Skip to main content
Springer Nature - PMC COVID-19 Collection logoLink to Springer Nature - PMC COVID-19 Collection
. 1998;75(2):199–212. doi: 10.1007/s11746-998-0032-9

Free radicals, oxidative stress, and antioxidants in human health and disease

Okezie I Aruoma 1,
PMCID: PMC7101596  PMID: 32287334

Abstract

Free radicals and other reactive oxygen species (ROS) are constantly formed in the human body. Free-radical mechanisms have been implicated in the pathology of several human diseases, including cancer, atherosclerosis, malaria, and rheumatoid arthritis and neurodegenerative diseases. For example, the superoxide radical (O·−2) and hydrogen peroxide (H2O2) are known to be generated in the brain and nervous system in vivo, and several areas of the human brain are rich in iron, which appears to be easily mobilizable in a form that can stimulate free-radical reactions. Antioxidant defenses to remove O·−2 and H2O2 exist. Superoxide dismutases (SOD) remove O·−2 by greatly accelerating its conversion to H2O2. Catalases in peroxisomes convert H2O2 into water and O2 and help to dispose of H2O2 generated by the action of the oxidase enzymes that are located in these organelles. Other important H2O2-removing enzymes in human cells are the glutathione peroxidases. When produced in excess, ROS can cause tissue injury. However, tissue injury can itself cause ROS generation (e.g., by causing activation of phagocytes or releasing transition metal ions from damaged cells), which may (or may not, depending on the situation) contribute to a worsening of the injury. Assessment of oxidative damage to biomolecules by means of emerging technologies based on products of oxidative damage to DNA (e.g., 8-hydroxydeoxyguanosine), lipids (e.g., isoprostanes), and proteins (altered amino acids) would not only advance our understanding of the underlying mechanisms but also facilitate supplementation and intervention studies designed and conducted to test antioxidant efficacy in human health and disease.

Key words: Antioxidants, atherosclerosis, DNA damage, flavonoids, free radicals, 8-hydroxydeoxyguanosine, isoprostanes, lipid peroxidation, oxidative protein damage, oxidative stress, phytochemicals

References

  • 1.Gomberg M. An Incidence of Trivalent Carbon Trimethylphenyl. J. Am. Chem. Soc. 1900;22:757–771. doi: 10.1021/ja02049a006. [DOI] [Google Scholar]
  • 2.Hey D.H., Waters W.A. Some Organic Reactions Involving the Occurrence of Free Radicals in Solution. Chem. Rev. 1937;21:169–208. doi: 10.1021/cr60068a006. [DOI] [Google Scholar]
  • 3.Cadogan J.I.G. Principles of Free Radical Chemistry. London: The Chemical Society; 1973. [Google Scholar]
  • 4.Weiss J. Investigations of the Radical HO2 in Solution. Trans. Faraday Soc. 1935;31:668–681. doi: 10.1039/tf9353100668. [DOI] [Google Scholar]
  • 5.Perkins M.J. Radical Chemistry. London: Ellis Horwood; 1996. [Google Scholar]
  • 6.Moad G., Solomon D.H. The Chemistry of Free Radical Polymerization. Oxford: Pergamon; 1995. [Google Scholar]
  • 7.Waters W.A. A Chemical Interpretation of the Mechanism of Oxidation by Dehydrogenase Enzymes. Trans. Faraday Soc. 1943;39:140–151. doi: 10.1039/tf9433900140. [DOI] [Google Scholar]
  • 8.Gerschman R., Gilbert D.L., Nye S.W., Dwyer P., Fenn W.O. Oxygen Poisoning and X-Irradiation: A Mechanism in Common. Science. 1954;119:623–626. doi: 10.1126/science.119.3097.623. [DOI] [PubMed] [Google Scholar]
  • 9.McCord J.M., Fridovich I. Superoxide Dismutase. An Enzymatic Function for Erythrocuprein (Hemocuprein) J. Biol. Chem. 1969;224:6049–6055. [PubMed] [Google Scholar]
  • 10.Michelson A.M., McCord J.M., Fridovich I. Superoxide and Superoxide Dismutases. London: Academic Press; 1977. [Google Scholar]
  • 11.Aruoma O.I. Free Radicals and Foods. Chem. Br. 1993;29:210–214. [Google Scholar]
  • 12.Porter W.L. Paradoxical Behaviour of Antioxidants in Food and Biological Systems. Toxicol. Ind. Health. 1993;9:93–122. doi: 10.1177/0748233793009001-209. [DOI] [PubMed] [Google Scholar]
  • 13.Hudson, B.J.F., Food Antioxidant, Elsevier Applied Science London.
  • 14.Frankel E.N. Lipid Oxidation. Prog. Lipid Res. 1980;19:1–22. doi: 10.1016/0163-7827(80)90006-5. [DOI] [PubMed] [Google Scholar]
  • 15.Papas A.M. Oil-Soluble Antioxidants in Foods. Toxicol. Ind. Health. 1993;9:123–149. doi: 10.1177/0748233793009001-210. [DOI] [PubMed] [Google Scholar]
  • 16.Löliger R. The Use of Antioxidants in Food. In: Aruoma O.I., Halliwell B., editors. Free Radicals and Food Additives. London: Tayler & Francis; 1991. pp. 121–150. [Google Scholar]
  • 17.Diplock, A.T., Antioxidant Nutrients and Disease Prevention: An Overview, Am. J. Clin. Nutr. 53:189S–193S. [DOI] [PubMed]
  • 18.Block G., Pattersen B., Subar A. Fruit, Vegetables and Cancer Prevention: A Review of the Epidemiological Evidence. Nutr. Cancer. 1992;18:1–29. doi: 10.1080/01635589209514201. [DOI] [PubMed] [Google Scholar]
  • 19.Aruoma O.I. Characterization of Drugs as Antioxidant Prophylactics. Free Radical Biol. Med. 1996;20:675–705. doi: 10.1016/0891-5849(95)02110-8. [DOI] [PubMed] [Google Scholar]
  • 20.Duthie S.J., Ma A., Ross M.A., Collins A.R. Antioxidant Supplementation Decreases Oxidative DNA Damage in Human Lymphocytes. Cancer Res. 1996;56:1291–1295. [PubMed] [Google Scholar]
  • 21.Pezzuto J.M. Plant-Derived Anticancer Agents. Biochem. Pharmacol. 1997;53:121–133. doi: 10.1016/S0006-2952(96)00654-5. [DOI] [PubMed] [Google Scholar]
  • 22.Pryor W.A. Free Radical Biology: Xenobiotics, Cancer, and Aging. Ann. N.Y. Acad. Sci. 1982;393:1–22. doi: 10.1111/j.1749-6632.1982.tb31228.x. [DOI] [PubMed] [Google Scholar]
  • 23.Southorn P.A., Powis G. Free Radicals in Medicine II. Involvement in Human Disease. Mayo Clin. Proc. 1988;63:390–408. doi: 10.1016/s0025-6196(12)64862-9. [DOI] [PubMed] [Google Scholar]
  • 24.Halliwell, B., and J M.C. Gutteridge, Free Radicals in Biology and Medicine, Clarendon Press Oxford, 1989.
