Skip to main content

Some NLM-NCBI services and products are experiencing heavy traffic, which may affect performance and availability. We apologize for the inconvenience and appreciate your patience. For assistance, please contact our Help Desk at info@ncbi.nlm.nih.gov.

Springer Nature - PMC COVID-19 Collection logoLink to Springer Nature - PMC COVID-19 Collection
. 1999;19(5):280–292. doi: 10.1023/A:1020587407535

Chemokines as Molecular Targets for Therapeutic Intervention

O M Zack Howard 1,, Joost J Oppenheim 1, Ji Ming Wang 1
PMCID: PMC7101721  PMID: 10535604

Abstract

Despite the youth of the chemokine field, many antagonists of chemokine function have already been identified and tested at the preclinical level. These include neutralizing antibodies, peptidyl and non-peptidyl antagonists and non-specific immunosuppressive agents. These early studies suggest that chemokine agonists have the potential to regulate many diseases, ranging from HIV-1 infection and tumor growth to acute and chronic inflammation. Clinical application will depend on pharmaceutical development. Great strides have been made in defining structural domains of the chemokines involved in receptor binding and activation. The identification of receptors is rapidly progressing, but with 50 potential ligands and 15 characterized receptors, it is obvious that additional molecular studies are needed. The intriguing observation that several pathogens either use chemokine receptors as entry portals or produce chemokine decoys to subvert the immune system suggests that there is much to be learned about the immune system from studies of “virokines.” Future studies should lead to the discovery and design of more effective inhibitors and antagonists with therapeutic benefit.

Keywords: Chemokines, chemokine receptors, antagonists

REFERENCES

  • 1.Baggiolini M. Chemokines and leukocyte traffic. Nature. 1998;392:565–568. doi: 10.1038/33340. [DOI] [PubMed] [Google Scholar]
  • 2.Zlotnik A, Morales J, Hedrick JA. Recent advances in chemokines and chemokine receptors. Crit Rev Immunol. 1999;19:1–47. [PubMed] [Google Scholar]
  • 3.Rollins BJ. Chemokines. Blood. 1997;90:909–928. [PubMed] [Google Scholar]
  • 4.Howard OM, Ben-Baruch A, Oppenheim JJ. Chemokines: progress toward identifying molecular targets for therapeutic agents. Trends Biotechnol. 1996;14:46–51. doi: 10.1016/0167-7799(96)80920-6. [DOI] [PubMed] [Google Scholar]
  • 5.Yang D, Chertov O, Bykovskaia S, et al.: Human beta-defensins promote adaptive immunity, by activating dendritic and T cells expressing CCR6. Science (in press) [DOI] [PubMed]
  • 6.Oppenheim JJ, Wang JM, Chertov O, et al. The role of chemokines in transplantation. In: Tilney NL, Storm TB, Paul LC, et al., editors. Transplant Biology. Philadelphia: Lippincott-Raven; 1996. pp. 187–220. [Google Scholar]
  • 7.Littman DR. Chemokine receptors: Keys to AIDS pathogenesis? Cell. 1998;93:677–680. doi: 10.1016/s0092-8674(00)81429-4. [DOI] [PubMed] [Google Scholar]
  • 8.Kledal TN, Rosenkilde MM, Coulin F, et al. A broad-spectrum chemokine antagonist encoded by Kaposi's sarcoma-associated herpesvirus. Science. 1997;277:1656–1659. doi: 10.1126/science.277.5332.1656. [DOI] [PubMed] [Google Scholar]
