Skip to main content
Springer Nature - PMC COVID-19 Collection logoLink to Springer Nature - PMC COVID-19 Collection
. 2010 Aug 26;40(9):793–808. doi: 10.1007/s00595-010-4323-z

Immunosuppression following surgical and traumatic injury

Fumio Kimura 1,, Hiroaki Shimizu 1, Hiroyuki Yoshidome 1, Masayuki Ohtsuka 1, Masaru Miyazaki 1
PMCID: PMC7101797  PMID: 20740341

Abstract

Severe sepsis and organ failure are still the major causes of postoperative morbidity and mortality after major hepatobiliary pancreatic surgery. Despite recent progress in understanding the immune conditions of abdominal sepsis, the postoperative incidence of septic complications after major visceral surgery remains high. This review focuses on the clinical and immunological parameters that determine the risk of the development and lethal outcome of postoperative septic complication following major surgery and trauma. A review of the literature indicates that surgical and traumatic injury profoundly affects the innate and adaptive immune responses, and that a marked suppression in cell-mediated immunity following an excessive inflammatory response appears to be responsible for the increased susceptibility to subsequent sepsis. The innate and adaptive immune responses are initiated and modulated by pathogen-associated molecular-pattern molecules and by damage-associated molecular-pattern molecules through the pattern-recognition receptors. Suppression of cell-mediated immunity may be caused by multifaceted cytokine/inhibitor profiles in the circulation and other compartments of the host, excessive activation and dysregulated recruitment of polymorphonuclear neutrophils, induction of alternatively activated or regulatory macrophages that have anti-inflammatory properties, a shift in the T-helper (Th)1/Th2 balance toward Th2, appearance of regulatory T cells, which are potent suppressors of the innate and adaptive immune system, and lymphocyte apoptosis in patients with sepsis. Recent basic and clinical studies have elucidated the functional effects of surgical and traumatic injury on the immune system. The research studies of interest may in future aid in the selection of appropriate therapeutic protocols.

Key words: Surgery, Trauma, Sepsis, Organ failure, Pattern-recognition receptors, Polymorphonuclear neutrophils, Monocytes/macrophages, T lymphocytes

References

  • 1.Dixon E., Vollmer C.M., Jr, Sahajpal A., Cattral M., Grant D., Doig C., et al. An aggressive surgical approach leads to improved survival in patients with gallbladder cancer: a 12-year study at a North American Center. Ann Surg. 2005;241:385–394. doi: 10.1097/01.sla.0000154118.07704.ef. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2.Shigeta H., Nagino M., Kamiya J., Uesaka K., Sano T., Yamamoto H., et al. Bacteremia after hepatectomy: an analysis of a singlecenter, 10-year experience with 407 patients. Langenbecks Arch Surg. 2002;387:117–124. doi: 10.1007/s00423-002-0301-2. [DOI] [PubMed] [Google Scholar]
  • 3.Schmidt C.M., Powell E.S., Yiannoutsos C.T., Howard T.J., Wiebke E.A., Wiesenauer C.A., et al. Pancreaticoduodenectomy: a 20-year experience in 516 patients. Arch Surg. 2004;139:718–725. doi: 10.1001/archsurg.139.7.718. [DOI] [PubMed] [Google Scholar]
  • 4.Yeo C.J., Cameron J.L., Lillemoe K.D., Sohn T.A., Campbell K.A., Sauter P.K., et al. Pancreaticoduodenectomy with or without distal gastrectomy and extended retroperitoneal lymphadenectomy for periampullary adenocarcinoma, part 2: randomized controlled trial evaluating survival, morbidity, and mortality. Ann Surg. 2002;236:355–366. doi: 10.1097/00000658-200209000-00012. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Busquets J., Fabregat J., Borobia F.G., Jorba R., Valls C., Serrano T., et al. Organ-preserving surgery for benign lesions and low-grade malignancies of the pancreatic head: a matched case-control study. Surg Today. 2010;40:125–131. doi: 10.1007/s00595-008-4038-6. [DOI] [PubMed] [Google Scholar]