  • 25.Aruoma O.I. Free Radicals in Tropical Diseases. London: Harwood Academic Publishers; 1991. [Google Scholar]
  • 26.Babior B.M. Oxidants from Phagocytes: Agents of Defense and Destruction. Blood. 1984;64:959–966. [PubMed] [Google Scholar]
  • 27.Klebanoff S.J. Oxygen Metabolism and the Toxic Properties of Phagocytes. Ann. Intern. Med. 1980;93:480–489. doi: 10.7326/0003-4819-93-3-480. [DOI] [PubMed] [Google Scholar]
  • 28.Weiss S.J. Tissue Destruction by Neutrophils. New Engl. J. Med. 1989;320:365–376. doi: 10.1056/NEJM198902093200606. [DOI] [PubMed] [Google Scholar]
  • 29.Del-Maestro R.F. An Approach to Free Radicals in Medicine and Biology. Acta Physiol. Scand. suppl. 1980;492:153–168. [PubMed] [Google Scholar]
  • 30.For a collection of review articles, see Oxygen Radicals and Lung Injury, Environ. Health Perspect. 102 (suppl 10) 5–213 (1994).
  • 31.Orrenius S., McConkey D.J., Bellomo G., Nicotera P. Role of Ca2+ in Toxic Cell Killing. Trends Pharmacol. Sci. 1989;10:281–285. doi: 10.1016/0165-6147(89)90029-1. [DOI] [PubMed] [Google Scholar]
  • 32.Bast A. Oxidative Stress and Calcium Homeostasis. In: Halliwell B., Aruoma O.I., editors. DNA and Free Radicals. London: Ellis Horwood; 1993. pp. 95–108. [Google Scholar]
  • 33.Stokinger H.E. Ozone Toxicology. Arch. Environ. Health. 1965;10:719–731. doi: 10.1080/00039896.1965.10664082. [DOI] [PubMed] [Google Scholar]
  • 34.Mustafa M.G. Biochemical Basis of Ozone Toxicity. Free Radical Biol. Med. 1990;9:245–265. doi: 10.1016/0891-5849(90)90035-H. [DOI] [PubMed] [Google Scholar]
  • 35.Pryor W.A. Mechanism of Radical Formation from Reactions of Ozone with Target Molecules in the Lung. Free Radical Biol. Med. 1994;17:451–465. doi: 10.1016/0891-5849(94)90172-4. [DOI] [PubMed] [Google Scholar]
  • 36.Kanofsky J.R., Sima P. Singlet Oxygen Production from the Reactions of Ozone with Biological Molecules. J. Biol. Chem. 1991;266:9039–9042. [PubMed] [Google Scholar]
  • 37.Palmer R.M.J., Ashton D.S., Moncada S. Vascular Endothelium Cell Synthesize Nitric Oxide from l-Arginine. Nature. 1988;333:664–666. doi: 10.1038/333664a0. [DOI] [PubMed] [Google Scholar]
  • 38.Ignarro L.J., Buga G.M., Wood K.S., Byrns R.E., Chandhuri G. Endothelium-Derived Relaxing Factor Produced and Released from Artery and Vein Is Nitric Oxide. Proc. Natl. Acad. Sci. USA. 1987;84:9265–9269. doi: 10.1073/pnas.84.24.9265. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 39.Sneddon J.W., Vane J.R. Endothelium-Derived Relaxing Factor Reduces Platelet Adhesion to Bovine Endothelium Cells. Proc. Natl. Acadi. Sci. USA. 1988;85:1341–1344. doi: 10.1073/pnas.85.8.2800. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 40.Gaston B., Drazen J.M., Lescalzo J., Stamler J.S. The Biology of Nitrogen Oxide in the Airways. Am. J. Respir. Crit. Care Med. 1994;149:538–551. doi: 10.1164/ajrccm.149.2.7508323. [DOI] [PubMed] [Google Scholar]
  • 41.Anggärd E. Nitric Oxide: Mediator, Murderer and Medicine. Lancet. 1994;343:1199–1206. doi: 10.1016/S0140-6736(94)92405-8. [DOI] [PubMed] [Google Scholar]
  • 42.Rubbo H., Darley-Usmar V., Freeman B.A. Nitric Oxide Regulation of Tissue Free Radical Injury. Chem. Res. Toxicol. 1996;9:809–820. doi: 10.1021/tx960037q. [DOI] [PubMed] [Google Scholar]
  • 43.Lancaster J., editor. The Biological Chemistry of Nitric Oxide. New York: Academic Press; 1995. [Google Scholar]
  • 44.Sessa W.C., Pritchard K., Seyedi N., Wang J., Hintze T.H. Chronic Exercise in Dogs Increases Coronary Vascular Nitric Oxide Production and Endothelial Cell Nitric Oxide Synthase Gene Expression. Circ. Res. 1994;74:349–353. doi: 10.1161/01.res.74.2.349. [DOI] [PubMed] [Google Scholar]
  • 45.de Rojas-Walker T., Tamir S., Hong J., Wishnok J.S., Tannenbaum S.R. Nitric Oxide Induces Oxidative Damage in Addition to Deamination in Macrophage DNA. Chem. Res. Toxicol. 1995;8:473–477. doi: 10.1021/tx00045a020. [DOI] [PubMed] [Google Scholar]
  • 46.Douki H., Cadet J. Peroxynitrite Mediated Oxidation of Purine Bases of Nucleosides and Isolated DNA. Free Rad. Res. 1996;24:369–380. doi: 10.3109/10715769609088035. [DOI] [PubMed] [Google Scholar]
  • 47.Uppu R.M., Cueto R., Squadrito G.L., Salgo M.G., Pryor W.A. Reactions of Peroxynitrite with 2′-Deoxyguanosine, 7,8-dihydro-8-oxo-2′-deoxyguanosine, and Calf-thymus DNA. Free Radical Biol. Med. 1996;21:407–411. doi: 10.1016/0891-5849(96)00220-1. [DOI] [PubMed] [Google Scholar]
  • 48.Merchant K., Chen H., Gonzalez T.C., Keefer L.K., Shaw B.R. Deamination of Single-Stranded DNA Cytosine Residues in Aerobic Nitric Oxide Solution at Micromolar Total NO Exposures. Chem. Res. Toxicol. 1996;9:891–896. doi: 10.1021/tx950102g. [DOI] [PubMed] [Google Scholar]
