Skip to main content
Springer Nature - PMC COVID-19 Collection logoLink to Springer Nature - PMC COVID-19 Collection
. 2009 Dec 30;16(12):1165–1174. doi: 10.1177/1933719109343309

Gonadotropin Stimulation Increases the Expression of Angiotensin-(1–7) and Mas Receptor in the Rat Ovary

Virgínia M Pereira 1, Fernando M Reis 1,3, Robson A S Santos 1, Geovanni D Cassali 2, Sérgio H S Santos 1, Kinulpe Honorato-Sampaio 1, Adelina M dos Reis 1,
PMCID: PMC7101720  PMID: 19703990

Abstract

We have previously shown the presence of immunoreactive angiotensin-(1–7) [Ang-(1–7)] in rat ovary homogenate and its stimulatory effect on estradiol and progesterone production in vitro. In the current study, we investigated the presence and cellular distribution of Ang-(1–7) and the Mas receptor, the expression of Mas and angiotensin-converting enzyme 2 (ACE2) messenger RNA (mRNA), and the enzymatic activity in the rat ovary following gonadotropin stimulation in vivo. Immature female Wistar rats (25 days old) were injected subcutaneously (SC) with equine chorionic gonadotropin (eCG, 20 IU in 0.2 mL) or vehicle 48 hours before euthanasia. Tissue distributions of Ang-(1–7), Mas receptor, and ACE2 were evaluated by immunohistochemistry, along with angiotensin II (Ang II) localization, while the mRNA expression levels of Mas receptor and ACE2 were evaluated by real-time polymerase chain reaction (PCR). In addition, we determined the activity of neutral endopeptidase (NEP), prolyl endopeptidase (PEP), and ACE by fluorometric assays. After eCG treatment, we found strong immunoreactivity for Ang-(1–7) and Mas primarily in the theca-interstitial cells, while Ang II appeared in the granulosa but not in the thecal layer. Equine chorionic gonadotropin treatment increased Mas and ACE2 mRNA expression compared with control animals (3.3- and 2.1-fold increase, respectively; P < .05). Angiotensin-converting enzyme and NEP activities were lower, while PEP activity was higher in the eCG-treated rats (P < .05). These data show gonadotropin-induced changes in the ovarian expression of Ang-(1–7), Mas receptor, and ACE2. These findings suggest that the renin-angiotensin system (RAS) branch formed by ACE2/Ang-(1–7)/Mas, fully expressed in the rat ovary and regulated by gonadotropic hormones, could play a role in the ovarian physiology.

Key words: Angiotensin-(1–7), Mas receptor, ovary, ACE2 mRNA, equine chorionic gonadotropin