  • 6.Angele M.K., Chaudry I.H. Surgical trauma and immunosuppression: pathophysiology and potential immunomodulatory approaches. Langenbecks Arch Surg. 2005;390:333–341. doi: 10.1007/s00423-005-0557-4. [DOI] [PubMed] [Google Scholar]
  • 7.Ni Choileain N., Redmond H.P. Cell response to surgery. Arch Surg. 2006;141:1132–1140. doi: 10.1001/archsurg.141.11.1132. [DOI] [PubMed] [Google Scholar]
  • 8.Ni Choileain N., Redmond H.P. The immunological consequences of injury. Surgeon. 2006;4:23–31. doi: 10.1016/S1479-666X(06)80018-1. [DOI] [PubMed] [Google Scholar]
  • 9.Lenz A., Franklin G.A., Cheadle W.G. Systemic inflammation after trauma. Injury. 2007;38:1336–1345. doi: 10.1016/j.injury.2007.10.003. [DOI] [PubMed] [Google Scholar]
  • 10.Bone R.C. Immunologic dissonance: a continuing evolution in our understanding of the systemic inflammatory response syndrome (SIRS) and the multiple organ dysfunction syndrome (MODS) Ann Intern Med. 1996;125:680–687. doi: 10.7326/0003-4819-125-8-199610150-00009. [DOI] [PubMed] [Google Scholar]
  • 11.Moore F.A., Moore E.E. Evolving concepts in the pathogenesis of postinjury multiple organ failure. Surg Clin North Am. 1995;75:257–277. doi: 10.1016/s0039-6109(16)46587-4. [DOI] [PubMed] [Google Scholar]
  • 12.Tschoeke S.K., Hellmuth M., Hostmann A., Ertel W., Oberholzer A. The early second hit in trauma management augments the proinflammatory immune response to multiple injuries. J Trauma. 2007;62:1396–1403. doi: 10.1097/TA.0b013e318047b7f0. [DOI] [PubMed] [Google Scholar]
  • 13.Biffl W.L., Moore E.E., Moore F.A., Peterson V.M. Interleukin-6 in the injured patient. Marker of injury or mediator of inflammation? Ann Surg. 1996;224:647–664. doi: 10.1097/00000658-199611000-00009. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Baigrie R.J., Lamont P.M., Kwiatkowski D., Dallman M.J., Morris P.J. Systemic cytokine response after major surgery. Br J Surg. 1992;79:757–760. doi: 10.1002/bjs.1800790813. [DOI] [PubMed] [Google Scholar]
  • 15.Gale L.M., McColl S.R. Chemokines: extracellular messengers for all occasions? Bioessays. 1999;21:17–28. doi: 10.1002/(SICI)1521-1878(199901)21:1<17::AID-BIES3>3.0.CO;2-4. [DOI] [PubMed] [Google Scholar]
  • 16.Strüber M., Cremer J.T., Gohrbandt B., Hagl C., Jankowski M., Völker B., et al. Human cytokine responses to coronary artery bypass grafting with and without cardiopulmonary bypass. Ann Thorac Surg. 1999;68:1330–1335. doi: 10.1016/S0003-4975(99)00729-8. [DOI] [PubMed] [Google Scholar]
  • 17.Lehmann A.K., Halstensen A., Sørnes S., Røkke O., Waage A. High levels of interleukin 10 in serum are associated with fatality in meningococcal disease. Infect Immun. 1995;63:2109–2112. doi: 10.1128/iai.63.6.2109-2112.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Marchant A., Alegre M.L., Hakim A., Piérard G., Marécaux G., Friedman G., et al. Clinical and biological significance of interleukin-10 plasma levels in patients with septic shock. J Clin Immunol. 1995;15:266–273. doi: 10.1007/BF01540884. [DOI] [PubMed] [Google Scholar]
  • 19.Howard M., Muchamuel T., Andrade S., Menon S. Interleukin 10 protects mice from lethal endotoxemia. J Exp Med. 1993;177:1205–1208. doi: 10.1084/jem.177.4.1205. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Florquin S., Amraoui Z., Abramowicz D., Goldman M. Systemic release and protective role of IL-10 in staphylococcal enterotoxin B-induced shock in mice. J Immunol. 1994;153:2618–2623. [PubMed] [Google Scholar]
