Skip to main content
Springer Nature - PMC COVID-19 Collection logoLink to Springer Nature - PMC COVID-19 Collection
. 1996;252(1):101–114. doi: 10.1007/BF02173210

PWP2, a member of the WD-repeat family of proteins, is an essentialSaccharomyces cerevisiae gene involved in cell separation

Reza Shafaatian 1,2, Mark A Payton 1, John D Reid 1,
PMCID: PMC7101573  PMID: 8804409

Abstract

WD-repeat proteins contain four to eight copies of a conserved motif that usually ends with a tryptophan-aspartate (WD) dipeptide. TheSaccharomyces cerevisiae PWP2 gene, identified by sequencing of chromosome III, is predicted to contain eight so-called WD-repeats, flanked by nonhomologous extensions. This gene is expressed as a 3.2-kb mRNA in all cell types and encodes a protein of 104 kDa. ThePWP2 gene is essential for growth because spores carrying thepwp2Δ1::HIS3 disruption germinate before arresting growth with one or two large buds. The growth defect ofpwp2Δ1::HIS3 cells was rescued by expression ofPWP2 or epitope-taggedHA-PWP2 using the galactose-inducibleGAL1 promoter. In the absence of galactose, depletion of Pwp2p resulted in multibudded cells with defects in bud site selection, cytokinesis, and hydrolysis of the septal junction between mother and daughter cells. In cell fractionation studies, HA-Pwp2p was localized in the particulate component of cell lysates, from which it would be solubulized by high salt and alkaline buffer but not by nonionic detergents or urea. Indirect immunofluorescence microscopy indicated that HA-Pwp2p was clustered at multiple points in the cytoplasm. These results suggest that Pwp2p exists in a proteinaceous complex, possibly associated with the cytoskeleton, where it functions in control of cell growth and separation.

