Skip to main content
Springer Nature - PMC COVID-19 Collection logoLink to Springer Nature - PMC COVID-19 Collection
. 1999;1(2):99–112. doi: 10.1007/BF03033274

Nutritional regulation of glutathione in stroke

Phyllis G Paterson 1,2,, Bernhard H J Juurlink 3,2,
PMCID: PMC7101719  PMID: 12835106

Abstract

In contrast to cardiovascular disease, the impact of nutritional status on the prevention and outcome of stroke has received limited investigation. We present a mechanism based on animal studies, clinical data, and epidemiological data by which protein-energy status in the acute stroke and immediate postinjury periods may affect outcome by regulating glutathione (GSH), a key component of antioxidant defense. As cysteine is the limiting amino acid for GSH synthesis, the GSH concentration of a number of nonneural tissues has been shown to be decreased by fasting, low-protein diets, or diets limiting in sulfur amino acids. The mechanism may also be relevant in brain since GSH in some brain regions is responsive to dietary sulfur amino acid supply and to the pro-cysteine drug, L-2-oxothiazolidine-4-carboxylate. The latter is an intracellular cysteine delivery system used to overcome the toxicity associated with cysteine supplementation. These findings may provide the mechanism to explain both the inverse correlation between dietary protein and stroke mortality and the documented association between suboptimal protein-energy status and diminished functional status following a stroke. Future investigations should examine the role of nutritional intervention in neuroprotective strategies aimed at improving stroke outcome. Pharmacological interventions such as L-2-oxothiazolidine-4-carboxylate should be investigated in animal models of stroke, as well as the impact of nutritional status on the response to these agents. Finally, micronutrient deficiencies that may accompany protein-energy malnutrition, such as selenium, should also be investigated for their role in antioxidant defense in cerebral ischemia.

Keywords: Glutathione, Glutathione peroxidase, L-2-oxothiazolidine-4-carboxylate, Stroke, Cerebral ischemia, Protein-calorie malnutrition, Elderly

Reference

  1. Abbasi A.A., Rudman D. Undernutrition in the nursing home: Prevalence, consequences, causes and prevention. Nutr. Rev. 1994;52:113–122. doi: 10.1111/j.1753-4887.1994.tb01403.x. [DOI] [PubMed] [Google Scholar]
  2. Anderson M.E., Meister A. Intracellular delivery of cysteine. Meth. Enzymol. 1987;143:313–325. doi: 10.1016/0076-6879(87)43059-0. [DOI] [PubMed] [Google Scholar]
  3. Anderson M.E., Meister A. Marked increase of cysteine levels in many regions of the brain after administration of L-2-oxothiazolidine-4-carboxylate. FASEB J. 1989;3:1632–1636. doi: 10.1096/fasebj.3.5.2920877. [DOI] [PubMed] [Google Scholar]
  4. Anderson M.E., Powrie E, Puri R.N., Meister A. Glutathione monoethyl ester: Preparation, uptake by tissues, and conversion to glutathione. Arch. Biochem. Biophys. 1985;239:538–548. doi: 10.1016/0003-9861(85)90723-4. [DOI] [PubMed] [Google Scholar]
  5. Axelsson K., Asplund K., Norberg A., Alafuzoff I. Nutritional status in patients with acute stroke. Acta Med. Scand. 1988;224:217–224. doi: 10.1111/j.0954-6820.1988.tb19364.x. [DOI] [PubMed] [Google Scholar]
  6. Barditch-Crovo P., Noe D., Skowron G., Lederman M., Kalayjian R.C., Borun P., Buier R., Rowe W.B., Goldberg D., Lietman P. A phase I/II evaluation of oral L-2-oxothiazolidine-4-carboxylic acid in asymptomatic patients infected with human immunodeficiency virus. J. Clin. Pharmacol. 1998;38:357–363. doi: 10.1002/j.1552-4604.1998.tb04435.x. [DOI] [PubMed] [Google Scholar]