  • 49.Douki T., Cadet J., Ames B.N. An Adduct Between Peroxynitrite and 2′-Deoxyguanosine: 4,5-Dihydro-5-hydroxy-4-(nitrosooxy)-2′-deoxyguanosine. Chem. Res. Toxicol. 1996;9:3–7. doi: 10.1021/tx950126n. [DOI] [PubMed] [Google Scholar]
  • 50.Yermilov V., Rubio J., Ohshima H. Formation of 8-Ni-troguanine in DNA Treated with Peroxynitrite in vitro and Its Rapid Removal from DNA by Depurination. FEBS Lett. 1995;376:207–210. doi: 10.1016/0014-5793(95)01281-6. [DOI] [PubMed] [Google Scholar]
  • 51.Spencer J.P.E., Jenner A., Aruoma O.I., Cross C.E., Halliwell B. Base Modification and Strand Breakage in Isolated Calf Thymus DNA and in DNA from Human Skin Epidermal Keratinocytes Exposed to Peroxynitrite or 3-Morpholinosyd-nonimine. Chem. Res. Toxicol. 1996;9:1152–1158. doi: 10.1021/tx960084i. [DOI] [PubMed] [Google Scholar]
  • 52.Salgo M.G., Stone K., Squadrito G.L., Battista J.R., Pryor W.A. Peroxynitrite Causes DNA Nicks in Plasmid pBR322. Biochem. Biophys. Res. Commun. 1995;210:1026–1030. doi: 10.1006/bbrc.1995.1759. [DOI] [PubMed] [Google Scholar]
  • 53.Huie R.E., Padmaja S. The Reaction of NO with Superoxide. Free Radical Res. Commun. 1993;18:195–199. doi: 10.3109/10715769309145868. [DOI] [PubMed] [Google Scholar]
  • 54.van der Vliet A., Smith D., O’Neill C.A., Kaur H., Darley-Usmar V., Cross C.E., Halliwell B. Interactions of Peroxynitrite with Human Plasma and Its Constituents: Oxidative Damage and Antioxidant Depletion. Biochem. J. 1994;303:295–301. doi: 10.1042/bj3030295. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 55.Gatti R.M., Augusto O., Kwee J.K., Giorgio S. Leish-manicidal Activity of Peroxynitrite. Redox Rep. 1995;1:261–265. doi: 10.1080/13510002.1995.11746996. [DOI] [PubMed] [Google Scholar]
  • 56.Watts B.P., Barnard M., Turrens J.F. Peroxynitrite-Dependment Chemuliminescence of Amino Acids, Proteins and Intact Cells. Arch. Biochem. Biophys. 1995;317:324–330. doi: 10.1006/abbi.1995.1170. [DOI] [PubMed] [Google Scholar]
  • 57.Zhu L., Gunn C., Beckman J.S. Bactericidal Activity of Peroxynitrite. Arch. Biochem. Biophys. 1992;298:452–457. doi: 10.1016/0003-9861(92)90434-X. [DOI] [PubMed] [Google Scholar]
  • 58.Radi R., Beckman J.S., Bush K.M., Freeman B.A. Peroxynitrite Oxidation of Sulfhydryls. The Cytotoxic Potential of Superoxide and Nitric Oxide. J. Biol. Chem. 1991;266:4244–4250. [PubMed] [Google Scholar]
  • 59.Tarpey M.M., Beckman J.S., Ischiropolous H., Gore J.Z., Brock T.A. Peroxynitrite Stimulates Vascular Smooth Muscle Cell Cyclic GMP Synthesis. FEBS Lett. 1995;364:314–318. doi: 10.1016/0014-5793(95)00413-4. [DOI] [PubMed] [Google Scholar]
  • 60.Kalyanaraman B., Darley-Usmar V., Struck A., Hogg N., Parathasarathy S. Role of Apolipoprotein-Derived Radical and α-Tocopheroxyl Radical in Peroxidase-Dependent Oxidation of Low Density Lipoprotein. J. Lipid Res. 1995;36:1037–1045. [PubMed] [Google Scholar]
  • 61.Pryor W.A., Squadrito G.L. The Chemistry of Peroxynitrite: A Product from the Reaction of Nitric Oxide with Superoxide. Lung Cell. Mol. Physiol. 1995;12:L699–L722. doi: 10.1152/ajplung.1995.268.5.L699. [DOI] [PubMed] [Google Scholar]
  • 62.Graham A., Hogg N., Kalyanaraman B., O’Leary V., Darley-Usmar V., Moncada S. Peroxynitrite Modification of Low-Density Lipoprotein Leads to Recognition by the Macrophage Scavenger Receptor. FEBS Lett. 1993;330:181–185. doi: 10.1016/0014-5793(93)80269-Z. [DOI] [PubMed] [Google Scholar]
  • 63.Ischiropoulos H., Al-Mehdi A.B. Peroxynitrite Mediated Oxidative Protein Modifications. FEBS Lett. 1995;364:279–282. doi: 10.1016/0014-5793(95)00307-U. [DOI] [PubMed] [Google Scholar]
  • 64.Esterbauer H., Gebicki J., Puhl H., Juergens G. The Role of Lipid Peroxidation and Antioxidants on Oxidative Modification of LDL. Free Radical Biol. Med. 1992;13:341–390. doi: 10.1016/0891-5849(92)90181-F. [DOI] [PubMed] [Google Scholar]
  • 65.Cerruti P.A. Pro-oxidant States and Tumor Activation. Science. 1985;227:375–381. doi: 10.1126/science.2981433. [DOI] [PubMed] [Google Scholar]
  • 66.Cheeseman K.H. Lipid Peroxidation and Cancer. In: Halliwell B., Aruoma O.I., editors. DNA and Free Radicals. London: Ellis Horwood; 1993. pp. 109–144. [Google Scholar]
  • 67.Morrow J.D., Hill K.E., Burk R.F., Mannour T.M., Badr K.F., Roberts L.J. A Series of Prostaglandin F2 Like Compounds Are Produced in vivo by Humans by a Non-cyclooxygenase, Free Radical Catalyzed Mechanism. Proc. Natl. Acad. Sci. USA. 1990;87:9383–9387. doi: 10.1073/pnas.87.23.9383. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 68.Morrow J.D., Roberts L.J. The Isoprostanes: Current Knowledge and Directions for Future Research. Biochem. Pharmacol. 1996;51:1–9. doi: 10.1016/0006-2952(95)02072-1. [DOI] [PubMed] [Google Scholar]