  • 9.Lalani AS, McFadden G. Secreted poxvirus chemokine binding proteins. J Leukocyte Biol. 1997;62:570–566. doi: 10.1002/jlb.62.5.570. [DOI] [PubMed] [Google Scholar]
  • 10.Yang X-D, Corvalan JRS, Wang T, et al. Fully human anti IL-8 monoclonal antibody: Potential therapeutics for the treatment of inflammatory disease states. J Leukocyte Biol. 1999;66:401–410. doi: 10.1002/jlb.66.3.401. [DOI] [PubMed] [Google Scholar]
  • 11.Harada A, Sekido N, Akahoshi T, et al. Essential involvement of interleukin-8 (IL-8) in acute inflammation. J Leukocyte Biol. 1994;56:559–564. [PubMed] [Google Scholar]
  • 12.Matsumoto T, Yokoi K, Mukaida N, et al. Pivotal role of interleukin-8 in the acute respiratory distress syndrome and cerebral reperfusion injury. J Leukocyte Biol. 1997;62:581–587. doi: 10.1002/jlb.62.5.581. [DOI] [PubMed] [Google Scholar]
  • 13.Ono K, Matsumori A, Furukawa Y, et al. Prevention of myocardial reperfusion injury in rats by an antibody against monocyte chemotactic and activating factor/monocyte chemoattractant protein-1. Lab Invest. 1999;79:195–203. [PubMed] [Google Scholar]
  • 14.Lloyd C, Gutierrez-Ramos JC. The role of chemokines in tissue inflammation and autoimmunity in renal diseases. Curr Opin Nephrol Hypertens. 1998;7:281–287. doi: 10.1097/00041552-199805000-00008. [DOI] [PubMed] [Google Scholar]
  • 15.Arenberg DA, Kunkel SL, Polverini PJ, et al. Inhibition of interleukin-8 reduces tumorigenesis of human non-small cell lung cancer in SCID mice. J Clin Invest. 1996;97:2792–2802. doi: 10.1172/JCI118734. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Karpus WJ, Kennedy KJ. MIP-lalpha and MCP-1 differentially regulate acute and relapsing autoimmune encephalomyelitis as well as Th1/Th2 lymphocyte differentiation. J Leukoc Biol. 1997;62:681–768. [PubMed] [Google Scholar]
  • 17.Greenberger MJ, Strieter RM, Kunkel SL, et al. Neutralization of macrophage inflammatory protein-2 attenuates neutrophil recruitment and bacterial clearance in murine Klebsiella pneumonia. J Infect Dis. 1996;173:159–165. doi: 10.1093/infdis/173.1.159. [DOI] [PubMed] [Google Scholar]
  • 18.Moser B, Dewald B, Barella L, et al. Interleukin-8 antagonists generated by N-terminal modification. J Biol Chem. 1993;268:7125–7158. [PubMed] [Google Scholar]
  • 19.Baly DL, Horuk R, Yansura DG, et al. A His19 to Ala mutant of melanoma growth-stimulating activity is a partial antagonist of the CXCR2 receptor. J Immunol. 1998;161:4944–4949. [PubMed] [Google Scholar]
  • 20.Hayashi S, Kurdowska A, Miller EJ, et al. Synthetic hexa-and heptapeptides that inhibit IL-8 from binding to and activating human blood neutrophils. J Immunol. 1995;154:814–824. [PubMed] [Google Scholar]
  • 21.Miller EJ, Cohen AB, Peterson BT. Peptide inhibitor of interleukin-8 (IL-8) reduces staphylococcal enterotoxin-A (SEA) induced neutrophil trafficking to the lung. Inflamm Res. 1996;45:393–397. doi: 10.1007/BF02252934. [DOI] [PubMed] [Google Scholar]
  • 22.Hayashi S, Kurdowska A, Cohen AB, et al. A synthetic peptide inhibitor for alpha-chemokines inhibits the growth of melanoma cell lines. J Clin Invest. 1997;99:2581–2587. doi: 10.1172/JCI119446. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23.Fujisawa N, Hayashi S, Miller EJ. A synthetic peptide inhibitor for alpha-chemokines inhibits the tumour growth and pulmonary metastasis of human melanoma cells in nude mice [in process citation] Melanoma Res. 1999;9:105–114. doi: 10.1097/00008390-199904000-00001. [DOI] [PubMed] [Google Scholar]