  • 21.DiPiro J.T., Howdieshell T.R., Goddard J.K., Callaway D.B., Hamilton R.G., Mansberger A.R., Jr Association of interleukin-4 plasma levels with traumatic injury and clinical course. Arch Surg. 1995;130:1159–1162. doi: 10.1001/archsurg.1995.01430110017004. [DOI] [PubMed] [Google Scholar]
  • 22.Wanidworanun C., Strober W. Predominant role of tumor necrosis factor-alpha in human monocyte IL-10 synthesis. J Immunol. 1993;151:6853–6861. [PubMed] [Google Scholar]
  • 23.Riedemann N.C., Guo R.F., Ward P.A. Novel strategies for the treatment of sepsis. Nat Med. 2003;9:517–524. doi: 10.1038/nm0503-517. [DOI] [PubMed] [Google Scholar]
  • 24.Offner P.J., Moore E.E., Ciesla D. The adrenal response after severe trauma. Am J Surg. 2002;184:649–653. doi: 10.1016/S0002-9610(02)01101-7. [DOI] [PubMed] [Google Scholar]
  • 25.Keh D., Boehnke T., Weber-Cartens S., Schulz C., Ahlers O., Bercker S., et al. Immunologic and hemodynamic effects of “low-dose” hydrocortisone in septic shock: a double-blind, randomized, placebo-controlled, crossover study. Am J Respir Crit Care Med. 2003;167:512–520. doi: 10.1164/rccm.200205-446OC. [DOI] [PubMed] [Google Scholar]
  • 26.Roger T., Glauser M.P., Calandra T. Macrophage migration inhibitory factor (MIF) modulates innate immune responses induced by endotoxin and Gram-negative bacteria. J Endotoxin Res. 2001;7:456–460. [PubMed] [Google Scholar]
  • 27.Kain Z.N., Zimolo Z., Heninger G. Leptin and the perioperative neuroendocrinological stress response. J Clin Endocrinol Metab. 1999;84:2438–2442. doi: 10.1210/jc.84.7.2438. [DOI] [PubMed] [Google Scholar]
  • 28.Sánchez-Margalet V., Martín-Romero C., Santos-Alvarez J., Goberna R., Najib S., Gonzalez-Yanes C. Role of leptin as an immunomodulator of blood mononuclear cells: mechanisms of action. Clin Exp Immunol. 2003;133:11–19. doi: 10.1046/j.1365-2249.2003.02190.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.Kimura F., Shimizu H., Yoshidome H., Ohtsuka M., Kato A., Yoshitomi H., et al. Circulating cytokines, chemokines, and stress hormones are increased in patients with organ dysfunction following liver resection. J Surg Res. 2006;133:102–112. doi: 10.1016/j.jss.2005.10.025. [DOI] [PubMed] [Google Scholar]
  • 30.Kimura F., Miyazaki M., Suwa T., Sugiura T., Shinoda T., Itoh H., et al. Plasma concentration of cytokine antagonists in patients with infection following liver resection. Br J Surg. 1998;85:1631–1635. doi: 10.1046/j.1365-2168.1998.00949.x. [DOI] [PubMed] [Google Scholar]
  • 31.Osuchowski M.F., Welch K., Siddiqui J., Remick D.G. Circulating cytokine/inhibitor profiles reshape the understanding of the SIRS/CARS continuum in sepsis and predict mortality. J Immunol. 2006;177:1967–1974. doi: 10.4049/jimmunol.177.3.1967. [DOI] [PubMed] [Google Scholar]
  • 32.Martinon F., Tschopp J. NLRs join TLRs as innate sensors of pathogens. Trends Immunol. 2005;26:447–454. doi: 10.1016/j.it.2005.06.004. [DOI] [PubMed] [Google Scholar]
  • 33.Liew F.Y., Xu D., Brint E.K., O’Neill L.A. Negative regulation of toll-like receptor-mediated immune responses. Nat Rev Immunol. 2005;5:446–458. doi: 10.1038/nri1630. [DOI] [PubMed] [Google Scholar]
  • 34.Lamkanfi M., Kanneganti T.D., Franchi L., Nunez G. Caspase-1 inflammasomes in infection and inflammation. J Leukoc Biol. 2007;82:220–225. doi: 10.1189/jlb.1206756. [DOI] [PubMed] [Google Scholar]
  • 35.Kawai T., Akira S. Innate immune recognition of viral infection. Nat Immunol. 2006;7:131–137. doi: 10.1038/ni1303. [DOI] [PubMed] [Google Scholar]
  • 36.Härter L., Mica L., Stocker R., Trentz O., Keel M. Increased expression of toll-like receptor-2 and -4 on leukocytes from patients with sepsis. Shock. 2004;22:403–409. doi: 10.1097/01.shk.0000142256.23382.5d. [DOI] [PubMed] [Google Scholar]
