sarphie D. F., Bangham C. R. Intradermal DNA immunization of mice against influenza A virus using the novel Powderject system. Vaccine. 1998;16:394–398. doi: 10.1016/s0264-410x(97)00202-8. [DOI] [PubMed] [Google Scholar]
  • 6.Fynan E. F., Webster R. G., Fuller D. H., Haynes J. R., Santoro J. C., Robinson H. L. DNA vaccines: protective immunizations by parenteral, mucosal, and gene-gun inoculations. Proc. Natl. Acad. Sci. USA. 1993;90:11478–11482. doi: 10.1073/pnas.90.24.11478. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Glenn G., Rao M., Matyas G., Alving C. Skin immunization made possible by cholera toxin. Nature. 1998;391:851. doi: 10.1038/36014. [DOI] [PubMed] [Google Scholar]
  • 8.Tang D. C., Shi Z., Curiel D. T. Vaccination on bare skin. Nature. 1997;388:729–730. doi: 10.1038/41917. [DOI] [PubMed] [Google Scholar]
  • 9.Hammond S. A., Tsonis C., Sellins K., Rushlow K., Scharton-Kersten T., Colditz I., Glenn G. M. Transcutaneous immunization of domestic animals: opportunities and challenges. Adv. Drug Deliv. Rev. 2000;43:45–55. doi: 10.1016/s0169-409x(00)00076-4. [DOI] [PubMed] [Google Scholar]
  • 10.Hammond S. A., Walwender D., Alving C. R., Glenn G. M. Transcutaneous immunization: T cell responses and boosting of existing immunity. Vaccine. 2001;19:2701–2707. doi: 10.1016/s0264-410x(00)00506-5. [DOI] [PubMed] [Google Scholar]
  • 11.Glenn G. M., Taylor D. N., Li X., Frankel S., Montemarano A., Alving C. R. Transcutaneous immunization: a human vaccine delivery strategy using a patch. Nat. Med. 2000;6:1403–1406. doi: 10.1038/82225. [DOI] [PubMed] [Google Scholar]
  • 12.Niemiec S. M., Latta J. M., Ramachandran C., Weiner N. D., Roessler B. J. Perifollicular transgenic expression of human interleukin-1 receptor antagonist protein following topical application of novel liposome-plasmid DNA formulations in vivo. J. Pharm. Sci. 1997;86:701–708. doi: 10.1021/js9604873. [DOI] [PubMed] [Google Scholar]
  • 13.Shi Z., Curiel D. T., Tang D. DNA-based non-invasive vaccination onto the skin. Vaccine. 1999;17:2136–2141. doi: 10.1016/s0264-410x(98)00488-5. [DOI] [PubMed] [Google Scholar]
  • 14.Fan H. R., Lin Q., Morrissey G. R., Khavari P. A. Immunization via hair follicles by topical application of naked DNA to normal skin. Nat. Biotech. 1999;17:870–872. doi: 10.1038/12856. [DOI] [PubMed] [Google Scholar]
  • 15.Cui Z., Mumper R. J. Chitosan-based nanoparticles for topical genetic immunization. J. Control. Release. 2001;75:409–419. doi: 10.1016/s0168-3659(01)00407-2. [DOI] [PubMed] [Google Scholar]
  • 16.Cui Z., Mumper R. J. Topical immunization using nanoengineered genetic vaccines. J. Control. Release. 2002;81:173–184. doi: 10.1016/s0168-3659(02)00051-2. [DOI] [PubMed] [Google Scholar]
  • 17.Watabe S., Xin K., Ihata A., Liu L., Honsho A., Aoki I., Hamajima K., Wahren B., Okuda K. Protection against influenza virus challenge by topical application of influenza DNA vaccine. Vaccine. 2001;19:4434–4444. doi: 10.1016/s0264-410x(01)00194-3. [DOI] [PubMed] [Google Scholar]
  • 18.Liu L. J., Watabe S., Yang J., Hamajima K., Ishii N., Hagiwara E., Onari K., Xin K. Q., Okuda K. Topical application of HIV DNA vaccine with cytokine-expression plasmids induces strong antigen-specific immune responses. Vaccine. 2001;20:42–48. doi: 10.1016/s0264-410x(01)00324-3. [DOI] [PubMed] [Google Scholar]