  • 24.Fujisawa N, Hayashi S, Kurdowska A, et al. Inhibition of GROalpha-induced human endothelial cell proliferation by the alpha-chemokine inhibitor antileukinate. Cytokine. 1999;11:231–238. doi: 10.1006/cyto.1998.0418. [DOI] [PubMed] [Google Scholar]
  • 25.Zhang YJ, Rutledge BJ, Rollins BJ. Structure/activity analysis of human monocyte chemoattractant protein-1 (MCP-1) by mutagenesis. Identification of a mutated protein that inhibits MCP-1-mediated monocyte chemotaxis. J Biol Chem. 1994;269:15918–15924. [PubMed] [Google Scholar]
  • 26.Gong JH, Clark-Lewis I. Antagonists of monocyte chemoattractant protein I identified by modification of functionally critical NH2-terminal residues. J Exp Med. 1995;181:631–640. doi: 10.1084/jem.181.2.631. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27.Gong JH, Ratkay LG, Waterfield JD, et al. An antagonist of monocyte chemoattractant protein 1 (MCP-1) inhibits arthritis in the MRL-1pr mouse model. J Exp Med. 1997;186:131–137. doi: 10.1084/jem.186.1.131. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28.Gong JH, Uguccioni M, Dewald B, et al. RANTES and MCP-3 antagonists bind multiple chemokine receptors. J Biol Chem. 1996;271:10521–10527. doi: 10.1074/jbc.271.18.10521. [DOI] [PubMed] [Google Scholar]
  • 29.Murakami T, Nakajima T, Koyanagi Y, et al. A small molecule CXCR4 inhibitor that blocks T cell line-tropic HIV-1 infection. J Exp Med. 1997;186:1389–1393. doi: 10.1084/jem.186.8.1389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30.Tamamura H, Imai M, Ishihara T, et al. Pharmacophore identification of a chemokine receptor (CXCR4) antagonist, T22 ([Tyr(5,12),Lys7]-polyphemusin II), which specifically blocks T cell-line-tropic HIV-1 infection. Bioorg Med Chem. 1998;6:1033–1041. doi: 10.1016/s0968-0896(98)00061-3. [DOI] [PubMed] [Google Scholar]
  • 31.Crump MP, Gong JH, Loetscher P, et al. Solution structure and basis for functional activity of stromal cell-derived factor-1; dissociation of CXCR4 activation from binding and inhibition of HIV-1. EMBO J. 1997;16:6996–7007. doi: 10.1093/emboj/16.23.6996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32.Loetscher P, Gong JH, Dewald B, et al. N-terminal peptides of stromal cell-derived factor-1 with CXC chemokine receptor 4 agonist and antagonist activities. J Biol Chem. 1998;273:22279–22283. doi: 10.1074/jbc.273.35.22279. [DOI] [PubMed] [Google Scholar]
  • 33.Heveker N, Montes M, Germeroth L, et al. Dissociation of the signalling and antiviral properties of SDF-1-derived small peptides. Curr Biol. 1998;8:369–376. doi: 10.1016/s0960-9822(98)70155-1. [DOI] [PubMed] [Google Scholar]
  • 34.Mack M, Luckow B, Nelson PJ, et al. Aminooxypentane-RANTES induces CCR5 internalization but inhibits recycling: A novel inhibitory mechanism of HIV infectivity. J Exp Med. 1998;187:1215–1224. doi: 10.1084/jem.187.8.1215. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 35.Simmons G, Clapham PR, Picard L, et al. Potent inhibition of HIV-1 infectivity in macrophages and lymphocytes by a novel CCR5 antagonist. Science. 1997;276:276–279. doi: 10.1126/science.276.5310.276. [DOI] [PubMed] [Google Scholar]