  7. Bauman P.F., Smith T.K., Bray T.M. The effect of dietary protein and sulfur amino acids on hepatic glutathione concentration and glutathione-dependent enzyme activities in the rat. Can. J. Physiol. Pharmacol. 1988;66:1048–1052. doi: 10.1139/y88-171. [DOI] [PubMed] [Google Scholar]
  8. Bauman P.F., Smith T.K., Bray T.M. Effect of dietary protein deficiency and L-2-oxothiazolidine-4-carboxylate on the diurnal rhythm of hepatic glutathione in the rat. J. Nutr. 1988;118:1048–1054. doi: 10.1093/jn/118.8.1048. [DOI] [PubMed] [Google Scholar]
  9. Beckett G.J., MacDougall D.A., Nicol F., Arthur J.R. Inhibition of type I and type II iodothyronine deiodinase activity in rat liver, kidney and brain produced by selenium deficiency. Biochem. J. 1989;259:887–892. doi: 10.1042/bj2590887. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Behne D., Hilmert H., Scheid S., Gessner H., Elger W. Evidence for specific selenium target tissues and new biologically important selenoproteins. Biochem. Biophys. Acta. 1988;966:12–21. doi: 10.1016/0304-4165(88)90123-7. [DOI] [PubMed] [Google Scholar]
  11. Behne D., Wolters W. Distribution of selenium and glutathione peroxidase in the rat. J. Nutr. 1983;113:456–461. doi: 10.1093/jn/113.2.456. [DOI] [PubMed] [Google Scholar]
  12. Benuck M., Banay-Schwartz M., DeGuzman T., Lajtha A. Effect of food deprivation on glutathione and amino acid levels in brain and liver of young and aged rats. Brain Res. 1995;678:259–264. doi: 10.1016/0006-8993(95)00204-4. [DOI] [PubMed] [Google Scholar]
  13. Bermano G., Nicol E, Dyer J.A., Sunde R.A., Beckett G.J., Arthur J.R., Hesketh J.E. Tissue-specific regulation of selenoenzyme gene expression during selenium deficiency in rats. Biochem. J. 1995;311:425–430. doi: 10.1042/bj3110425. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Bernard G.R., Wheeler A.P., Arons M.M., Morris P.E., Paz H.L., Russell J.A., Wright RE., The Antioxidant in ARDS Study Group A trial of antioxidants N-acetylcysteine and procysteine in ARDS. Chest. 1997;112:164–172. doi: 10.1378/chest.112.1.164. [DOI] [PubMed] [Google Scholar]
  15. Beutler E. Nutritional and metabolic aspects of glutathione. Annu. Rev. Nutr. 1989;9:287–302. doi: 10.1146/annurev.nu.09.070189.001443. [DOI] [PubMed] [Google Scholar]
  16. Bray T.M., Taylor C.G. Tissue glutathione, nutrition, and oxidative stress. Can. J. Physiol. Pharmacol. 1993;71:746–751. doi: 10.1139/y93-111. [DOI] [PubMed] [Google Scholar]
  17. Bray T.M., Taylor C.G. Enhancement of tissue glutathione for antioxidant and immune functions in malnutrition. Biochem. Pharmacol. 1994;47:2113–2123. doi: 10.1016/0006-2952(94)90246-1. [DOI] [PubMed] [Google Scholar]
  18. Buckman T.D., Sutphin M.S., Eckhert CD. A comparison of the effects of dietary selenium on selenoprotein expression in rat brain and liver. Biochim. Biophys. Acta. 1993;1163:176–183. doi: 10.1016/0167-4838(93)90179-u. [DOI] [PubMed] [Google Scholar]
  19. Burk, R.F. and Hill, K.E. (1993) Regulation of selenoproteins.Annu. Rev. Nutr., 65–81. [DOI] [PubMed]
  20. Burk R.F., Hill K.E., Awad J.A., Morrow J.D., Lyons P.R. Liver and kidney necrosis in selenium-deficient rats depleted of glutathione. Lab. Invest. 1995;72:723–730. [PubMed] [Google Scholar]
  21. Castafio A., Cano J., Machado A. Low selenium diet affects monoamine turnover differentially in substantia nigra and striatum. J. Neurochem. 1993;61:1302–1307. doi: 10.1111/j.1471-4159.1993.tb13622.x. [DOI] [PubMed] [Google Scholar]
  22. Chan P.H. Oxygen radicals in focal cerebral ischemia. Brain Pathol. 1994;4:59–65. doi: 10.1111/j.1750-3639.1994.tb00811.x. [DOI] [PubMed] [Google Scholar]
  23. Chen T.S., Ritchie J.P., Lang C.A. The effect of aging on glutathione and cysteine levels in different regions of the mouse brain. Proc. Soc. Exp. Biol. Med. 1989;190:399–402. doi: 10.3181/00379727-190-42879. [DOI] [PubMed] [Google Scholar]