  • 19.Constantinides P. P., Lancaster C. M., Marcello J., Chiosone D. C., Orner D., Hidalgo I., Smith P. L., Sarkahian A. B., Yiv S. H., Owen A. J. Enhanced intestinal absorption of an RGD peptide from water-in-oil nanoemulsions of different composition and size. J. Control. Release. 1995;34:109–116. [Google Scholar]
  • 20.Constantinides P. P., Welzel G., Ellens H., Smith P. L., Sturgis S., Yiv S. H., Owen A. J. Water-in-oil nanoemulsions containing medium-chain fatty acids/salts: formulations and intestinal absorption enhancement evaluation. Pharmacol. Res. 1996;13:210–215. doi: 10.1023/a:1016030812272. [DOI] [PubMed] [Google Scholar]
  • 21.Wu H., Ramachandran C., Bielinska A. U., Kingzett K., Sun R., Weiner N. D., Roessler B. J. Topical transfection using plasmid DNA in a water-in-oil nanoemulsion. Int. J. Pharm. 2001;221:23–34. doi: 10.1016/s0378-5173(01)00672-x. [DOI] [PubMed] [Google Scholar]
  • 22.Krafft M. P. Fluorocarbons and fluorinated amphiphiles in drug delivery and biomedical research. Adv. Drug Del. Rev. 2001;47:209–228. doi: 10.1016/s0169-409x(01)00107-7. [DOI] [PubMed] [Google Scholar]
  • 23.Faithful N. S., Weers J. G. Perfluorocarbon compounds. Vox Sang. 1998;74:243–248. doi: 10.1111/j.1423-0410.1998.tb05426.x. [DOI] [PubMed] [Google Scholar]
  • 24.Riess J. G., Krafft M. P. Advanced fluorocarbon-based systems for oxygen and drug delivery, and diagnosis. Aritf. Cells Blood Substit. Immobil. Biotechnol. 1997;25:43–52. doi: 10.3109/10731199709118896. [DOI] [PubMed] [Google Scholar]
  • 25.Cornelus C., Krafft M. P., Riess J. G. Improved control over particle sizes and stability of concentrated fluorocarbon emulsions by using mixed fluorocarbon/hydrocarbon molecular dowels. Aritf. Cells Blood Substit. Immobil. Biotechnol. 1994;22:1183–1191. doi: 10.3109/10731199409138814. [DOI] [PubMed] [Google Scholar]
  • 26.Worthen D. R., Clark M.E., Lehmler H.J., Bummer P. M., Jay M. Novel hydrocarbon and fluorinated amine, hydroxyl and carboxylic acid surfactants: comparative synthesis and surface activity. AAPS PharmSci. 1998;1:S–555. [Google Scholar]
  • 27.McGhee J. R., Mestecky J., Dertzbaugh M. T., Eldridge J., Hirasawa M., Kiyono H. The mucosal immune system: from fundamental concepts to vaccine development. Vaccine. 1992;10:75–88. doi: 10.1016/0264-410x(92)90021-b. [DOI] [PubMed] [Google Scholar]
  • 28.Roman M., Goodman M. E., Nguyen M. D., Sato Y., Ronaghy A., Kornbluth R. S., Richman D. D., Carson D. A., Raz E. Immunostimulatory DNA sequences functions as T helper-1-promoting adjuvants. Nat. Med. 1997;3:849–854. doi: 10.1038/nm0897-849. [DOI] [PubMed] [Google Scholar]
  • 29.Gurunathan S., Klinman D. M., Seder R. A. DNA vaccines: Immunology, application, and optimization. Annu. Rev. Immunol. 2002;18:927–974. doi: 10.1146/annurev.immunol.18.1.927. [DOI] [PubMed] [Google Scholar]
  • 30.Haensler J., Verdelet C., Sanchez V., Girerd-Chambaz Y., Bonnin A., Trannoy E., Krishnan S., Meulien P. Intradermal DNA immunization by using jet-injectors in mice and monkeys. Vaccine. 1999;26:628–638. doi: 10.1016/s0264-410x(98)00242-4. [DOI] [PubMed] [Google Scholar]

Articles from Pharmaceutical Research are provided here courtesy of Nature Publishing Group

RESOURCES