  • 69.Esterbauer H. The Chemistry of Oxidation of Lipoproteins. In: Rice-Evans C., Bruckdorfer K.R., editors. Oxidative Stress, Lipoproteins and Cardiovascular Dysfunction. London: Portland Press; 1995. pp. 55–79. [Google Scholar]
  • 70.Kalyanaraman B., Sohnle P.G. Generation of Free Radical Intermediates from Foreign Compounds by Neutrophil-Derived Oxidants. J. Clin. Invest. 1985;75:1618–1622. doi: 10.1172/JCI111868. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 71.Carr A.C., van den Berg J.J.M., Winterbourn C.C. Chlorination of Cholesterol in Cell Membranes by Hypochlorous Acid. Arch. Biochem. Biophys. 1996;332:63–69. doi: 10.1006/abbi.1996.0317. [DOI] [PubMed] [Google Scholar]
  • 72.Travis J., Salvesen G.S. Human Plasma Proteinase Inhibitors. Annu. Rev. Biochem. 1983;52:655–709. doi: 10.1146/annurev.bi.52.070183.003255. [DOI] [PubMed] [Google Scholar]
  • 73.Dennis W.H., Oliveieri V.P., Kruse C.W. The Reaction of Nucleotides with Aqueous Hypochlorous Acid. Water Res. 1979;13:357–362. doi: 10.1016/0043-1354(79)90023-X. [DOI] [Google Scholar]
  • 74.Gould J.P., Hay T.R. The Nature of the Reactions Between Chlorine and Purine and Pyrimidine Bases: Products and Kinetics. Wat. Res. Tech. 1982;14:629–640. [Google Scholar]
  • 75.Kozumbo W.J., Agarwal S., Koren H.S. Breakage and Binding of DNA by Reaction Products of Hypochlorous Acid with Aniline, 1-Naphthylamine or 1-Naphthol. Toxicol. Appl. Pharmacol. 1992;115:107–115. doi: 10.1016/0041-008X(92)90373-Z. [DOI] [PubMed] [Google Scholar]
  • 76.Aruoma O.I., Halliwell B., Aeschbach R., Löliger J. Antioxidant and Pro-oxidant Properties of Active Rosemary Constituents: Carnosol and Carnosic Acid. Xenobiotica. 1992;22:257–268. doi: 10.3109/00498259209046624. [DOI] [PubMed] [Google Scholar]
  • 77.Aruoma O.I., Murcia A., Butler J., Halliwell B. Evaluation of the Antioxidant Actions of Gallic Acid and Its Derivatives. J. Food Chem. 1993;41:1880–1885. doi: 10.1021/jf00035a014. [DOI] [Google Scholar]
  • 78.Aruoma O.I. Nutrition and Health Aspects of Free Radicals and Antioxidants. Food Chem. Toxicol. 1994;32:671–683. doi: 10.1016/0278-6915(94)90011-6. [DOI] [PubMed] [Google Scholar]
  • 79.Fridovich I. Superoxide Dismutases. An Adaptation to the Paramagnetic Gas. J. Biol. Chem. 1989;264:7761–7764. [PubMed] [Google Scholar]
  • 80.Aruoma O.I., Halliwell B., Gajeswki E., Dizdaroglu M. Copper-Ion Dependent Damage to the Bases in DNA in the Presence of Hydrogen Peroxide. Biochem. J. 1991;273:601–604. doi: 10.1042/bj2730601. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 81.Aruoma O.I., Halliwell B. Superoxide-Dependent and Ascorbate-Dependent Formation of Hydroxyl Radicals from Hydrogen Peroxide in the Presence of Iron: Are Lactoferrin and Transferrin Promoters of Hydroxyl Radical Generation. Biochem. J. 1987;241:273–278. doi: 10.1042/bj2410273. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 82.Halliwell B., Gutteridge J.M.C. Role of Free Radicals and Catalytic Metal Ions in Human Disease: An Overview. Methods Enzymol. 1990;186:1–85. doi: 10.1016/0076-6879(90)86093-b. [DOI] [PubMed] [Google Scholar]
  • 83.Chevion M., Liang Y., Har-El R., Berenshtein E., Uretzky G., Kitrossky N. Copper and Iron Are Mobilized Following Myocardial Ischemia: Possible Productive Criteria for Tissue Injury. Proc. Natl. Acad. Sci. USA. 1993;90:1102–1106. doi: 10.1073/pnas.90.3.1102. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 84.Ramos C.L., Pou S., Britigan B.E., Cohen M.S., Rosen G.M. Spin Trapping Evidence for Myeloperoxidase-Dependent Hydroxyl Radical Formation by Human Neutrophils and Monocytes. J. Biol. Chem. 1992;267:8307–8312. [PubMed] [Google Scholar]
  • 85.Ramos C.L., Pou S., Rosen G.M. Effect of Antiinflammatory Drugs on Myeloperoxidase-Dependent Hydroxy Radical Generation by Human Neutrophils. Biochem. Pharmacol. 1995;49:1079–1084. doi: 10.1016/0006-2952(95)98504-3. [DOI] [PubMed] [Google Scholar]
  • 86.Olanow C.W., Jenner P., Youdim M. Neurodegeneration and Neuroprotection in Parkinson’s Disease. London: Academic Press; 1996. [Google Scholar]
  • 87.Moncada S., Higgs A. The l-Arginine-Nitric Oxide Pathway. New Engl. J. Med. 1993;329:2002–2012. doi: 10.1056/NEJM199312303292706. [DOI] [PubMed] [Google Scholar]
  • 88.Ames B.N., Shigenaga M.K., Hagen T.M. Oxidants, Antioxidants, and the Degenerative Disease of Aging. Proc. Natl. Acad. Sci. USA. 1993;90:7915–7922. doi: 10.1073/pnas.90.17.7915. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 89.Ganguly P.K. Antioxidant Therapy in Congestive Heart Failure: Is There Any Advantage? J. Intern. Med. 1991;229:205–208. doi: 10.1111/j.1365-2796.1991.tb00333.x. [DOI] [PubMed] [Google Scholar]
  • 90.Frei B., editor. Natural Antioxidants in Human Health and Disease. New York: Academic Press; 1994. [Google Scholar]