  24. Choi-Kwan S., Yang Y.H., Kim E.K., Jeon M.Y., Kim J.S. Nutritional status in acute stroke: Undernutrition versus overnutrition in different stroke subtypes. Acta Neurol. Scand. 1998;98:187–192. doi: 10.1111/j.1600-0404.1998.tb07292.x. [DOI] [PubMed] [Google Scholar]
  25. Chung T.K., Funk M.A., Baker D.H. L-2-oxothia-zolidine-4-carboxylate as a cysteine precursor: Efficacy for growth and hepatic glutathione synthesis in chicks and rats. J. Nutr. 1990;120:158–165. doi: 10.1093/jn/120.2.158. [DOI] [PubMed] [Google Scholar]
  26. Constans T., Bacq Y, Brechot J.-E, Guilmot J.-L., Choutet P., Lamisse F. Protein-energy malnutrition in elderly medical patients. J. Amer. Geriatr. Soc. 1992;40:263–268. doi: 10.1111/j.1532-5415.1992.tb02080.x. [DOI] [PubMed] [Google Scholar]
  27. Cooper A.J.L., Meister A. Glutathione in the brain: Disorders of glutathione metabolism. In: Rosenberg R.N., Prusiner S.B., Di Mauro S., Barchi R.L., Kunkel L.M., editors. The Molecular and Genetic Basis of Neurological Disease. Boston: Butterworth-Heinemann; 1993. pp. 209–238. [Google Scholar]
  28. Cooper A.J.L., Pulsinelli WA., Duffy T.E. Glutathione and ascorbate during ischemia and postischemic reperfusion in rat brain. J. Neurochem. 1980;35:1242–1245. doi: 10.1111/j.1471-4159.1980.tb07882.x. [DOI] [PubMed] [Google Scholar]
  29. Davalos A., Ricart W., Gonzalez-Huix E, Soler S., Marrugat J., Molins A., Suher R., Genis D. Effect of malnutrition after acute stroke on clinical outcome. Stroke. 1996;27:1028–1032. doi: 10.1161/01.str.27.6.1028. [DOI] [PubMed] [Google Scholar]
  30. Dawson D.A., Masayasu H., Graham D.I., Macrae I.M. The neuroprotective efficacy of ebselen (a glutathione peroxidase mimic) on brain damage induced by transient focal cerebral ischaemia in the rat. Neurosci. Lett. 1995;185:65–69. doi: 10.1016/0304-3940(94)11226-9. [DOI] [PubMed] [Google Scholar]
  31. De Mattia G., Bravi M.C., Laurenti O., Cassone-Faldetta M., Proietti A., De Luca O., Armiento A., Ferri C. Reduction of oxidative stress by oral N-acetyl-L-cysteine treatment decreases plasma soluble vascular cell adhesion molecule-1 concentrations in non-obese, non-dyslipidae-mic, normotensive, patients with non-insulin-dependent diabetes. Diabetologia. 1998;41:1392–1396. doi: 10.1007/s001250051082. [DOI] [PubMed] [Google Scholar]
  32. DiMari J., Megyesi J., Udvarhelyi N., Price P., Davis R., Safirstein R. N-acetylcysteine ameliorates ischemic renal failure. Am. J. Physiol. 1997;272:F292–F298. doi: 10.1152/ajprenal.1997.272.3.F292. [DOI] [PubMed] [Google Scholar]
  33. Eftekharpour E., Juurlink B.H.J., Mirault M.-E. Glutathione peroxidase protein level correlates with enzymatic activities in different neural cells. Soc. Neurosci. Abstr. 1998;24:1233–1233. [Google Scholar]
  34. Finestone H.M., Greene-Finestone L.S., Wilson E.S., Teasell R.W. Malnutrition in stroke patients on the rehabilitation service and at follow-up: Prevalence and predictors. Arch. Phys. Med. Rehabil. 1995;76:310–316. doi: 10.1016/s0003-9993(95)80655-5. [DOI] [PubMed] [Google Scholar]
  35. Forceville X., Vitoux D., Gauzit R., Combes A., Lahilaire P., Chappuis P. Selenium, systemic immune response syndrome, sepsis, and outcome in critically ill patients. Crit. Care Med. 1998;26:1536–1544. doi: 10.1097/00003246-199809000-00021. [DOI] [PubMed] [Google Scholar]
  36. Gariballa S.E., Parker S.G., Taub N., Castleden M. Nutritional status of hospitalized acute stroke patients. Br. Nutr. 1998;79:481–487. doi: 10.1079/bjn19980085. [DOI] [PubMed] [Google Scholar]