  • 37.Shalhub S., Junker C.E., Imahara S.D., Mindrinos M.N., Dissanaike S., O’Keefe G.E. Variation in the TLR4 gene influences the risk of organ failure and shock posttrauma: a cohort study. J Trauma. 2009;66:115–122. doi: 10.1097/TA.0b013e3181938d50. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 38.Carneiro L.A., Magalhaes J.G., Tattoli I., Philpott D.J., Travassos L.H. Nod-like proteins in inflammation and disease. J Pathol. 2008;214:136–148. doi: 10.1002/path.2271. [DOI] [PubMed] [Google Scholar]
  • 39.Martinon F. Orchestration of pathogen recognition by inflammasome diversity: Variations on a common theme. Eur J Immunol. 2007;37:3003–3006. doi: 10.1002/eji.200737871. [DOI] [PubMed] [Google Scholar]
  • 40.Sutterwala F.S., Ogura Y., Flavell R.A. The inflammasome in pathogen recognition and inflammation. J Leukoc Biol. 2007;82:259–264. doi: 10.1189/jlb.1206755. [DOI] [PubMed] [Google Scholar]
  • 41.Podolsky D.K. Inflammatory bowel disease. N Engl J Med. 2002;347:417–429. doi: 10.1056/NEJMra020831. [DOI] [PubMed] [Google Scholar]
  • 42.Fahy R.J., Exline M.C., Gavrilin M.A., Bhatt N.Y., Besecker B.Y., Sarkar A., et al. Inflammasome mRNA expression in human monocytes during early septic shock. Am J Respir Crit Care Med. 2008;177:983–988. doi: 10.1164/rccm.200703-418OC. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 43.Rubartelli A., Lotze M.T. Inside, outside, upside down: damageassociated molecular-pattern molecules (DAMPs) and redox. Trends Immunol. 2007;28:429–436. doi: 10.1016/j.it.2007.08.004. [DOI] [PubMed] [Google Scholar]
  • 44.Bianchi M.E. DAMPs, PAMPs and alarmins: all we need to know about danger. J. Leukoc. Biol. 2007;81:1–5. doi: 10.1189/jlb.0306164. [DOI] [PubMed] [Google Scholar]
  • 45.Bonaldi T., Talamo F., Scaffidi P., Ferrera D., Porto A., Bachi A., et al. Monocytic cells hyperacetylate chromatin protein HMGB1 to redirect it towards secretion. EMBO J. 2003;22:5551–5560. doi: 10.1093/emboj/cdg516. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 46.Wang H., Yang H., Tracey K.J. Extracellular role of HMGB1 in inflammation and sepsis. J Intern Med. 2004;255:320–331. doi: 10.1111/j.1365-2796.2003.01302.x. [DOI] [PubMed] [Google Scholar]
  • 47.Abraham E., Arcaroli J., Carmody A., Wang H., Tracey K.J. HMG-1 as a mediator of acute lung inflammation. J Immunol. 2000;165:2950–2954. doi: 10.4049/jimmunol.165.6.2950. [DOI] [PubMed] [Google Scholar]
  • 48.Kim J.Y., Park J.S., Strassheim D., Douglas I., Diaz del Valle F., Asehnoune K., et al. HMGB1 contributes to the development of acute lung injury after hemorrhage. Am J Physiol Lung Cell Mol Physiol. 2005;288:L958–965. doi: 10.1152/ajplung.00359.2004. [DOI] [PubMed] [Google Scholar]
  • 49.Tsung A., Sahai R., Tanaka H., Nakao A., Fink M.P., Lotze M.T., et al. The nuclear factor HMGB1 mediates hepatic injury after murine liver ischemia-reperfusion. J Exp Med. 2005;201:1135–1143. doi: 10.1084/jem.20042614. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 50.Wang H., Bloom O., Zhang M., Vishnubhakat J.M., Ombrellino M., Che J., et al. HMG-1 as a late mediator of endotoxin lethality in mice. Science. 1999;285(5425):248–251. doi: 10.1126/science.285.5425.248. [DOI] [PubMed] [Google Scholar]
  • 51.Ombrellino M., Wang H., Ajemian M.S., Talhouk A., Scher L.A., Friedman S.G., et al. Increased serum concentrations of high-mobility-group protein 1 in haemorrhagic shock. Lancet. 1999;354(9188):1446–1447. doi: 10.1016/S0140-6736(99)02658-6. [DOI] [PubMed] [Google Scholar]
  • 52.Ueno H., Matsuda T., Hashimoto S., Amaya F., Kitamura Y., Tanaka M., et al. Contributions of high mobility group box protein in experimental and clinical acute lung injury. Am J Respir Crit Care Med. 2004;170:1310–1316. doi: 10.1164/rccm.200402-188OC. [DOI] [PubMed] [Google Scholar]