  • 91.McCord J.M. Human Disease, Free Radicals and the Oxidant/Antioxidant Balance. Clin. Biochem. 1993;26:351–357. doi: 10.1016/0009-9120(93)90111-I. [DOI] [PubMed] [Google Scholar]
  • 92.Clemens M.R. Antioxidant Therapy in Haematological Disorders. Adv. Exp. Biol. Med. 1990;264:423–433. doi: 10.1007/978-1-4684-5730-8_68. [DOI] [PubMed] [Google Scholar]
  • 93.Haumann B.F. Antioxidants: Health Implications. INFORM. 1994;5:242–252. [Google Scholar]
  • 94.Ong A.S.H., Packer L., editors. Lipid-Soluble Antioxidants: Biochemistry and Clinical Applications. Basel: Birkhauser; 1992. [Google Scholar]
  • 95.Gutteridge J.M.C., Halliwell B. Antioxidants in Nutrition, Health and Disease. Oxford: Oxford University Press; 1995. [Google Scholar]
  • 96.Kumpulainen J.T., Salonen J.T., editors. Natural Antioxidants and Food Quality in Atherosclerosis and Cancer Prevention. London: Royal Society of Chemistry; 1996. [Google Scholar]
  • 97.Halliwell B. Antioxidants in Human Health and Disease. Annu. Rev. Nutr. 1996;16:33–50. doi: 10.1146/annurev.nu.16.070196.000341. [DOI] [PubMed] [Google Scholar]
  • 98.Sies H. Antioxidants in Disease Mechanisms and Therapy. London: Academic Press; 1996. [Google Scholar]
  • 99.Stampfer M.J., Hennekens C.H., Manson J.E., Colditz G.A., Rosner B., Willett W.C. Vitamin E Consumption and the Associated Risk of Coronary Disease in Women. New Engl. J. Med. 1993;328:1444–1449. doi: 10.1056/NEJM199305203282003. [DOI] [PubMed] [Google Scholar]
  • 100.Knekt P., Reunanen A., Järvinen R., Seppänen R., Heliövaara M., Aromaa A. Antioxidant Vitamin Intake and Coronary Mortality in a Longitudinal Population Study. Am. J. Epidemiol. 1994;139:1180–1189. doi: 10.1093/oxfordjournals.aje.a116964. [DOI] [PubMed] [Google Scholar]
  • 101.Hertog M.G.L., Feskens E.J.M., Hollman P.C., Katan M.B., Kromhout D. Dietary Antioxidant Flavonoids and Risk of Coronary Heart Disease: The Zutphen Elderly Study. Lancet. 1993;342:1007–1011. doi: 10.1016/0140-6736(93)92876-U. [DOI] [PubMed] [Google Scholar]
  • 102.Gey K.F. Long Term Adequacy of All Major Antioxidants, Presumably in Synergy with Other Vegetable-Derived Nutrients May Help to Prevent Early Stages of Cardiovascular Disease and Cancer Respectively. Int. J. Vitamin Nutr. Res. 1995;65:65–69. [Google Scholar]
  • 103.Manson J.E., Stampfer M.J., Willett W.C., Colditz G.A., Speizer P.E., Hennekens C.H. Consumption of Antioxidant Vitamins and Incidence of Stroke in Women. Am. J. Epidemiol. 1993;138:603–603. [Google Scholar]
  • 104.Gridley G., McLaughlin J.K., Block G., Blot W.J., Gluch M., Fraumeni J.F. Vitamin Supplement Use and Reduced Risk of Oral and Pharyngeal Cancer. Am. J. Epidemiol. 1992;135:1083–1092. doi: 10.1093/oxfordjournals.aje.a116208. [DOI] [PubMed] [Google Scholar]
  • 105.Hankinson S.E., Stampfer J.J., Seddon J.M., Colditz G.A., Rosner B., Speizer F.E., Willett W.C. Nutrient Intake and Cataract Extraction in Women: A Prospective Study. Brit. Med. J. 1992;305:335–339. doi: 10.1136/bmj.305.6849.335. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 106.Gey K.F., Stähelin H.B., Eichholzer M. Poor Plasma Status of Carotene and Vitamin C Is Associated with Higher Mortality from Ischemic Heart Disease and Stroke: Basel Prospective Study. Clin. Invest. 1993;71:3–6. doi: 10.1007/BF00210955. [DOI] [PubMed] [Google Scholar]
  • 107.Jialal I., Grundy S.M. Effect of Dietary Supplementation with Alpha-Tocopherol on the Oxidative Modification of Low Density Lipoprotein. J. Lipid Res. 1992;33:899–906. [PubMed] [Google Scholar]
  • 108.Blot W.J., Li J.-Y., Taylor P.R., Guo W., Dawsey S., Wang G.-Q., Yang C.S., Zheng S.-F., Gail M., Li G.-Y., Yu Y., Liu B.-Q., Tangrea J., Sun Y.-H., Liu F., Fraumeni J.F., Zhang Y.-H., Li B. Nutrition Intervention Trials in Linxian, China, Supplementation with Specific Vitamin/Mineral Combinations, Cancer Incidence and Disease Specific Mortality in the General Population. J. Natl. Cancer Inst. 1993;85:1483–1492. doi: 10.1093/jnci/85.18.1483. [DOI] [PubMed] [Google Scholar]
  • 109.West S., Vitale S., Hallfrisch J., Munoz B., Muller D., Bressler S., Bressler N.M. Are Antioxidants or Supplements Protective for Age Related Macular Degeneration. Arch. Ophthalmol. 1994;112:222–227. doi: 10.1001/archopht.1994.01090140098031. [DOI] [PubMed] [Google Scholar]
  • 110.Greenberg E.R., Baron J.A., Tostesen T.D., Freeman D.H., Beck G.J., Bond J.H., Colacchio T.A., Collier J.A., Frankl H.D., Haile R.W., Mandel J.S., Nierenberg D.W., Rothistein R., Snozer D.C., Stevens N.M., Summers R.W., van Stolk R.U. A Clinical Trial of Antioxidant Vitamins to Prevent Colorectal Adenoma. New Engl. J. Med. 1994;331:141–147. doi: 10.1056/NEJM199407213310301. [DOI] [PubMed] [Google Scholar]