References

  • 1.Adashi EY, Rohan RM. Intraovarian regulation peptidergic signaling systems. Trends Endocrinol Metab. 1992;3(7):243–248. doi: 10.1016/1043-2760(92)90125-K. [DOI] [PubMed] [Google Scholar]
  • 2.Driancourt MA, Gougeon A, Royère D, Thibault C. Ovarian function. In: Thibault C, Levasseur MC, editors. Reproduction in Mammals and Man. Paris: Ellipses; 1993. pp. 281–305. [Google Scholar]
  • 3.Yoshimura Y. The ovarian renin-angiotensin system in reproductive physiology. Front Neuroendocrinol. 1997;18(3):247–291. doi: 10.1006/frne.1997.0152. [DOI] [PubMed] [Google Scholar]
  • 4.Pellicer A, Palumbo A, DeCherney AH, Naftolin F. Blockade of ovulation by an angiotensin antagonist. Science. 1988;240(4859):1660–1661. doi: 10.1126/science.3381087. [DOI] [PubMed] [Google Scholar]
  • 5.Yoshimura Y, Karube M, Aoki H, et al. Angiotensin II induces ovulation and oocyte maturation in rabbit ovaries via the AT2 receptor subtype. Endocrinology. 1996;137(4):1204–1211. doi: 10.1210/endo.137.4.8625890. [DOI] [PubMed] [Google Scholar]
  • 6.Kuji N, Sueoka K, Miyasaki T, Tanaka M, Oda T, Kobayashi T. Involvement of Angiotensin II in the process of gonadotropin-induced ovulation in rabbits. Biol Reprod. 1996;55(5):984–991. doi: 10.1095/biolreprod55.5.984. [DOI] [PubMed] [Google Scholar]
  • 7.Daud AI, Bumpus FM, Husain A. Characterization of angiotensin I converting enzyme (ACE)-containing follicles in the rat ovary during the estrous cycle and effects of ACE inhibitor on ovulation. Endocrinology. 1990;126(6):2927–2935. doi: 10.1210/endo-126-6-2927. [DOI] [PubMed] [Google Scholar]
  • 8.Yoshimura Y, Koyama N, Karube M, et al. Gonadotropin stimulates ovarian renin-angiotensin system in the rabbit. J Clin Invest. 1994;93(1):180–187. doi: 10.1172/JCI116943. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.Bumpus FM, Pucell AG, Daud AI, Husain A. Angiotensin II, an intraovarian regulatory peptide. Am J Med Sci. 1988;295(4):406–408. doi: 10.1097/00000441-198804000-00031. [DOI] [PubMed] [Google Scholar]
  • 10.Yoshimura Y, Karube M, Oda T, et al. Locally produced Angiotensin II induces ovulation by stimulating prostaglandin production in in vitro perfused rabbit ovaries. Endocrinology. 1993;133(4):1609–1616. doi: 10.1210/endo.133.4.8404601. [DOI] [PubMed] [Google Scholar]
  • 11.Magoffin DA. LH stimulation of ovarian theca-interstitial cell differentiation: sensitizing effect of angiotensin II. In: Gibori G, editor. Signalling Mechanisms and Gene Expression in the Ovary. New York: Springer-Verlag; 1991. pp. 417–422. [Google Scholar]
  • 12.Fèral C, Gall SL, Leymarie P. Angiotensin II modulates steroidogenesis in granulosa and theca in the rabbit ovary: its possible involvement in atresia. Eur J Endocrinol. 1995;133(4):747–753. doi: 10.1530/eje.0.1330747. [DOI] [PubMed] [Google Scholar]
  • 13.Aguilera G, Millan MA, Harwood JP. Angiotensin II receptors in the gonads. Am J Hypertens. 1989;2(5 pt 1):395–402. doi: 10.1093/ajh/2.5.395. [DOI] [PubMed] [Google Scholar]
  • 14.Peterson CM, Morioka N, Zhu C, Ryan JW, LeMarie WJ. Angiotensin-converting enzyme inhibitors have no effect on ovulation and ovarian steroidogenesis in the perfused rat ovary. Reprod Toxicol. 1993;7(2):131–135. doi: 10.1016/0890-6238(93)90247-5. [DOI] [PubMed] [Google Scholar]
  • 15.Santos RA, Ferreira AJ, Simões e Silva AC. Recent advances in the angiotensin-converting enzyme 2-angiotensin(1–7)-Mas axis. Exp Physiol. 2008;93(5):519–527. doi: 10.1113/expphysiol.2008.042002. [DOI] [PubMed] [Google Scholar]
  • 16.Santos RAS, Brosnihan KB, Jacobsen DW, DiCorleto PE, Ferrario CM. Production of angiotensin-(1–7) by human vascular endothelium. Hypertension. 1992;19(2):II56–II61. doi: 10.1161/01.hyp.19.2_suppl.ii56. [DOI] [PubMed] [Google Scholar]
  • 17.Welches WR, Santos RA, Chappell MC, Brosnihan KB, Greene LJ, Ferrario CM. Evidence that prolyl endopeptidase participates in the processing of brain angiotensin. J Hypertens. 1991;9(7):631–638. doi: 10.1097/00004872-199107000-00008. [DOI] [PubMed] [Google Scholar]