Key words: PWP2, WD-repeat, β-Transducin, Essential gene, Yeast

References

  1. Akikazu Y, Isono K. Chromosome III ofS. cerevisiae: an ordered clone bank, a detailed restriction map and analysis of transcripts suggest the presence of 160 genes. Yeast. 1990;6:383–401. doi: 10.1002/yea.320060504. [DOI] [PubMed] [Google Scholar]
  2. Blacketer MJ, Koehler CM, Coates SG, Myers AM, Madaule P. Regulation of dimorphism ofSaccharomyces cerevisiae: involvement of the novel protein kinase homology Elmlp and protein phosphatase 2A. Mol Cell Biol. 1993;13:5567–5581. doi: 10.1128/mcb.13.9.5567. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bork P, Ouzounis C, Sander C, Scharf M, Schneider R, Sonhammer E. Comprehensive sequence analysis of the 182 predicted open reading frames of yeast chromosome III. Protein Science. 1992;1:1677–1690. doi: 10.1002/pro.5560011216. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Branton D, Cohen CM, Tyler J. Interaction of cytoskeletal proteins on the human erthrocyte membrane. Cell. 1981;24:24–32. doi: 10.1016/0092-8674(81)90497-9. [DOI] [PubMed] [Google Scholar]
  5. Brendel V, Bucher P, Nourbakhsh IR, Blaisdell E, Karlin S. Methods and algorthims for statistical analysis of protein sequences. Proc Natl Acad Sci USA. 1992;89:2002–2006. doi: 10.1073/pnas.89.6.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Devereux J, Haeberli P, Smithies O. A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res. 1984;12:387–395. doi: 10.1093/nar/12.1part1.387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Dohrmann PR, Butler G, Tamai K, Dorland S, Greene JR, Thiele DJ, Stillman DJ. Parallel pathways of gene regulation: homologous regulatorsSW15 andACE2 differentially control transcription ofHO and chitinase. Genes Dev. 1992;6:93–104. doi: 10.1101/gad.6.1.93. [DOI] [PubMed] [Google Scholar]
  8. Durino RJ, Gordon JI, Boguski MS. Comparative analysis of theβ-transducin family with identification of several new members includingPWP1, a nonessential gene ofS. cerevisiae that is divergently transcribed fromNMT1. Proteins. 1992;13:41–56. doi: 10.1002/prot.340130105. [DOI] [PubMed] [Google Scholar]
  9. Espenshade P, Gimeno RE, Holzmacher E, Teung P, Kaiser CA. YeastSEC16 gene encodes a multidomain vesicle coat protein that interacts with Sec23p. J Cell Biol. 1995;131:311–324. doi: 10.1083/jcb.131.2.311. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Flescher EG, Madden K, Snyder M. Components required for cytokinesis are important for bud-site selection in yeast. J Cell Biol. 1993;122:373–386. doi: 10.1083/jcb.122.2.373. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Fong HK, Hurley JB, Hopkins RS, Miake-Lye R, Johnson MS, Dolittle RF, Simon MI. Repetitive segmental structure of the transducinβ-subunit homology with theCDC4 gene and identification of related mRNAs. Proc Natl Acad Sci USA. 1986;83:2162–2166. doi: 10.1073/pnas.83.7.2162. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Geitz D, Jean AS, Woods RA, Schiestl RH. Improved method for high efficiency transformation of intact yeast cells. Nucleic Acids Res. 1992;20:1425–1425. doi: 10.1093/nar/20.6.1425. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Gietz RD, Sugino A. New yeast-Escherichia coli shuttle vectors constructed with in vitro mutagenized yeast genes lacking six-base pair restriction sites. Gene. 1988;74:527–534. doi: 10.1016/0378-1119(88)90185-0. [DOI] [PubMed] [Google Scholar]
  14. Gimeno PO, Ljungdahl PO, Styles CA, Fink GR. Unipolar cell divisions in the yeastS. cerevisiae lead to filamentous growth: regulation by starvation andRAS. Cell. 1992;68:1077–1090. doi: 10.1016/0092-8674(92)90079-r. [DOI] [PubMed] [Google Scholar]
  15. Goffeau A, Nakai K, Slonimski P, Risler JL. The membrane proteins encoded by yeast chromosome III genes. FEBS Lett. 1993;325:112–117. doi: 10.1016/0014-5793(93)81425-y. [DOI] [PubMed] [Google Scholar]
  16. Guthrie C, Fink GR (1991) Guide to yeast genetics and molecular biology. Methods Enzymol 194 [PubMed]
  17. Hartwell LH. Genetic control of the cell division cycle in yeast. Exp Cell Res. 1971;69:265–276. doi: 10.1016/0014-4827(71)90223-0. [DOI] [PubMed] [Google Scholar]