  • 111.Heinonen O.P., Albanes D. The Effect of Vitamin E and Beta Carotene on the Incidence of Lung Cancer and Other Cancers in Male Smokers (The Alpha-tocopherol, Beta Carotene Cancer Prevention Study Group) New Engl. J. Med. 1994;330:1029–1034. doi: 10.1056/NEJM199404143301501. [DOI] [PubMed] [Google Scholar]
  • 112.Henekens C.H., Buring J.E., Manson J.E., Stamper M., Rosner B., Cook N.R., Belanger C., Lamotte F., Gaziano J.M., Ridker P.M., Willet W., Peto R. Lack of Effect of Long-Term Supplementation With β-Carotene on the Incidence of Malignant Neoplasma and Cardiovascular Disease. New Engl. J. Med. 1996;334:1145–1149. doi: 10.1056/NEJM199605023341801. [DOI] [PubMed] [Google Scholar]
  • 113.Gillman M.W., Cupples L.A., Gagnou D., Posner B.M., Ellison R.C., Castelli W.P., Wolf P.A. Protective Effect of Fruits and Vegetables on Development of Stroke in Men. J. Am. Med. Assoc. 1995;273:1113–1117. doi: 10.1001/jama.273.14.1113. [DOI] [PubMed] [Google Scholar]
  • 114.Stephens N.G., Parsons A., Schofield P.M., Kelly F., Cheeseman K., Mitchinson M.J., Brown M.J. Randomised Controlled Trial of Vitamin E in Patients with Coronary Diseases: Cambridge Heart Antioxidant Study (CHAOS) Lancet. 1996;347:781–786. doi: 10.1016/S0140-6736(96)90866-1. [DOI] [PubMed] [Google Scholar]
  • 115.Grey K.F. Ten Year Retrospective on the Antioxidant Hypothesis of Atherosclerosis: Threshold Plasma Levels of Antioxidant Micronutrients Related to Minimum Cardiovascular Risk. J. Nutr. Biochem. 1996;6:206–236. [Google Scholar]
  • 116.Omenn G.S., Goodman G.E., Thornquist M.D., Balmes J., Cullen M.R., Glass A., Keogh J.P., Meyskens F.L., Valanis B., Williams J.H., Barnhart S., Hammer S. Effect of a Combination of β-Carotene and Vitamin A on Lung Cancer and Cardiovascular Disease. New Engl. J. Med. 1996;334:1150–1155. doi: 10.1056/NEJM199605023341802. [DOI] [PubMed] [Google Scholar]
  • 117.Spencer J.P.E., Jenner A., Aruoma O.I., Cross C.E., Wu R., Halliwell B. Oxidative DNA Damage in Human Respiratory Tract Epithelial Cells. Time Course in Relation to DNA Strand Breakage. Biochem. Biophys. Res. Commun. 1996;224:17–22. doi: 10.1006/bbrc.1996.0977. [DOI] [PubMed] [Google Scholar]
  • 118.Jaruga P., Dizdaroglu M. Repair of Products of Oxidative DNA Base Damage in Human Cells. Nucleic Acids Res. 1996;24:1389–1394. doi: 10.1093/nar/24.8.1389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 119.Nackerdien Z., Olinski R., Dizdaroglu M. DNA Base Damage in Chromatin of γ-Irradiated Cultured Human Cells. Free Radical Res. Commun. 1992;16:259–273. doi: 10.3109/10715769209049179. [DOI] [PubMed] [Google Scholar]
  • 120.Breen A.P., Murphy J.A. Reactions of Oxyl Radicals with DNA. Free Radical Biol. Med. 1995;18:1033–1077. doi: 10.1016/0891-5849(94)00209-3. [DOI] [PubMed] [Google Scholar]
  • 121.Brynes R.W. Evidence for Involvement of Multiple Iron Species in DNA Single-Strand Scission by H2O2 in HL-60 Cells. Free Radical Biol. Med. 1996;20:399–406. doi: 10.1016/0891-5849(96)02097-7. [DOI] [PubMed] [Google Scholar]
  • 122.Klein C.B., Frenkel K., Costa M. The Role of Oxidative Processes in Metal Carcinogenesis. Chem. Res. Toxicol. 1991;4:592–604. doi: 10.1021/tx00024a001. [DOI] [PubMed] [Google Scholar]
  • 123.Pezzano H., Podo F. Structure of Binary Complexes of Mono and Polynucleotides with Metal Ions of the First Transition Group. Chem. Rev. 1980;80:365–401. doi: 10.1021/cr60327a001. [DOI] [Google Scholar]
  • 124.Bryan S.E., Vizard D.L., Beary D.A., LaBiche R.A., Hardy K.J. Partitioning of Zinc and Copper Within Subnuclear Nucleoprotein Particles. Nucl. Acids Res. 1981;9:5811–5823. doi: 10.1093/nar/9.21.5811. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 125.Halliwell B., Aruoma O.I. DNA and Free Radicals. London: Ellis Horwood; 1993. [Google Scholar]
  • 126.Aruoma O.I., Halliwell B., Dizdaroglu M. Iron Ion Dependent Modification of Bases in DNA by the Superoxide Radical Generating System Hypoxanthine/Xanthine Oxidase. J. Biol. Chem. 1989;264:20509–20512. [PubMed] [Google Scholar]
  • 127.Dizdaroglu M. Chemical Determination of Free Radical Induced Damage to DNA. Free Radical Biol. Med. 1991;10:225–242. doi: 10.1016/0891-5849(91)90080-M. [DOI] [PubMed] [Google Scholar]
  • 128.Spencer J.P.E., Jenner A., Aruoma O.I., Evans P.J., Kaur H., Dexter D.T., Jenner P., Lees A.J., Marsden DC., Halliwell B. Intense Oxidative DNA Damage Promoted by l-DOPA and Its Metabolites. Implications for Neurodegenerative Disease. FEBS Lett. 1994;353:246–250. doi: 10.1016/0014-5793(94)01056-0. [DOI] [PubMed] [Google Scholar]