  • 53.Sundén-Cullberg J., Norrby-Teglund A., Rouhiainen A., Rauvala H., Herman G., Tracey K.J., et al. Persistent elevation of high mobility group box-1 protein (HMGB1) in patients with severe sepsis and septic shock. Crit Care Med. 2005;33:564–573. doi: 10.1097/01.CCM.0000155991.88802.4D. [DOI] [PubMed] [Google Scholar]
  • 54.Chen W., Syldath U., Bellmann K., Burkart V., Kolb H. Human 60-kDa heat-shock protein: a danger signal to the innate immune system. J Immunol. 1999;162:3212–3219. [PubMed] [Google Scholar]
  • 55.Ohashi K., Burkart V., Flohe S., Kolb H. Cutting edge: heat shock protein 60 is a putative endogenous ligand of the toll-like receptor-4 complex. J Immunol. 2000;164:558–561. doi: 10.4049/jimmunol.164.2.558. [DOI] [PubMed] [Google Scholar]
  • 56.Dybdahl B., Wahba A., Lien E., Flo T.H., Waage A., Qureshi N., et al. Inflammatory response after open heart surgery: release of heat-shock protein 70 and signaling through toll-like receptor-4. Circulation. 2002;105:685–690. doi: 10.1161/hc0602.103617. [DOI] [PubMed] [Google Scholar]
  • 57.Kimura F., Itoh H., Ambiru S., Shimizu H., Togawa A., Yoshidome H., et al. Circulating heat-shock protein 70 is associated with postoperative infection and organ dysfunction after liver resection. Am J Surg. 2004;187:777–784. doi: 10.1016/j.amjsurg.2003.08.029. [DOI] [PubMed] [Google Scholar]
  • 58.Bours M.J., Swennen E.L., Di Virgilio F., Cronstein B.N., Dagnelie P.C. Adenosine 5′-triphosphate and adenosine as endogenous signaling molecules in immunity and inflammation. Pharmacol Ther. 2006;112:358–404. doi: 10.1016/j.pharmthera.2005.04.013. [DOI] [PubMed] [Google Scholar]
  • 59.Sitkovsky M.V., Ohta A. The “danger” sensors that STOP the immune response: the A2 adenosine receptors? Trends Immunol. 2005;26:299–304. doi: 10.1016/j.it.2005.04.004. [DOI] [PubMed] [Google Scholar]
  • 60.Deaglio S., Dwyer K.M., Gao W., Friedman D., Usheva A., Erat A., et al. Adenosine generation catalyzed by CD39 and CD73 expressed on regulatory T cells mediates immune suppression. J Exp Med. 2007;204:1257–1265. doi: 10.1084/jem.20062512. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 61.van Maren W.W., Jacobs J.F., de Vries I.J., Nierkens S., Adema G.J. Toll-like receptor signalling on Tregs: to suppress or not to suppress? Immunology. 2008;124:445–452. doi: 10.1111/j.1365-2567.2008.02871.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 62.Seely A.J., Pascual J.L., Christou N.V. Science review: Cell membrane expression (connectivity) regulates neutrophil delivery, function and clearance. Crit Care. 2003;7:291–307. doi: 10.1186/cc1853. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 63.Fialkow L., Wang Y., Downey G.P. Reactive oxygen and nitrogen species as signaling molecules regulating neutrophil function. Free Radic Biol Med. 2007;42:153–164. doi: 10.1016/j.freeradbiomed.2006.09.030. [DOI] [PubMed] [Google Scholar]
  • 64.Wakefield C.H., Carey P.D., Foulds S., Monson J.R., Guillou P.J. Polymorphonuclear leukocyte activation. An early marker of the postsurgical sepsis response. Arch Surg. 1993;128:390–395. doi: 10.1001/archsurg.1993.01420160028003. [DOI] [PubMed] [Google Scholar]
  • 65.Jimenez M.F., Watson R.W., Parodo J., Evans D., Foster D., Steinberg M., et al. Dysregulated expression of neutrophil apoptosis in the systemic inflammatory response syndrome. Arch Surg. 1997;132:1263–1269. doi: 10.1001/archsurg.1997.01430360009002. [DOI] [PubMed] [Google Scholar]
  • 66.Maekawa K., Futami S., Nishida M., Terada T., Inagawa H., Suzuki S., et al. Effects of trauma and sepsis on soluble L-selectin and cell surface expression of L-selectin and CD11b. J Trauma. 1998;44:460–468. doi: 10.1097/00005373-199803000-00007. [DOI] [PubMed] [Google Scholar]