  37. Ghribi O., Lahsaini A., Furling D., Lapierre L., Mirault M.-E., Massicotte G. Impairment of synaptic transmission by transient hypoxia in hippocampal slices: Improved recovery in glutathione peroxidase transgenic mice. Soc. Neurosci. Abstr. 1998;24:1953–1953. doi: 10.1073/pnas.060574597. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Gibson R.S. Principles of Nutritional Assessment. New York: Oxford University Press; 1990. [Google Scholar]
  39. Gillum R.F., Ingram D.D., Makuc D.M. Relation between serum albumin concentration and stroke incidence and death: The NHANESI Epidemiologic Follow-up Study. Am. J. Epidemiol. 1994;140:876–888. doi: 10.1093/oxfordjournals.aje.a117176. [DOI] [PubMed] [Google Scholar]
  40. Gotoh O., Yamamoto M., Tamura A., Sano K. Effect of YM737, a new glutathione analogue, on ischemic brain edema. Acta Neurochir. Suppl. Wein. 1994;60:318–320. doi: 10.1007/978-3-7091-9334-1_85. [DOI] [PubMed] [Google Scholar]
  41. Grace PA. Ischaemia-reperfusion injury. Br. J. Surg. 1994;81:637–647. doi: 10.1002/bjs.1800810504. [DOI] [PubMed] [Google Scholar]
  42. Gutteridge J.M.C., Halliwell B. Reoxygenation injury and antioxidant protection: A tale of two paradoxes. Arch. Biochem. Biophys. 1990;283:223–226. doi: 10.1016/0003-9861(90)90635-c. [DOI] [PubMed] [Google Scholar]
  43. Hall E.D. Cerebral ischemia, free radicals and antioxidant protection. Biochem. Soc. Trans. 1993;21:334–339. doi: 10.1042/bst0210334. [DOI] [PubMed] [Google Scholar]
  44. Halliwell B. Free radicals and antioxidants: A personal view. Nutr. Rev. 1994;52:253–265. doi: 10.1111/j.1753-4887.1994.tb01453.x. [DOI] [PubMed] [Google Scholar]
  45. Halliwell B. Antioxidants in human health and disease. Annu. Rev. Nutr. 1996;16:33–50. doi: 10.1146/annurev.nu.16.070196.000341. [DOI] [PubMed] [Google Scholar]
  46. Halliwell B., Cross C.E. Oxygen-derived species: Their relation to human disease and environmental stress. Environ. Health Perspect. 1994;102S:5–12. doi: 10.1289/ehp.94102s105. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Halliwell B., Gutteridge J.M.C. Role of free radicals and catalytic metal ions in human disease: An overview. Meth. Enzymol. 1990;186:1–85. doi: 10.1016/0076-6879(90)86093-b. [DOI] [PubMed] [Google Scholar]
  48. Hazelton G.A., Hjelle J.J., Klaassen CD. Effects of cysteine pro-d rugs on acetaminophen-induced hepatotoxic-ity. J. Pharmacol. Exp. Ther. 1986;237:341–349. [PubMed] [Google Scholar]
  49. Hill K.E., Burk R.F. Effect of selenium deficiency and vitamin E deficiency on glutathione metabolism in isolated rat hepatocytes. J. Biol. Chem. 1982;257:10668–10672. [PubMed] [Google Scholar]
  50. Hill K.E., Burk R.F. Effect of selenium deficiency on the predisposition of plasma glutathione. Arch. Biochem. Biophys. 1985;240:166–171. doi: 10.1016/0003-9861(85)90019-0. [DOI] [PubMed] [Google Scholar]
  51. Hoshida S., Aoki K., Nishida M., Yamashita N., Igarashi J., Hori M., Kuzuya T., Tada M. Effects of preconditioning with ebselen on glutathione metabolism and stress protein expression. J. Pharmacol. Exp. Ther. 1997;281:1471–1475. [PubMed] [Google Scholar]
  52. Hum S., Koski K.G., Hoffer L.J. Varied protein intake alters glutathione metabolism in rats. J. Nutr. 1992;122:2010–2018. doi: 10.1093/jn/122.10.2010. [DOI] [PubMed] [Google Scholar]
  53. Hunter E.A.L., Grimble R.F. Dietary sulfur amino acid adequacy influences glutathione synthesis and glutathione-dependent enzymes during the inflammatory response to endotoxin and tumour necrosis-α in rats. Clin. Sci. 1997;92:297–305. doi: 10.1042/cs0920297. [DOI] [PubMed] [Google Scholar]
  54. Jain A., Madsen D.C., Auld P.A.M., Frayer W.W., Schwartz M.K., Meister A., Martensson J. L-2-oxothiazolidine-4-carboxylate, a cysteine precursor, stimulates growth and normalizes tissue glutathione concentrations in rats fed a sulfur amino acid-deficient diet. J. Nutr. 1995;125:851–856. doi: 10.1093/jn/125.4.851. [DOI] [PubMed] [Google Scholar]