  • 129.Collins A.R., Duthie S.J., Dobson V.L. Direct Enzymic Detection of Endogenous Oxidative Base Damage in Human Lymphocyte DNA. Carcinogenesis. 1993;14:1733–1735. doi: 10.1093/carcin/14.9.1733. [DOI] [PubMed] [Google Scholar]
  • 130.Herbert K.E., Evans M.D., Finnegan M.T.V., Farooq S., Mistry N., Podmore I.D., Farmer P., Lunec J. A Novel HPLC Procedure for the Analysis of 8-Oxoguanine in DNA. Free Radical Biol. Med. 1996;20:467–473. doi: 10.1016/0891-5849(96)02045-X. [DOI] [PubMed] [Google Scholar]
  • 131.Shigenaga M.K., Gimeno C.J., Ames B.N. Urinary 8-Hydroxy 2′Deoxyguanosine as a Biological Marker of in vivo Oxidative DNA Damage. Proc. Natl. Acad. Sci. USA. 1989;86:9697–9701. doi: 10.1073/pnas.86.24.9697. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 132.Loft S., Fischer-Nielsen A., Jeding I.B. 8-Hydroxydeoxyguanosine as a Urinary Marker of Oxidative DNA Damage. J. Toxicol. Environ. Health. 1993;40:391–404. doi: 10.1080/15287399309531806. [DOI] [PubMed] [Google Scholar]
  • 133.Stillwell W.G., Xu H.X., Adkins J.A., Wishnok J.S., Tannenbaum S.R. Analysis of Methylated and Oxidized Purines in Urine by Capillary Gas Chromatography-Mass Spectrometry. Chem. Res. Tox. 1989;2:94–99. doi: 10.1021/tx00008a004. [DOI] [PubMed] [Google Scholar]
  • 134.Teixeira A.J.R., Gommers-Ampt J.H., van de Werken G., Westra J.G., Stavenviter J.F.C., de Jong A.P.J.M. Method for the Analysis of Oxidized Nucleosides by Gas Chromatography/Mass Spectrometry. Anal. Biochem. 1993;214:474–483. doi: 10.1006/abio.1993.1525. [DOI] [PubMed] [Google Scholar]
  • 135.Sakumi K., Furuichi M., Tsuzuki T., Kakuma T., Kawabata S., Maki H., Sekiguchi M. Cloning and Expression of cDNA for a Human Enzyme That Hydrolyzes 8-Oxo-dGTP, a Mutagenic Substrate for DNA Synthesis. J. Biol. Chem. 1993;268:23524–23530. [PubMed] [Google Scholar]
  • 136.Mo J.Y., Maki H., Sekiguchi M. Hydrolytic Elimination of a Mutagenic Nucleotide, 8-OxodGTP, by Human 18-Kilodalton Protein; Sanitization of Nucleotide Pool. Proc. Natl. Acad. Sci. USA. 1992;89:11021–11025. doi: 10.1073/pnas.89.22.11021. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 137.Halliwell B., Aruoma O.I. Free Radicals and Antioxidants: The Need for in vivo Markers of Oxidative Stress. In: Aruoma O.I., Cuppett S., editors. Antioxidant Methodology: In Vivo and In Vitro Concepts. Champaign: AOCS Press; 1997. [Google Scholar]
  • 138.Goetzl E.J., Woods J.M., Gorman R.R. Stimulation of Human Eosinophil and Neutrophil Polymorphonuclear Leukocyte Chemotaxis and Random Migration by 12-l-Hydroxy-5,8,10,14-eicosatetraenoic Acid. J. Clin. Invest. 1977;59:179–183. doi: 10.1172/JCI108617. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 139.O’Flaherty J.T., Nishihira J. 5-Hydroxyeicosatetraenoate Promotes Ca2+ and Protein Kinase Mobilisation in Neutrophils. Biochem. Biophys. Res. Commun. 1987;148:575–581. doi: 10.1016/0006-291X(87)90915-6. [DOI] [PubMed] [Google Scholar]
  • 140.Won J.G., Orth D.N. The Role of Lipoxygenase Metabolite of Arachidonic Acid in the Regulation of Adrenocorticotropin Secretion by Perfused Rat Anterior Pituitary Cells. Endocrinology. 1994;135:1496–1503. doi: 10.1210/en.135.4.1496. [DOI] [PubMed] [Google Scholar]
  • 141.Joulain C., Meskini N., Anker G., Lagarde M., Prigent A.F. Esterification of 12(S)-Hydroxy-5,8,10,14-eicosatetraenoic Acid into the Phospholipids of Human Peripheral Blood Mononuclear Cells: Inhibition of the Proliferative Response. J. Cell. Physiol. 1995;164:154–163. doi: 10.1002/jcp.1041640120. [DOI] [PubMed] [Google Scholar]
  • 142.Bourdeau A., Mourahir M., Souberbielle J.C., Bonnet P., Herviaux P., Sachs C., Lieberherr M. Effects of Lipoxygenase Products of Arachidonate Metabolism on Parathyroid Hormone Secretion. Endocrinology. 1994;135:1109–1112. doi: 10.1210/en.135.3.1109. [DOI] [PubMed] [Google Scholar]
  • 143.Takata S., Papayianni A., Matsubara M., Jimenez W., Pronovost P.H., Brady H.R. 15-Hydroxyeicosatetraenoic Acid Inhibits Neutrophil Migration Across Cytokine-Activated Endothelium. Am. J. Pathol. 1994;145:541–549. [PMC free article] [PubMed] [Google Scholar]
  • 144.Noourooz-Zadeh J., Gopaul N.K., Barrow S., Mallet A.I., Anggärd E.E. Analysis of F2-Isoprostanes as Indicators of Non-enzymatic Lipid Peroxidation in vivo by Gas Chromatography-Mass Spectrometry: Development of a Solid-Phase Extraction Procedure. J. Chromatogr. 1995;B667:199–208. doi: 10.1016/0378-4347(95)00035-h. [DOI] [PubMed] [Google Scholar]
  • 145.Guido G.M., McKenna R., Matthews W.R. Quantitation of Hydroperoxy-Eicosatetraenoic Acids and Hydroxy-Eicosatetraenoic Acids as Indicators of Lipid Peroxidation Using Gas Chromatography-Mass Spectrometry. Anal. Biochem. 1993;209:123–129. doi: 10.1006/abio.1993.1091. [DOI] [PubMed] [Google Scholar]