  18. Healy AM, Zolnierowicz S, Stapleton AE, Goebl M, dePaoli-Roach AA, Pringle JR. CDC55, aSaccharomyces gene involved in cellular morphogenesis: identification, characterization, and homology to theβ-subunit of mammalian type 2A protein phosphatase. Mol Cell Biol. 1991;11:5767–5780. doi: 10.1128/mcb.11.11.5767. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Heidmann S, Obermaier B, Vogel K, Domdey H. Identification of pre-mRNA polyadenylation sites inS. cerevisiae. Mol Cell Biol. 1992;12:4215–4229. doi: 10.1128/mcb.12.9.4215. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Herman KP, Emr SD. Characterization ofVPS34, a gene required for vacuolar protein sorting and vacuole segregation inS. cerevisiae. Mol Cell Biol. 1990;10:6742–6754. doi: 10.1128/mcb.10.12.6742. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Kozak M. Point mutations define a sequence flanking the AUG initiator codon that modulates translation by eucaryotic ribosomes. Cell. 1986;44:283–292. doi: 10.1016/0092-8674(86)90762-2. [DOI] [PubMed] [Google Scholar]
  22. Kuranda MJ, Robbins PW. Chitinase is required for cell separation during growth ofS. cerevisiae. J Biol Chem. 1991;266:19758–19767. [PubMed] [Google Scholar]
  23. Lupas AN, Lupas JM, Stock JB. Predicting coiled-coils from protein sequences. Science. 1991;252:1162–1164. doi: 10.1126/science.252.5009.1162. [DOI] [PubMed] [Google Scholar]
  24. Maizel JV, Lenk RP. Enhanced graphic matrix analysis of nucleic acid and protein sequences. Proc Natl Acad Sci. 1981;78:7665–7669. doi: 10.1073/pnas.78.12.7665. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Nakai K, Kanehisa M. A knowledge base for predicting protein localization sites in eukaryotic cells. Genomics. 1992;14:897–911. doi: 10.1016/S0888-7543(05)80111-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Neer EJ, Schmidt CJ, Nambudripad R, Smith TF. The ancient regulatory-protein family of WD-repeat proteins. Nature. 1994;371:297–300. doi: 10.1038/371297a0. [DOI] [PubMed] [Google Scholar]
  27. Neer EJ, Schmidt CJ, Smith T. Lis is more. Nature Gene. 1993;5:3–4. doi: 10.1038/ng0993-3. [DOI] [PubMed] [Google Scholar]
  28. Oliver SG, Aart QJM, Agostini-Carbone ML, Aigle M, Alberghina L, et al. The complete DNA sequence of yeast chromosome III. Nature. 1992;357:38–46. doi: 10.1038/357038a0. [DOI] [PubMed] [Google Scholar]
  29. Paravicini G, Cooper M, Friedli L, Smith DJ, Carpentier J, Klig LS, Payton MA. The osmotic integrity of the yeast cell requires a functionalPKC1 gene product. Mol Cell Biol. 1992;12:4896–4905. doi: 10.1128/mcb.12.11.4896. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Pringle JR, Adams AEM, Drubin DG, Haarer BK. Immunofluorescence methods for yeast. Methods Enzymol. 1991;194:565–601. doi: 10.1016/0076-6879(91)94043-c. [DOI] [PubMed] [Google Scholar]
  31. Robinson LC, Menold M, Garrett S, Cuthbertson M. Casein kinase 1-like protein kinases encoded byYCK1 andYCK2 are required for yeast morphogenesis. Mol Cell Biol. 1993;13:2870–2881. doi: 10.1128/mcb.13.5.2870. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Rothstein RJ. Targeting, disruption, replacement, and allele rescue: intergative DNA transformation in yeast. Methods Enzymol. 1991;194:281–301. doi: 10.1016/0076-6879(91)94022-5. [DOI] [PubMed] [Google Scholar]
  33. Russo P, Li WZ, Hampsey DM, Zaret KS, Sherman R. Distinct cis-acting signals enhance 3′ endpoint formation ofCYC1 mRNA in the yeastS. cerevisiae. EMBO J. 1991;10:563–571. doi: 10.1002/j.1460-2075.1991.tb07983.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Sambrook J, Fritsch EF, Maniatis T. Molecular cloning: a laboratory manual. 2nd edn. Cold Spring Harbor, New York: Cold Spring Harbor Laboratory Press; 1989. [Google Scholar]
  35. Sapolsky RJ, Brendel V, Karlin S. A comparative analysis of distinctive features of yeast protein sequences. Yeast. 1993;9:1287–1298. doi: 10.1002/yea.320091202. [DOI] [PubMed] [Google Scholar]
  36. Singer B, Riezman H. Detection of an intermediate compartment involved in transport ofα-factor form the plasma membrane to the vacuole in yeast. J Cell Biol. 1990;110:1911–1922. doi: 10.1083/jcb.110.6.1911. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Tugendreich S, Bassett DE, McKusick VA, Boguski MS, Hieter P. Genes conserved in yeast and humans. Human Mol Genetics. 1994;3:1509–1517. doi: 10.1093/hmg/3.suppl_1.1509. [DOI] [PubMed] [Google Scholar]
  38. Voorn L, Ploegh HL. The WD-40 repeat. FEBS Lett. 1992;307:131–134. doi: 10.1016/0014-5793(92)80751-2. [DOI] [PubMed] [Google Scholar]

Articles from Molecular & General Genetics are provided here courtesy of Nature Publishing Group

RESOURCES