  • 36.Proudfoot AE, Power CA, Hoogewerf AJ, et al. Extension of recombinant human RANTES by the retention of the initiating methionine produces a potent antagonist. J Biol Chem. 1996;271:2599–2603. doi: 10.1074/jbc.271.5.2599. [DOI] [PubMed] [Google Scholar]
  • 37.Elsner J, Petering H, Kimmig D, et al. The CC chemokine receptor antagonist met-RANTES inhibits eosinophil effector functions. Int Arch Allergy Immunol. 1999;118:462–465. doi: 10.1159/000024164. [DOI] [PubMed] [Google Scholar]
  • 38.Yang OO, Swanberg SL, Lu Z, et al. Enhanced inhibition of human immunodeficiency virus type 1 by Met-stromal-derived factor 1beta correlates with down-modulation of CXCR4. J Virol. 1999;73:4582–4589. doi: 10.1128/jvi.73.6.4582-4589.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 39.Chen JD, Bai X, Yang AG, et al. Inactivation of HIV-1 chemokine co-receptor CXCR-4 by a novel intrakine strategy. Nat Med. 1997;3:1110–1116. doi: 10.1038/nm1097-1110. [DOI] [PubMed] [Google Scholar]
  • 40.Yang AG, Bai X, Huang XF, et al. Phenotypic knockout of HIV type 1 chemokine coreceptor CCR-5 by intrakines as potential therapeutic approach for HIV-1 infection. Proc Natl Acad Sci USA. 1997;94:11567–11572. doi: 10.1073/pnas.94.21.11567. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 41.White JR, Lee JM, Young PR, et al. Identification of a potent, selective non-peptide CXCR2 antagonist that inhibits interleukin-8-induced neutrophil migration. J Biol Chem. 1998;273:10095–10098. doi: 10.1074/jbc.273.17.10095. [DOI] [PubMed] [Google Scholar]
  • 42.De Clercq E, Yamamoto N, Pauwels R, et al. Potent and selective inhibition of human immunodeficiency virus (HIV)-1 and HIV-2 replication by a class of bicyclams interacting with a viral uncoating event. Proc Natl Acad Sci USA. 1992;89:5286–5290. doi: 10.1073/pnas.89.12.5286. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 43.Donzella GA, Schols D, Lin SW, et al. AMD3100, a small molecule inhibitor of HIV-1 entry via the CXCR4 co-receptor. Nat Med. 1998;4:72–77. doi: 10.1038/nm0198-072. [DOI] [PubMed] [Google Scholar]
  • 44.Schols D, Struyf S, Van Damme J, et al. Inhibition of T-tropic HIV strains by selective antagonization of the chemokine receptor CXCR4. J Exp Med. 1997;186:1383–1388. doi: 10.1084/jem.186.8.1383. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 45.Labrosse B, Brelot A, Heveker N, et al. Determinants for sensitivity of human immunodeficiency virus coreceptor CXCR4 to the bicyclam AMD3100. J Virol. 1998;72:6381–6388. doi: 10.1128/jvi.72.8.6381-6388.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 46.de Vreese K, Kofler-Mongold V, Leutgeb C, et al. The molecular target of bicyclams, potent inhibitors of human immunodeficiency virus replication. J Virol. 1996;70:689–696. doi: 10.1128/jvi.70.2.689-696.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 47.Schols D, Este JA, Cabrera C, et al. T-cell-line-tropic human immunodeficiency virus type 1 that is made resistant to stromal cell-derived factor 1alpha contains mutations in the envelope gp120 but does not show a switch in coreceptor use. J Virol. 