  55. Johshita H., Sasaki T., Matsui T., Hanamura T., Masayasu H., Asano T., Takakura K. Effects of ebselen (PZ51) on ischaemic brain oedema after focal ischaemia in cats. Acta Neurochir. Suppl. 1990;51:239–241. doi: 10.1007/978-3-7091-9115-6_80. [DOI] [PubMed] [Google Scholar]
  56. Juurlink B.H.J. Central role of glutathione in governing the response of astroglial and oligodendroglial cells to ischemia-related insults. Recent Res. Devel. Neurochem. 1996;1:179–192. [Google Scholar]
  57. Juurlink B.H.J. Response of glial cells to ischemia: Roles of reactive oxygen species and glutathione. Neurosci. Biobehav. Rev. 1997;21:151–166. doi: 10.1016/s0149-7634(96)00005-x. [DOI] [PubMed] [Google Scholar]
  58. Juurlink, B.H.J. (1999) Management of oxidative stress in the CNS: The many roles of reduced-glutathione.Neurotox. Res. [DOI] [PubMed]
  59. Juurlink B.H.J., Paterson P.G. Review of oxidative stress in brain and spinal cord injury: Suggestions for pharmacological and nutritional management strategies. J. Spinal Cord Med. 1998;21:309–334. doi: 10.1080/10790268.1998.11719540. [DOI] [PubMed] [Google Scholar]
  60. Juurlink B.H.J, Sweeney M.I. Mechanisms that result in damage during and following cerebral ischemia. Neurosci. Biobehav. Rev. 1997;21:121–128. doi: 10.1016/s0149-7634(96)00001-2. [DOI] [PubMed] [Google Scholar]
  61. Kagan A., Popper J.S., Rhoads G.G., Yano K. Dietary and other risk factors for stroke in Hawaiian Japanese men. Stroke. 1985;16:390–396. doi: 10.1161/01.str.16.3.390. [DOI] [PubMed] [Google Scholar]
  62. Kalayjian R.C., Skowron G., Emgushov R.-T., Chance M., Spell S.A., Borum PR., Webb L.S., Mayer K.H., Jackson L.B., Yen-Lieberman B., Story K.O., Rowe W.B., Thompson K., Goldberg D., Trimbo S., Lederman M.M. A phase I/II trial of intravenous L-2-oxothiazolidine-4-carboxylic acid (Procysteine) in asymptomatic HIV-infected subjects. J. Acquir. Immune Defic. Syndr. 1994;7:369–374. [PubMed] [Google Scholar]
  63. Khaw K.-T., Barrett-Connor E. Dietary potassium and stroke-associated mortality. A 12-year prospective population study. N. Engl. J. Med. 1987;316:235–240. doi: 10.1056/NEJM198701293160502. [DOI] [PubMed] [Google Scholar]
  64. Klag M.J., Whelton P.K. The decline in stroke mortality. An epidemiologic perspective. Ann. Epidemiol. 1993;3:571–575. doi: 10.1016/1047-2797(93)90119-o. [DOI] [PubMed] [Google Scholar]
  65. Knight S.A.B., Sunde R.A. The effect of progressive selenium deficiency on anti-glutathione peroxidase antibody reactive protein in rat liver. J. Nutr. 1987;117:732–738. doi: 10.1093/jn/117.4.732. [DOI] [PubMed] [Google Scholar]
  66. Knuckey N.W., Palm D., Primiano M., Epstein M.H., Johanson C.E. N-acetylcysteine enhances hippocampal neuronal survival after transient forebrain ischemia in rats. Stroke. 1995;26:305–311. doi: 10.1161/01.str.26.2.305. [DOI] [PubMed] [Google Scholar]
  67. Kodama K. Stroke trends in Japan. Ann. Epidemiol. 1993;3:524–528. doi: 10.1016/1047-2797(93)90109-h. [DOI] [PubMed] [Google Scholar]
  68. Lapidus L., Andersson H., Bengtsson C., Bosaeus I. Dietary habits in relation to incidence of cardiovascular disease and death in women: A 12-year follow-up of participants in the population study of women in Gothenburg, Sweden. Am. J. Clin. Nutr. 1986;44:444–448. doi: 10.1093/ajcn/44.4.444. [DOI] [PubMed] [Google Scholar]
  69. Lawrence R.A., Sunde R.A., Schwartz G.L., Hoekstra W.G. Glutathione peroxidase activity in rat lens and other tissues in relation to dietary selenium intake. Exp. Eye Res. 1974;18:563–569. doi: 10.1016/0014-4835(74)90062-1. [DOI] [PubMed] [Google Scholar]
  70. Lee C.N., Reed D.M., MacLean C.J., Yano K., Chiu D. Dietary potassium and stroke (letter) New Engl. J. Med. 1988;318:995–996. doi: 10.1056/NEJM198804143181516. [DOI] [PubMed] [Google Scholar]