  • 18.Neves LAA, Almeida AP, Khosla MC, Santos RAS. Metabolism of angiotensin I in isolated rat hearts. Effect of angiotensin-converting enzyme inhibitors. Biochem Pharmacol. 1995;50(9):1451–1459. doi: 10.1016/0006-2952(95)02049-7. [DOI] [PubMed] [Google Scholar]
  • 19.Donoghue M, Hsieh F, Baronas E, et al. A novel angiotensin-converting enzyme-related carboxypeptidase (ACE2) converts angiotensin I to angiotensin 1–9. Circ Res. 2000;87(5):E1–E9. doi: 10.1161/01.RES.87.5.e1. [DOI] [PubMed] [Google Scholar]
  • 20.Costa APR, Fagundes-Moura CR, Pereira VM, et al. Angiotensin-(1–7): a novel peptide in the ovary. Endocrinology. 2003;144(5):1942–1948. doi: 10.1210/en.2002-220787. [DOI] [PubMed] [Google Scholar]
  • 21.Jackson TR, Blair LA, Marshall J, Goedert M, Hanley MR. The Mas oncogene encodes an angiotensin receptor. Nature. 1988;335(6189):437–440. doi: 10.1038/335437a0. [DOI] [PubMed] [Google Scholar]
  • 22.Metzger R, Bader M, Ludwig T, Berberich C, Bunnemann B, Ganten D. Expression of the mouse and rat Mas protooncogene in the brain and peripheral tissues. FEBS Lett. 1995;357(1):27–32. doi: 10.1016/0014-5793(94)01292-9. [DOI] [PubMed] [Google Scholar]
  • 23.Santos RA, Simtões e Silva AC, Maric C, et al. Angiotensin-(1–7) is a endogenous ligand for the G protein coupled receptor Mas. Proc Natl Acad Sci USA. 2003;100(14):8258–8263. doi: 10.1073/pnas.1432869100. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Pereira VM, Costa APR, Rosa-e-Silva AA, Vieira MA, Reis AM. Regulation of steroidogenesis by atrial natriuretic peptide (ANP) in the rat testis: differential involvement of GC-A and C receptors. Peptides. 2008;29(11):2024–2032. doi: 10.1016/j.peptides.2008.08.005. [DOI] [PubMed] [Google Scholar]
  • 25.Reis FM, Ribeiro MF, Maia AL, Spritzer PM. Regulation of human endometrial transforming growth factor beta 1 and beta 3 isoforms through menstrual cycle and medroxyprogesterone acetate treatment. Histol Histopathol. 2002;17(3):739–745. doi: 10.14670/HH-17.739. [DOI] [PubMed] [Google Scholar]
  • 26.Vaz-Silva J, Carneiro MM, Ferreira MC, et al. The vasoactive peptide angiotensin-(1–7), its receptor Mas and the angiotensin-converting-enzyme type 2 are expressed in the human endometrium. Reprod Sci. 2009;16(3):247–256. doi: 10.1177/1933719108327593. [DOI] [PubMed] [Google Scholar]
  • 27.Simões e Silva AC, Diniz JS, Regueira-Filho A, Santos RA. The renin angiotensin system in childhood hypertension: selective increase of angiotensin-(1–7) in essential hypertension. J Pediatr. 2004;145(1):93–98. doi: 10.1016/j.jpeds.2004.03.055. [DOI] [PubMed] [Google Scholar]
  • 28.Becker LK, Etelvino GM, Walther T, Santos RA, Campagnole-Santos MJ. Immunofluorescence localization of the receptor Mas in cardiovascular-related areas of the rat brain. Am J Physiol Heart Circ Physiol. 2007;293(3):H1416–H1424. doi: 10.1152/ajpheart.00141.2007. [DOI] [PubMed] [Google Scholar]
  • 29.Lowry OH, Rosebrough NJ, Farr AL, Randal LJ. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951;193(1):265–275. [PubMed] [Google Scholar]
  • 30.Santos RAS, Krieger EM, Greene LJ. An improved fluorometric assay of rat serum and plasma converting enzyme. Hypertension. 1985;7(2):244–252. doi: 10.1161/01.HYP.7.2.244. [DOI] [PubMed] [Google Scholar]
  • 31.Stanziola L, Greene LJ, Santos RA. Effect of chronic angiotensin converting enzyme inhibition on angiotensin I and bradikinin metabolism in rats. Am J Hypertens. 1999;12(10 pt 1):1021–1029. doi: 10.1016/S0895-7061(99)00090-4. [DOI] [PubMed] [Google Scholar]
  • 32.Medeiros MAS, França MSF, Boileau G, Juliano L, Carvalho KM. Specific fluorogenic substrates for neprilysin (neutral endopeptidase, EC 3.4.24.11) which are highly resistant to serine- and metalloproteases. Braz J Med Biol Res. 1997;30(10):1157–1162. doi: 10.1590/S0100-879X1997001000003. [DOI] [PubMed] [Google Scholar]