  • 67.Quaid G., Cave C., Williams M.A., Hennigan R.F., Bokoch G., Solomkin J.S. Mechanisms of human neutrophil oxidant production after severe injury. Surgery. 2001;130:669–675. doi: 10.1067/msy.2001.116923. [DOI] [PubMed] [Google Scholar]
  • 68.Foulds S., Mireskandari M., Kalu P., Jackson W., Cheshire N.J., Mansfield A.O., et al. Visceral ischemia and neutrophil activation in sepsis and organ dysfunction. J Surg Res. 1998;75:170–176. doi: 10.1006/jsre.1998.5276. [DOI] [PubMed] [Google Scholar]
  • 69.Foulds S., Cheshire N.J., Schachter M., Wolfe J.H., Mansfield A.O. Endotoxin related early neutrophil activation is associated with outcome after thoracoabdominal aortic aneurysm repair. Br J Surg. 1997;84:172–177. doi: 10.1002/bjs.1800840209. [DOI] [PubMed] [Google Scholar]
  • 70.Partrick D.A., Moore E.E., Fullerton D.A., Barnett C.C., Jr, Meldrum D.R., Silliman C.C. Cardiopulmonary bypass renders patients at risk for multiple organ failure via early neutrophil priming and late neutrophil disability. J Surg Res. 1999;86:42–49. doi: 10.1006/jsre.1999.5702. [DOI] [PubMed] [Google Scholar]
  • 71.Bhatia R., Dent C., Topley N., Pallister I. Neutrophil priming for elastase release in adult blunt trauma patients. J Trauma. 2006;60:590–596. doi: 10.1097/01.ta.0000205614.51885.ff. [DOI] [PubMed] [Google Scholar]
  • 72.Gando S., Kameue T., Matsuda N., Sawamura A., Hayakawa M., Kato H. Systemic inflammation and disseminated intravascular coagulation in early stage of ALI and ARDS: role of neutrophil and endothelial activation. Inflammation. 2004;28:237–244. doi: 10.1023/B:IFLA.0000049049.81688.fe. [DOI] [PubMed] [Google Scholar]
  • 73.Inoue Y., Tanaka H., Ogura H., Ukai I., Fujita K., Hosotsubo H., et al. A neutrophil elastase inhibitor, sivelestat, improves leukocyte deformability in patients with acute lung injury. J Trauma. 2006;60:936–943. doi: 10.1097/01.ta.0000217271.25809.a0. [DOI] [PubMed] [Google Scholar]
  • 74.Gando S., Kameue T., Matsuda N., Hayakawa M., Ishitani T., Morimoto Y., et al. Combined activation of coagulation and inflammation has an important role in multiple organ dysfunction and poor outcome after severe trauma. Thromb Haemost. 2002;88:943–949. [PubMed] [Google Scholar]
  • 75.Rittirsch D., Flierl M.A., Ward P.A. Harmful molecular mechanisms in sepsis. Nat Rev Immunol. 2008;8:776–787. doi: 10.1038/nri2402. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 76.Olson T.S., Ley K. Chemokines and chemokine receptors in leukocyte trafficking. Am J Physiol Regul Integr Comp Physiol. 2002;283:R7–28. doi: 10.1152/ajpregu.00738.2001. [DOI] [PubMed] [Google Scholar]
  • 77.Reutershan J., Ley K. Bench-to-bedside review: acute respiratory distress syndrome—how neutrophils migrate into the lung. Crit Care. 2004;8:453–461. doi: 10.1186/cc2881. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 78.Villard J., Dayer-Pastore F., Hamacher J., Aubert J.D., Schlegel-Haueter S., Nicod L.P. GRO alpha and interleukin-8 in Pneumocystis carinii or bacterial pneumonia and adult respiratory distress syndrome. Am J Respir Crit Care Med. 1995;152:1549–1554. doi: 10.1164/ajrccm.152.5.7582292. [DOI] [PubMed] [Google Scholar]
  • 79.Tsai W.C., Strieter R.M., Mehrad B., Newstead M.W., Zeng X., Standiford T.J. CXC chemokine receptor CXCR2 is essential for protective innate host response in murine Pseudomonas aeruginosa pneumonia. Infect Immun. 2000;68:4289–4296. doi: 10.1128/IAI.68.7.4289-4296.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 80.Adams J.M., Hauser C.J., Livingston D.H., Lavery R.F., Fekete Z., Deitch E.A. Early trauma polymorphonuclear neutrophil responses to chemokines are associated with development of sepsis, pneumonia, and organ failure. J Trauma. 2001;51:452–456. doi: 10.1097/00005373-200109000-00005. [DOI] [PubMed] [Google Scholar]