  71. Lei X.G., Evenson J.K., Thompson K.M., Sunde R.A. Glutathione peroxidase and phospholipid hydroperoxide glutathione peroxidase are differentially regulated in rats by dietary selenium. J. Nutr. 1995;125:1438–1446. doi: 10.1093/jn/125.6.1438. [DOI] [PubMed] [Google Scholar]
  72. Lesourd B. Protein undernutrition as the major cause of decreased immune function in the elderly: Clinical and functional implications. Nutr. Rev. 1995;53:S86–S94. doi: 10.1111/j.1753-4887.1995.tb01523.x. [DOI] [PubMed] [Google Scholar]
  73. Levy M.A., Sikorski B., Bray T.M. Selective elevation of glutathione levels in target tissues with L-2-oxothiazolidine-4-carboxylate (OTC) protects against hyperoxia-induced lung damage in protein-energy malnourished rats: Implications for a new treatment strategy. J. Nutr. 1998;128:671–676. doi: 10.1093/jn/128.4.671. [DOI] [PubMed] [Google Scholar]
  74. Li J., Stoner G., Bray T. The efficacy of cysteine prodrugs in selective enhancement of tissue glutathione (GSH) in CD-I mice (abstract) Free Rad. Biol. Med. 1998;25:S34–S34. [Google Scholar]
  75. Lipschitz D.A. Malnutrition in the elderly. Sem. Dermatol. 1991;10:273–281. [PubMed] [Google Scholar]
  76. Liithen R., Grendell J.H., Haussinger D., Niederau C. Beneficial effects of L-2-oxothiazolidine-4-carboxy-late on cerulein pancreatitis in mice. Gastroenterology. 1997;112:1681–1691. doi: 10.1016/s0016-5085(97)70051-9. [DOI] [PubMed] [Google Scholar]
  77. Marcus E.-L., Berry E.M. Refusal to eat in the elderly. Nutr. Rev. 1998;56:163–171. doi: 10.1111/j.1753-4887.1998.tb06130.x. [DOI] [PubMed] [Google Scholar]
  78. Mayo N.E. Epidemiology and recovery. Physical Medicine and Rehabilitation: State of the Art Reviews. 1993;7:1–25. [Google Scholar]
  79. Meister A., Anderson M.E., Hwang O. Intracellular cysteine and glutathione delivery systems. J. Amer. Coll. Nutr. 1986;5:137–151. doi: 10.1080/07315724.1986.10720121. [DOI] [PubMed] [Google Scholar]
  80. Mesina J.E., Page R.H., Hetzel F.W., Chopp M. Administration of L-2-oxothiazolidine-4-carboxylate increases glutathione levels in rat brain. Brain Res. 1989;478:181–183. doi: 10.1016/0006-8993(89)91494-7. [DOI] [PubMed] [Google Scholar]
  81. Mizui T, Kinouchi H., Chan P.H. Depletion of brain glutathione by buthionine sulfoximine enhances cerebral ischemic injury in rats. Am. J. Physiol. 1992;262:H313–H317. doi: 10.1152/ajpheart.1992.262.2.H313. [DOI] [PubMed] [Google Scholar]
  82. Mowè M., Bohmer T. The prevalence of undiagnosed protein-calorie undernutrition in a population of hospitalized elderly patients. J. Am. Geriatr. Soc. 1991;39:1089–1092. doi: 10.1111/j.1532-5415.1991.tb02874.x. [DOI] [PubMed] [Google Scholar]
  83. Muhlethaler R., Stuck A.E., Minder C.E., Frey B.M. The prognostic significance of protein-energy malnutrition in geriatric patients. Age Ageing. 1995;24:193–197. doi: 10.1093/ageing/24.3.193. [DOI] [PubMed] [Google Scholar]
  84. Nakano H., Boudjema K., Alexandre E., Imbs P., Chenard M.P., Wolf P., Cinqualbre J., Jaeck D. Protective effects of N-acetylcysteine on hypothermic ischemia-reperfusion injury of rat liver. Hepatology. 1995;22:539–545. [PubMed] [Google Scholar]
  85. Noguchi K., Higuchi S., Matsui H. Effects of glutathione isopropyl ester on glutathione concentration in ischemic rat brain. Res. Comm. Chem. Path. Pharmacol. 1989;64:165–168. [PubMed] [Google Scholar]
  86. Omura T., Hisamatsu S., Takizawa Y, Minowa M., Yanagawa H., Shigematsu I. Geographical distribution of cerebrovascular disease mortality and food intakes in Japan. Soc. Sci. Med. 1987;24:401–407. doi: 10.1016/0277-9536(87)90212-7. [DOI] [PubMed] [Google Scholar]