1998;72:4032–4037. doi: 10.1128/jvi.72.5.4032-4037.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 48.Este JA, Cabrera C, Blanco J, et al. Shift of clinical human immunodeficiency virus type 1 isolates from X4 to R5 and prevention of emergence of the syncytium-inducing phenotype by blockade of CXCR4 [in process citation] J Virol. 1999;73:5577–5585. doi: 10.1128/jvi.73.7.5577-5585.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 49.Ma Q, Jones D, Borghesani PR, et al. Impaired B-lymphopoiesis, myelopoiesis, and derailed cerebellar neuron migration in CXCR4-and SDF-1-deficient mice. Proc Natl Acad Sci USA. 1998;95:9448–9453. doi: 10.1073/pnas.95.16.9448. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 50.Nagasawa T, Hirota S, Tachibana K, et al. Defects of B-cell lymphopoiesis and bone-marrow myelopoiesis in mice lacking the CXC chemokine PBSF/SDF-1. Nature. 1996;382:635–638. doi: 10.1038/382635a0. [DOI] [PubMed] [Google Scholar]
  • 51.Salcedo R, Wasserman K, Young HA, et al. Vascular endothelial growth factor and basic fibroblast growth factor induce expression of CXCR4 on human endothelial cells: In vivo neovascularization induced by stromal-derived factor-1alpha. Am J Pathol. 1999;154:1125–1135. doi: 10.1016/s0002-9440(10)65365-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 52.Hesselgesser J, Ng HP, Liang M, et al. Identification and characterization of small molecule functional antagonists of the CCR1 chemokine receptor. J Biol Chem. 1998;273:15687–15692. doi: 10.1074/jbc.273.25.15687. [DOI] [PubMed] [Google Scholar]
  • 53.Cooke SP, Forrest G, Venables PJ, et al. The delta32 deletion of CCR5 receptor in rheumatoid arthritis. Arth Rheum. 1998;41:1135–1136. doi: 10.1002/1529-0131(199806)41:6<1135::AID-ART24>3.0.CO;2-N. [DOI] [PubMed] [Google Scholar]
  • 54.Altman GB, Altman LC, Luchtel DL, et al. Release of RANTES from nasal and bronchial epithelial cells. Cell Biol Toxicol. 1997;13:205–213. doi: 10.1023/a:1007318514715. [DOI] [PubMed] [Google Scholar]
  • 55.Garred P, Madsen HO, Petersen J, et al. CC chemokine receptor 5 polymorphism in rheumatoid arthritis. J Rheumatol. 1998;25:1462–1465. [PubMed] [Google Scholar]
  • 56.Karpus WJ, Lukacs NW, McRae BL, et al. An important role for the chemokine macrophage inflammatory protein-1 alpha in the pathogenesis of the T cell-mediated autoimmune disease, experimental autoimmune encephalomyelitis. J Immunol. 1995;155:5003–5010. [PubMed] [Google Scholar]
  • 57.Serody JS, Cook DN, Kirby SL, et al. Murine T lymphocytes incapable of producing macrophage inhibitory protein-1 are impaired in causing graft-versus-host disease across a class I but not class II major histocompatibility complex barrier. Blood. 1999;93:43–50. [PubMed] [Google Scholar]
  • 58.Baba M, Nishimura O, Kanzaki N, et al. A small-molecule, nonpeptide CCR5 antagonist with highly potent and selective anti-HIV-1 activity. Proc Natl Acad Sci USA. 1999;96:5698–5703. doi: 10.1073/pnas.96.10.5698. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 59.Whitby D, Boshoff C. Kaposi's sarcoma herpesvirus as a new paradigm for virus-induced oncogenesis. Curr Opin Oncol. 1998;10:405–412. doi: 10.1097/00001622-199809000-00007. [DOI] [PubMed] [Google Scholar]