  • 81.Tarlowe M.H., Duffy A., Kannan K.B., Itagaki K., Lavery R.F., Livingston D.H., et al. Prospective study of neutrophil chemokine responses in trauma patients at risk for pneumonia. Am J Respir Crit Care Med. 2005;171:753–759. doi: 10.1164/rccm.200307-917OC. [DOI] [PubMed] [Google Scholar]
  • 82.Brown K.A., Brain S.D., Pearson J.D., Edgeworth J.D., Lewis S.M., Treacher D.F. Neutrophils in development of multiple organ failure in sepsis. Lancet. 2006;368(9530):157–169. doi: 10.1016/S0140-6736(06)69005-3. [DOI] [PubMed] [Google Scholar]
  • 83.Terregino C.A., Lubkin C.L., Thom S.R. Impaired neutrophil adherence as an early marker of systemic inflammatory response syndrome and severe sepsis. Ann Emerg Med. 1997;29:400–403. doi: 10.1016/S0196-0644(97)70353-6. [DOI] [PubMed] [Google Scholar]
  • 84.Arraes S.M., Freitas M.S., da Silva S.V., de Paula Neto H.A., Alves-Filho J.C., Auxiliadora Martins M., et al. Impaired neutrophil chemotaxis in sepsis associates with GRK expression and inhibition of actin assembly and tyrosine phosphorylation. Blood. 2006;108:2906–29013. doi: 10.1182/blood-2006-05-024638. [DOI] [PubMed] [Google Scholar]
  • 85.Rot A., von Andrian U.H. Chemokines in innate and adaptive host defense: basic chemokinese grammar for immune cells. Annu Rev Immunol. 2004;22:891–928. doi: 10.1146/annurev.immunol.22.012703.104543. [DOI] [PubMed] [Google Scholar]
  • 86.Martins P.S., Kallas E.G., Neto M.C., Dalboni M.A., Blecher S., Salomão R. Upregulation of reactive oxygen species generation and phagocytosis, and increased apoptosis in human neutrophils during severe sepsis and septic shock. Shock. 2003;20:208–212. doi: 10.1097/01.shk.0000079425.52617.db. [DOI] [PubMed] [Google Scholar]
  • 87.Kaufmann I., Hoelzl A., Schliephake F., Hummel T., Chouker A., Peter K., et al. Polymorphonuclear leukocyte dysfunction syndrome in patients with increasing sepsis severity. Shock. 2006;26:254–261. doi: 10.1097/01.shk.0000223131.64512.7a. [DOI] [PubMed] [Google Scholar]
  • 88.Danikas D.D., Karakantza M., Theodorou G.L., Sakellaropoulos G.C., Gogos C.A. Prognostic value of phagocytic activity of neutrophils and monocytes in sepsis. Correlation to CD64 and CD14 antigen expression. Clin Exp Immunol. 2008;154:87–97. doi: 10.1111/j.1365-2249.2008.03737.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 89.van der Meer W., Pickkers P., Scott C.S., van der Hoeven J.G., Gunnewiek J.K. Hematological indices, inflammatory markers and neutrophil CD64 expression: comparative trends during experimental human endotoxemia. J Endotoxin Res. 2007;13:94–100. doi: 10.1177/0968051907079101. [DOI] [PubMed] [Google Scholar]
  • 90.Taneja R., Sharma A.P., Hallett M.B., Findlay G.P., Morris M.R. Immature circulating neutrophils in sepsis have impaired phagocytosis and calcium signaling. Shock. 2008;30:618–622. doi: 10.1097/SHK.0b013e318173ef9c. [DOI] [PubMed] [Google Scholar]
  • 91.Serbina N.V., Jia T., Hohl T.M., Pamer E.G. Monocyte-mediated defense against microbial pathogens. Annu Rev Immunol. 2008;26:421–452. doi: 10.1146/annurev.immunol.26.021607.090326. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 92.Gordon S., Taylor P.R. Monocyte and macrophage heterogeneity. Nat Rev Immunol. 2005;5:953–964. doi: 10.1038/nri1733. [DOI] [PubMed] [Google Scholar]
  • 93.Benoit M., Desnues B., Mege J.L. Macrophage polarization in bacterial infections. J Immunol. 2008;181:3733–3739. doi: 10.4049/jimmunol.181.6.3733. [DOI] [PubMed] [Google Scholar]
  • 94.Mosser D.M., Edwards J.P. Exploring the full spectrum of macrophage activation. Nat Rev Immunol. 2008;8:958–969. doi: 10.1038/nri2448. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 95.Gerber J.S., Mosser D.M. Reversing lipopolysaccharide toxicity by ligating the macrophage Fc? receptors. J Immunol. 2001;166:6861–6868. doi: 10.4049/jimmunol.166.11.6861. [DOI] [PubMed] [Google Scholar]