  • 33.Carithers JR, Green JA. Ultrastructure of rat ovarian interstitial cells. I. Normal structure and regressive changes following hypophysectomy. J Ultrastr Res. 1972;39(3):239–250. doi: 10.1016/S0022-5320(72)90020-2. [DOI] [PubMed] [Google Scholar]
  • 34.Erickson GF, Magoffin DA, Dyer CA, Hofeditz C. The ovarian androgen producing cells: a review of structure/function relationships. Endocr Rev. 1985;6(3):371–399. doi: 10.1210/edrv-6-3-371. [DOI] [PubMed] [Google Scholar]
  • 35.Ohta N, Takahashi T, Mori T, et al. Hormonal modulation of prolyl endopeptidase and dipeptidyl peptidase IV activities in the mouse uterus and ovary. Acta Endocrinol. 1992;127(3):262–266. doi: 10.1530/acta.0.1270262. [DOI] [PubMed] [Google Scholar]
  • 36.Pinto FM, Armesto CP, Magraner J, Trujillo M, Martin JD, Cadenas ML. Tachikinin receptor and neutral endopeptidase gene expression in the rat uterus: characterization and regulation in response to ovarian steroid treatment. Endocrinology. 1999;140(6):2526–2532. doi: 10.1210/endo.140.6.6695. [DOI] [PubMed] [Google Scholar]
  • 37.Harata T, Ando H, Iwase A, Nagasaka T, Mizutani S, Kikkawa F. Localization of angiotensin II, the AT1 receptor, angiotensin-converting enzyme, aminopeptidase A, adipocyte-derived leucine aminopeptidase, and vascular endothelial growth factor in the human ovary throughout the menstrual cycle. Fertil Steril. 2006;86(2):433–439. doi: 10.1016/j.fertnstert.2006.01.041. [DOI] [PubMed] [Google Scholar]
  • 38.Shuttleworth G, Hunter MG, Robinson G, Pipkin FB. Immunocytochemical localization of angiotensin II receptor subtypes 1 and 2 in the porcine fetal, prepubertal and postpubertal ovary. J Anat. 2002;201(3):267–274. doi: 10.1046/j.1469-7580.2002.00091.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 39.Pountain S.J., Pipkin F. Broughton, Hunter M.G. The ontogeny of components of the renin–angiotensin system in the porcine fetal ovary. Animal Reproduction Science. 2010;117(1-2):119–126. doi: 10.1016/j.anireprosci.2009.03.006. [DOI] [PubMed] [Google Scholar]
  • 40.Hayashi M, McGee EA, Min G, et al. Recombinant growth differentiation factor-9 (GDF-9) enhances growth and differentiation of cultured early ovarian follicles. Endocrinology. 1999;140(3):1236–1244. doi: 10.1210/endo.140.3.6548. [DOI] [PubMed] [Google Scholar]
  • 41.Solovyeva EV, Hayashi M, Margi K, et al. Growth differentiation factor-9 stimulates rat theca-interstitial cell androgen biosynthesis. Biol Reprod. 2000;63(4):1214–1218. doi: 10.1095/biolreprod63.4.1214. [DOI] [PubMed] [Google Scholar]
  • 42.Pepperell JR, Nemeth G, Yamada Y, Naftolin F, Merino M. Localized accumulation of angiotensin II and production of angiotensin-(1–7) in rat luteal cells and effects on steroidogenesis. Am J Physiol Endocrinol Metab. 2006;291(2):E221–E233. doi: 10.1152/ajpendo.00205.2005. [DOI] [PubMed] [Google Scholar]
  • 43.Palumbo A, Jones C, Lightman A, Carcangiu ML, DeCherney AH, Naftolin F. Immunohistochemical localization of renin and angiotensin II in human ovaries. Am J Obstet Gynecol. 1989;160(1):8–14. doi: 10.1016/0002-9378(89)90077-X. [DOI] [PubMed] [Google Scholar]
  • 44.Howard RB, Pucell AG, Bumpus FM, Husain A. Rat ovarian renin: characterization and changes during the estrous cycle. Endocrinology. 1988;123(5):2331–2340. doi: 10.1210/endo-123-5-2331. [DOI] [PubMed] [Google Scholar]
  • 45.Thomas WG, Sernia C. The immunocytochemical localization of angiotensinogen in the rat ovary. Cell Tissue Res. 1990;261(2):367–373. doi: 10.1007/BF00318679. [DOI] [PubMed] [Google Scholar]
  • 46.Speth RC, Husain A. Distribution of angiotensin-converting enzyme and angiotensin II-receptor binding sites in the rat ovary. Biol Reprod. 1988;38(3):695–702. doi: 10.1095/biolreprod38.3.695. [DOI] [PubMed] [Google Scholar]

Articles from Reproductive Sciences are provided here courtesy of Nature Publishing Group

RESOURCES