  • 60.Verma MJ, Lloyd A, Rager H, et al. Chemokines in acute anterior uveitis. Curr Eye Res. 1997;16:1202–1208. doi: 10.1076/ceyr.16.12.1202.5034. [DOI] [PubMed] [Google Scholar]
  • 61.Terada N, Maesako K, Hamano N, et al. RANTES production in nasal epithelial cells and endothelial cells. J Allergy Clin Immunol. 1996;98:S230–237. doi: 10.1016/s0091-6749(96)70071-4. [DOI] [PubMed] [Google Scholar]
  • 62.Ciomei M, Pastori W, Mariani M, et al. New sulfonated distamycin A derivatives with bFGF complexing activity. Biochem Pharmacol. 1994;47:295–302. doi: 10.1016/0006-2952(94)90020-5. [DOI] [PubMed] [Google Scholar]
  • 63.Sola F, Farao M, Ciomei M, et al. FCE 27266, a sulfonic distamycin derivative, inhibits experimental and spontaneous lung and liver metastasis. Invasion Metastasis. 1995;15:222–231. [PubMed] [Google Scholar]
  • 64.Sola F, Farao M, Pesenti E, et al. Antitumor activity of FCE 26644 a new growth-factor complexing molecule. Cancer Chemother Pharmacol. 1995;36:217–222. doi: 10.1007/BF00685849. [DOI] [PubMed] [Google Scholar]
  • 65.Clanton DJ, Buckheit RW, Jr, Terpening SJ, et al. Novel sulfonated and phosphonated analogs of distamycin which inhibit the replication of HIV. Antiviral Res. 1995;27:335–354. doi: 10.1016/0166-3542(95)00017-g. [DOI] [PubMed] [Google Scholar]
  • 66.Howard OM, Oppenheim JJ, Hollingshead MG, et al. Inhibition of in vitro and in vivo HIV replication by a distamycin analogue that interferes with chemokine receptor function: A candidate for chemotherapeutic and microbicidal application. J Med Chem. 1998;41:2184–2193. doi: 10.1021/jm9801253. [DOI] [PubMed] [Google Scholar]
  • 67.Howard OM, Korte T, Tarasova NI, et al. Small molecule inhibitor of HIV-1 cell fusion blocks chemokine receptor-mediated function. J Leukoc Biol. 1998;64:6–13. doi: 10.1002/jlb.64.1.6. [DOI] [PubMed] [Google Scholar]
  • 68.Mosier DE, Picchio GR, Gulizia RJ, et al. Highly potent RANTES analogues either prevent CCR5-using human immunodeficiency virus type 1 infection in vivo or rapidly select for CXCR4-using variants. J Virol. 1999;73:3544–3550. doi: 10.1128/jvi.73.5.3544-3550.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 69.Howard OM, Shirakawa AK, Turpin JA, et al. Naturally occurring CCR5 extracellular and transmembrane domain variants affect HIV-1 Co-receptor and ligand binding function. J Biol Chem. 1999;274:16228–16234. doi: 10.1074/jbc.274.23.16228. [DOI] [PubMed] [Google Scholar]
  • 70.Manna SK, Samanta S, Samanta AK. Hamycin inhibits IL-8-induced biologic response by modulating its receptor in human polymorphonuclear neutrophils. J Immunol. 1997;159:5042–5052. [PubMed] [Google Scholar]
  • 71.Thomas AH. Analysis and assay of polyene antifungal antibiotics. A review. Analyst. 1976;101:321–340. doi: 10.1039/an9760100321. [DOI] [PubMed] [Google Scholar]
  • 72.Thomas AH. Suggested mechanisms for the antimycotic activity of the polyene antibiotics and the N-substituted imidazoles. J Antimicrob Chemother. 1986;17:269–279. doi: 10.1093/jac/17.3.269. [DOI] [PubMed] [Google Scholar]
  • 73.Moonis M, Ahmad I, Bachhawat BK. Liposomal hamycin in the control of experimental aspergillosis in mice: effect of phosphatidic acid with and without cholesterol. J Antimicrob Chemother. 1993;31:569–579. doi: 10.1093/jac/31.4.569. [DOI] [PubMed] [Google Scholar]