  87. Paterson P.G. INABIS’98 — 5th Internet World Congress on Biomedical Sciences (Available at URL http://www.mcmaster.ca/ inabis98/) Canada: McMaster University; 1998. Nutritional regulation of peroxide scavenging. [Google Scholar]
  88. Paterson P.G., Juurlink B.H.J., Lyon A.W. Regulation of brain glutathione concentration by dietary sulfur amino acids. Soc. Neurosci. Abst. 1998;24:1167–1167. [Google Scholar]
  89. Petrasovits A., Nair C. Epidemiology of stroke in Canada. Health Reports. 1994;6:39–44. [PubMed] [Google Scholar]
  90. Pileblad E., Magnusson T. Increase in rat brain glutathione following intracerebroventricular administration of 7-glutamylcysteine. Biochemical Pharmacology. 1992;44:895–903. doi: 10.1016/0006-2952(92)90121-x. [DOI] [PubMed] [Google Scholar]
  91. Pohjasvaara T, Erkinjuntti T, Vataja R., Kaste M. Comparison of stroke features and disability in daily life in patients with ischemic stroke aged 55 to 70 and 71 to 85 years. Stroke. 1997;28:729–735. doi: 10.1161/01.str.28.4.729. [DOI] [PubMed] [Google Scholar]
  92. Potter J., Klipstein K., Reilly J.J., Roberts M. The nutritional status and clinical course of acute admissions to a geriatric unit. Age Ageing. 1995;24:131–136. doi: 10.1093/ageing/24.2.131. [DOI] [PubMed] [Google Scholar]
  93. Prohaska J.R., Ganther H.E. Selenium and glutathione peroxidase in developing rat brain. J. Neurochem. 1976;27:1379–1387. doi: 10.1111/j.1471-4159.1976.tb02619.x. [DOI] [PubMed] [Google Scholar]
  94. Radice S., Rossoni G., Oriani G., Michael M., Chiesara E., Berti F. Hyperbaric oxygen worsens myocardial low flow ischemia-reperfusion injury in isolated rat heart. Eur. J. Pharmacol. 1997;320:43–49. doi: 10.1016/s0014-2999(96)00885-0. [DOI] [PubMed] [Google Scholar]
  95. Ravindranath V., Shivakumar B.R., Anandatheerthavar-ada H.K. Low glutathione levels in brain regions of aged rats. Neurosci. Lett. 1989;101:187–190. doi: 10.1016/0304-3940(89)90528-4. [DOI] [PubMed] [Google Scholar]
  96. Reed D.M. The paradox of high risk of stroke in populations with low risk of coronary heart disease. Amer. J. Epidemiol. 1990;131:579–588. doi: 10.1093/oxfordjournals.aje.a115542. [DOI] [PubMed] [Google Scholar]
  97. Rehncrona S., Folbergrova J., Smith D.S., Siesjo B.K. Influence of complete and pronounced incomplete cerebral ischemia and subsequent recirculation on cortical concentrations of oxidized and reduced glutathione in the rat. J. Neurochem. 1980;34:477–486. doi: 10.1111/j.1471-4159.1980.tb11170.x. [DOI] [PubMed] [Google Scholar]
  98. Saito I., Asano T, Sano K., Takakura K., Abe H., Yoshimoto T, Kikuchi H., Ohta T., Ishibashi S. Neuroprotective effect of an antioxidant, ebselen, in patients with delayed neurological deficits after aneurysmal subarachnoid hemorrhage. Neurosurgery. 1998;42:269–278. doi: 10.1097/00006123-199802000-00038. [DOI] [PubMed] [Google Scholar]
  99. Shivakumar B.R., Kolluri S.V.R., Ravindranath V. Glutathione homeostasis in brain during; reperfusion following bilateral carotid artery occlusion in the rat. Mol. Cell. Biochem. 1992;111:125–129. doi: 10.1007/BF00229583. [DOI] [PubMed] [Google Scholar]
  100. Shivakumar B.R., Kolluri S.V.R., Ravindranath V. Glutathione and protein thiol homeostasis in brain during reperfusion after cerebral ischemia. J. Pharmacol. Exp. Ther. 1995;274:1167–1173. [PubMed] [Google Scholar]
  101. Shuaib A., Kanthan R. Amplification of inhibitory mechanisms in cerebral ischemia: An alternative approach to neuronal protection. Histol. Histopathol. 1997;12:185–194. [PubMed] [Google Scholar]
  102. Sullivan D.H., Walls R.C. Impact of nutritional status on morbidity in a population of geriatric rehabilitation patients. J. Am. Geriatr. Soc. 1994;42:471–477. doi: 10.1111/j.1532-5415.1994.tb04966.x. [DOI] [PubMed] [Google Scholar]