  • 146.Morrow J.D., Awad J.A., Kato T., Takahashi K., Badr K.F., Roberts L.J., Burk R.F. Formation of Novel Non-cyclooxygenase Derived Prostanoids (F2-isoprostanes) in Carbontetrachloride Hepatotoxicity: An Animal Model of Lipid Peroxidation. J. Clin. Invest. 1992;90:2502–2507. doi: 10.1172/JCI116143. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 147.Bachi A., Zuccato E., Beraldi M., Faneli R., Chiabrando C. Measurement of Urinary 8-Epi-prostaglandin F2α, A Novel Index of Lipid Peroxidation in vivo, by Immunoaffinity Extraction/Gas Chromatography-Mass Spectrometry. Basal Levels in Smokers and Nonsmokers. Free Radical Biol. Med. 1996;20:619–624. doi: 10.1016/0891-5849(95)02087-X. [DOI] [PubMed] [Google Scholar]
  • 148.Morrow J.D., Minton T.A., Mukundan C.R., Campbell M.D., Zackert W.E., Daniel V.C., Badr K.F., Badr I.A., Roberts L.J. Free Radical-Induced Generation of Isoprostanes in vivo. Evidence for the Formation of D-Ring and E-Ring Isoprostanes. J. Biol. Chem. 1994;269:4317–4326. [PubMed] [Google Scholar]
  • 149.Halliwell B. Oxidative Stress, Nutrition and Health. Experimental Stratgegies for Optimization of Nutritional Antioxidant Intake in Humans. Free Radical Res. 1996;25:57–74. doi: 10.3109/10715769609145656. [DOI] [PubMed] [Google Scholar]
  • 150.Halliwell B. Biochemical Mechanisms Accounting for the Toxic Action of Oxygen on Living Organisms. The Key Role of Superoxide Dismutase. Cell Biol. Int. Rep. 1978;2:113–118. doi: 10.1016/0309-1651(78)90032-2. [DOI] [PubMed] [Google Scholar]
  • 151.Ramotar D., Demple B. Enzymes That Repair Oxidative Damage to DNA. In: Halliwell B., Aruoma O.I., editors. DNA and Free Radicals. London: Ellis Horwood; 1993. pp. 166–191. [Google Scholar]
  • 152.Dean R.T., Hunt J.V., Grant A.J., Yamamoto Y., Niki E. Free Radical Damage to Proteins: The Influence of the Relative Localization of Radical Generation, Antioxidants and Target Proteins. Free Radical Biol. Med. 1991;11:161–168. doi: 10.1016/0891-5849(91)90167-2. [DOI] [PubMed] [Google Scholar]
  • 153.Wells-Knecht M.C., Huggins T.G., Dyer D.G., Thorpe S.R., Baynes J.W. Oxidized Amino Acids in Lens Proteins with Age. Measurement of o-Tyrosine and Dityrosine in the Aging Human Lens. J. Biol. Chem. 1993;268:12348–12352. [PubMed] [Google Scholar]
  • 154.Reznick A.Z., Packer L. Oxidative Damage to Proteins: Spectrophotometric Method for Carbonyl Assay. Methods Enzymol. 1994;233:357–363. doi: 10.1016/s0076-6879(94)33041-7. [DOI] [PubMed] [Google Scholar]
  • 155.Amici A., Levine R.L., Tsai L., Stadtman E.R. Conversion of Amino Acid Residues in Proteins and Amino Acid Homopolymers to Carbonyl Derivatives by Metal-Catalyzed Oxidation Reactions. J. Biol. Chem. 1989;264:3341–3346. [PubMed] [Google Scholar]
  • 156.Cao G., Cutler R.G. Protein Oxidation and Aging, Difficulties in Measuring Reactive Protein Carbonyls in Tissues Using 2,4-Dinitrophenylhydrazine. Arch. Biochem. Biophys. 1995;320:106–114. doi: 10.1006/abbi.1995.1347. [DOI] [PubMed] [Google Scholar]
  • 157.Lyras L., Shaw P.J., Evans P.J., Halliwell B. Oxidative Damage and Motor Neurone Disease. Difficulties in the Measurement of Protein Carbonyls in Human Brain Tissue. Free Radical Res. 1996;24:397–406. doi: 10.3109/10715769609088038. [DOI] [PubMed] [Google Scholar]
  • 158.Levine R.L., Williams J.A., Stadtman E.R., Shacter E. Carbonyl Assays for Determination of Oxidatively Modified Proteins. Methods Enzymol. 1994;233:346–357. doi: 10.1016/S0076-6879(94)33040-9. [DOI] [PubMed] [Google Scholar]
  • 159.Keller J., Halmes N.C., Hinson J.A., Pumford N.R. Immunochemical Detection of Oxidized Proteins. Chem. Res. Toxicol. 1993;6:430–433. doi: 10.1021/tx00034a007. [DOI] [PubMed] [Google Scholar]
  • 160.Oliver C.N., Ahn B.A., Moerman E.J., Goldstein S., Stadman E.R. Age-Related Changes in Oxidized Proteins. J. Biol. Chem. 1987;262:5488–5491. [PubMed] [Google Scholar]
  • 161.Ambe K.S., Tappel A.L. Oxidative Damage to Amino Acids, Peptides and Proteins by Radiation. J. Food Sci. 1962;26:448–451. doi: 10.1111/j.1365-2621.1961.tb00387.x. [DOI] [Google Scholar]
  • 162.Dean R.T., Fu S., Stocker R., Davies M.J. Biochemistry and Pathology of Radical Mediated Protein Oxidation. Biochem. J. 1997;324:1–18. doi: 10.1042/bj3240001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 163.Fu S., S., Dean R.T., Davies M.J. Molecular Aspects of Free Radical Damage to Proteins. In: Aruoma O.I., Halliwell B., editors. Molecular Biology of Free Radicals in Human Diseases. Saint Lucia: OICA International; 1998. pp. 29–56. [Google Scholar]
  • 164.Aruoma O.I. Extracts as Antioxidant Prophylactic Agents. INFORM. 1997;8:1236–1242. [Google Scholar]

Articles from Journal of the American Oil Chemists' Society are provided here courtesy of Nature Publishing Group

RESOURCES