  • 74.Mehta RT, McQueen TJ, Keyhani A, et al. Liposomal hamycin: Reduced toxicity and improved antifungal efficacy in vitro and in vivo. J Infect Dis. 1991;164:1003–1006. doi: 10.1093/infdis/164.5.1003. [DOI] [PubMed] [Google Scholar]
  • 75.Sozzani S, Bonecchi R, D'Amico G, et al. Old and new chemokines. Pharmacological regulation of chemokine production and receptor expression: Mini-review. J Chemother. 1998;10:142–145. doi: 10.1179/joc.1998.10.2.142. [DOI] [PubMed] [Google Scholar]
  • 76.Rovai LE, Herschman HR, Smith JB. The murine neutrophil-chemoattractant chemokines LIX, KC, and MIP-2 have distinct induction kinetics, tissue distributions, and tissue-specific sensitivities to glucocorticoid regulation in endotoxemia. J Leukocyte Biol. 1998;64:494–502. doi: 10.1002/jlb.64.4.494. [DOI] [PubMed] [Google Scholar]
  • 77.Standiford TJ, Kunkel SL, Rolfe MW, et al. Regulation of human alveolar macrophage-and blood monocyte-derived interleukin-8 by prostaglandin E2 and dexamethasone. Am J Respir Cell Mol Biol. 1992;6:75–81. doi: 10.1165/ajrcmb/6.1.75. [DOI] [PubMed] [Google Scholar]
  • 78.Kovacs EJ, Faunce DE, Ramer-Quinn DS, et al. Estrogen regulation of JE/MCP-1 mRNA expression in fibroblasts. J Leukocyte Biol. 1996;59:562–568. doi: 10.1002/jlb.59.4.562. [DOI] [PubMed] [Google Scholar]
  • 79.Slavin J, Unemori E, Hunt TK, et al. Monocyte chemotactic protein-1 (MCP-1) mRNA is down-regulated in human dermal fibroblasts by dexamethasone: Differential regulation by TGF-beta. Growth Factors. 1995;12:151–157. doi: 10.3109/08977199509028961. [DOI] [PubMed] [Google Scholar]
  • 80.Yamada K, Hayashi T, Kuzuya M, et al. Physiological concentration of 17 beta-estradiol inhibits chemotaxis of human monocytes in response to monocyte chemotactic protein 1. Artery. 1996;22:24–35. [PubMed] [Google Scholar]
  • 81.Wang P, Wu P, Anthes JC, et al. Interleukin-10 inhibits interleukin-8 production in human neutrophils. Blood. 1994;83:2678–2683. [PubMed] [Google Scholar]
  • 82.Tumpey TM, Cheng H, Yan XT, et al. Chemokine synthesis in the HSV-1-infected cornea and its suppression by interleukin-10. J Leukocyte Biol. 1998;63:486–492. doi: 10.1002/jlb.63.4.486. [DOI] [PubMed] [Google Scholar]
  • 83.Gerritsma JS, van Kooten C, Gerritsen AF, et al. Transforming growth factor-beta 1 regulates chemokine and complement production by human proximal tubular epithelial cells. Kidney Int. 1998;53:609–616. doi: 10.1046/j.1523-1755.1998.00799.x. [DOI] [PubMed] [Google Scholar]
  • 84.Kucharzik T, Lugering N, Pauels HG, et al. IL-4, IL-10 and IL-13 down-regulate monocyte-chemoattracting protein-1 (MCP-1) production in activated intestinal epithelial cells. Clin Exp Immunol. 1998;111:152–157. doi: 10.1046/j.1365-2249.1998.00481.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 85.John M, Au BT, Jose PJ, et al. Expression and release of interleukin-8 by human airway smooth muscle cells: Inhibition by Th-2 cytokines and corticosteroids. Am J Respir Cell Mol Biol. 1998;18:84–90. doi: 10.1165/ajrcmb.18.1.2813. [DOI] [PubMed] [Google Scholar]
  • 86.Hedrick JA, Helms A, Vicari A, et al. Characterization of a novel CC chemokine, HCC-4, whose expression is increased by interleukin-10. Blood. 1998;91:4242–4247. [PubMed] [Google Scholar]