  103. Sullivan D.H., Walls R.C., Bopp M.M. Protein-energy undernutrition and the risk of mortality within one year of hospital discharge: A follow-up study. J. Am. Geriatr. Soc. 1995;43:507–512. doi: 10.1111/j.1532-5415.1995.tb06097.x. [DOI] [PubMed] [Google Scholar]
  104. Tabatabaie T., Floyd R.A. Susceptibility of glutathione peroxidase and glutathione reductase to oxidative damage and the protective effect of spin trapping agents. Arch. Biochem. Biophys. 1994;314:112–119. doi: 10.1006/abbi.1994.1418. [DOI] [PubMed] [Google Scholar]
  105. Taylor C.G., Bauman P.F., Sikorski B., Bray T.M. Elevation of lung glutathione by oral supplementation of L-2-oxothiazolidine-4-carboxylate protects against oxygen toxicity in protein-energy malnourished rats. FASEB J. 1992;6:3101–3107. doi: 10.1096/fasebj.6.12.1521740. [DOI] [PubMed] [Google Scholar]
  106. Taylor C.G., Nagy L.E., Bray T.M. Nutritional and hormonal regulation of glutathione homeostasis. Curr. Top. Cell. Regul. 1996;34:189–208. doi: 10.1016/s0070-2137(96)80007-0. [DOI] [PubMed] [Google Scholar]
  107. Thorburne S.K., Juurlink B.H.J. Low glutathione and high iron govern the susceptibility of oligodendroglial precursors to oxidative stress. J. Neurochem. 1996;67:1014–1022. doi: 10.1046/j.1471-4159.1996.67031014.x. [DOI] [PubMed] [Google Scholar]
  108. Tsan M.-E, Dams E.H., Del Vecchio P.J., Rosano C.L. Enhancement of intracellular glutathione protects endothelial cells against oxidant damage. Biochem Biophys Res Commun. 1985;127:270–276. doi: 10.1016/s0006-291x(85)80154-6. [DOI] [PubMed] [Google Scholar]
  109. Watanabe C., Satoh H. Brain selenium status and behavioral development in selenium-deficient preweanling mice. Physiol. Behav. 1994;56:927–932. doi: 10.1016/0031-9384(94)90325-5. [DOI] [PubMed] [Google Scholar]
  110. Weisbrot-Lefkowitz M., Reuhl K., Perry B., Chan P.H., Inouye M., Mirochnitchenko O. Overexpression of human glutathione peroxidase protects transgenic mice against focal cerebral ischemia/reperfusion damage. Mol. Brain Res. 1998;53:333–338. doi: 10.1016/s0169-328x(97)00313-6. [DOI] [PubMed] [Google Scholar]
  111. Whanger P.D., Butler J.A. Effects of various dietary levels of selenium as selenite or selenomethionine on tissue selenium levels and glutathione peroxidase activity in rats. J. Nutr. 1988;118:846–852. doi: 10.1093/jn/118.7.846. [DOI] [PubMed] [Google Scholar]
  112. Williamson J.M., Boettcher B., Meister A. Intracellular cysteine delivery system that protects against toxicity by promoting glutathione synthesis. Proc. Natl. Acad. Sci. 1982;79:6246–6249. doi: 10.1073/pnas.79.20.6246. [DOI] [PMC free article] [PubMed] [Google Scholar]
  113. Williamson J.M., Meister A. Stimulation of hepatic glutathione formation by administration of L-2-oxothiazo-lidine-4-carboxylate, a 5-oxo-L-prolinase substrate. Proc. Natl. Acad. Sci. 1981;78:936–939. doi: 10.1073/pnas.78.2.936. [DOI] [PMC free article] [PubMed] [Google Scholar]
  114. Yamaguchi T, Sano K., Takakura K., Saito I., Shinohara Y, Asano T., Yasuhara H. Ebselen in acute ischemic stroke. A placebo-controlled, double-blind clinical trial. Stroke. 1998;29:12–17. doi: 10.1161/01.str.29.1.12. [DOI] [PubMed] [Google Scholar]
  115. Yamori Y, Horie R., Tanase H., Fujiwara K., Nara Y, Lovenberg W. Possible role of nutritional factors in the incidence of cerebral lesions in stroke-prone spontaneously hypertensive rats. Hypertension. 1984;6:49–53. doi: 10.1161/01.hyp.6.1.49. [DOI] [PubMed] [Google Scholar]
  116. Yang G.-Y, Betz A.L. Reperfusion-induced injury to the blood-brain-barrier after middle cerebral artery occlusion in rats. Stroke. 1994;25:1658–1665. doi: 10.1161/01.str.25.8.1658. [DOI] [PubMed] [Google Scholar]

Articles from Neurotoxicity Research are provided here courtesy of Nature Publishing Group

RESOURCES