  • 87.Ohmori Y, Hamilton TA. The interferon-stimulated response element and a kappa B site mediate synergistic inductionof murine IP-10 gene transcription by IFN-gamma and TNF-alpha. J Immunol. 1995;154:5235–5244. [PubMed] [Google Scholar]
  • 88.Whitson RH, Jr., Wong WL, Itakura K. Platelet factor 4 selectively inhibits binding of TGF-beta 1 to the type I TGF-beta 1 receptor. J Cell Biochem. 1991;47:31–42. doi: 10.1002/jcb.240470105. [DOI] [PubMed] [Google Scholar]
  • 89.Szabo C, Scott GS, Virag L, et al. Suppression of macrophage inflammatory protein (MIP)-1alpha production and collagen-induced arthritis by adenosine receptor agonists. Br J Pharmacol. 1998;125:379–387. doi: 10.1038/sj.bjp.0702040. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 90.Verghese MW, Kneisler TB, Boucheron JA. P2U agonists induce chemotaxis and actin polymerization in human neutrophils and differentiated HL60 cells. J Biol Chem. 1996;271:15597–15601. doi: 10.1074/jbc.271.26.15597. [DOI] [PubMed] [Google Scholar]
  • 91.Grimm MC, Ben-Baruch A, Taub DD, et al. Opiates transdeactivate chemokine receptors: Delta and mu opiate receptor-mediated heterologous desensitization. J Exp Med. 1998;188:317–325. doi: 10.1084/jem.188.2.317. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 92.Ali H, Richardson RM, Haribabu B, et al. Chemoattractant receptor cross-desensitization. J Biol Chem. 1999;274:6027–6030. doi: 10.1074/jbc.274.10.6027. [DOI] [PubMed] [Google Scholar]
  • 93.Au BT, Teixeira MM, Collins PD, et al. Effect of PDE4 inhibitors on zymosan-induced IL-8 release from human neutrophils: Synergism with prostanoids and salbutamol. Br J Pharmacol. 1998;123:1260–1266. doi: 10.1038/sj.bjp.0701723. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 94.Su SB, Gao J, Gong W, et al. T21/DP107, a synthetic leucine zipper-like domain of the HIV-1 envelope gp41, attracts and activates human phagocytes by using G-protein-coupled formyl peptide receptors. J Immunol. 1999;162:5924–5930. [PubMed] [Google Scholar]
  • 95.Su SB, Gong WH, Gao JL, et al. T20/DP178, an ectodomain peptide of human immunodeficiency virus type 1 gp41, is an activator of human phagocyte N-formyl peptide receptor. Blood. 1999;93:3885–3892. [PubMed] [Google Scholar]
  • 96.Deng X, Ueda H, Su SB, et al. A synthetic peptide derived from HIV-1 gp120 down-regulates the expression and function of chemokine receptors CCR5 and CXCR4 in monocytes by activating the seven-transmembrane G protein-coupled receptor FPRL-1/LXAR. Blood. 1999;94:1165–1173. [PubMed] [Google Scholar]
  • 97.Su SB, Gong W, Gao JL, et al. A seven-transmembrane, G protein-coupled receptor, FPRL1, mediates the chemotactic activity of serum amyloid A for human phagocytic cells. J Exp Med. 1999;189:395–402. doi: 10.1084/jem.189.2.395. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 98.Badolato R, Johnston JA, Wang JM, et al. Serum amyloid A induces calcium mobilization and chemotaxis of human monocytes by activating a pertussis toxin-sensitive signaling pathway. J Immunol. 1995;155:4004–4010. [PubMed] [Google Scholar]

Articles from Journal of Clinical Immunology are provided here courtesy of Nature Publishing Group

RESOURCES