  • 96.Spolarics Z., Siddiqi M., Siegel J.H., Garcia Z.C., Stein D.S., Denny T., et al. Depressed interleukin-12-producing activity by monocytes correlates with adverse clinical course and a shift toward Th2-type lymphocyte pattern in severely injured male trauma patients. Crit Care Med. 2003;31:1722–1729. doi: 10.1097/01.CCM.0000063579.43470.AA. [DOI] [PubMed] [Google Scholar]
  • 97.Weighardt H., Heidecke C.D., Westerholt A., Emmanuilidis K., Maier S., Veit M., et al. Impaired monocyte IL-12 production before surgery as a predictive factor for the lethal outcome of postoperative sepsis. Ann Surg. 2002;235:560–567. doi: 10.1097/00000658-200204000-00015. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 98.Ditschkowski M., Kreuzfelder E., Rebmann V., Ferencik S., Majetschak M., Schmid E.N., et al. HLA-DR expression and soluble HLA-DR levels in septic patients after trauma. Ann Surg. 1999;229:246–254. doi: 10.1097/00000658-199902000-00013. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 99.Wakefield C.H., Carey P.D., Foulds S., Monson J.R., Guillou P.J. Changes in major histocompatibility complex class II expression in monocytes and T cells of patients developing infection after surgery. Br J Surg. 1993;80:205–209. doi: 10.1002/bjs.1800800224. [DOI] [PubMed] [Google Scholar]
  • 100.Schinkel C., Sendtner R., Zimmer S., Faist E. Functional analysis of monocyte subsets in surgical sepsis. J Trauma. 1998;44:743–748. doi: 10.1097/00005373-199805000-00001. [DOI] [PubMed] [Google Scholar]
  • 101.Venet F., Tissot S., Debard A.L., Faudot C., Crampé C., Pachot A., et al. Decreased monocyte human leukocyte antigen-DR expression after severe burn injury: Correlation with severity and secondary septic shock. Crit Care Med. 2007;35:1910–1917. doi: 10.1097/01.CCM.0000275271.77350.B6. [DOI] [PubMed] [Google Scholar]
  • 102.Tschaikowsky K., Hedwig-Geissing M., Schiele A., Bremer F., Schywalsky M., Schüttler J. Coincidence of pro- and anti-inflammatory responses in the early phase of severe sepsis: Longitudinal study of mononuclear histocompatibility leukocyte antigen-DR expression, procalcitonin, C-reactive protein, and changes in T-cell subsets in septic and postoperative patients. Crit Care Med. 2002;30:1015. doi: 10.1097/00003246-200205000-00010. [DOI] [PubMed] [Google Scholar]
  • 103.Monneret G., Finck M.E., Venet F., Debard A.L., Bohé J., Bienvenu J., et al. The anti-inflammatory response dominates after septic shock: Association of low monocyte HLA-DR expression and high interleukin-10 concentration. Immunol Lett. 2004;95:193–198. doi: 10.1016/j.imlet.2004.07.009. [DOI] [PubMed] [Google Scholar]
  • 104.Fumeaux T., Pugin J. Role of interleukin-10 in the intracellular sequestration of human leukocyte antigen-DR in monocytes during septic shock. Am J Respir Crit Care Med. 2002;166:1475–1482. doi: 10.1164/rccm.200203-217OC. [DOI] [PubMed] [Google Scholar]
  • 105.Lekkou A., Karakantza M., Mouzaki A., Kalfarentzos F., Gogos C.A. Cytokine production and monocyte HLA-DR expression as predictors of outcome for patients with community-acquired severe infections. Clin Diagn Lab Immunol. 2004;11:161–167. doi: 10.1128/CDLI.11.1.161-167.2004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 106.Abe R., Hirasawa H., Oda S., Sadahiro T., Nakamura M., Watanabe E., et al. Up-regulation of interleukin-10 mRNA expression in peripheral leukocytes predicts poor outcome and diminished human leukocyte antigen-DR expression on monocytes in septic patients. J Surg Res. 2008;147:1–8. doi: 10.1016/j.jss.2007.07.009. [DOI] [PubMed] [Google Scholar]
  • 107.de Waal Malefyt R., Haanen J., Spits H., Roncarolo M.G., te Velde A., Figdor C., et al. Interleukin 10 (IL-10) and viral IL-10 strongly reduce antigen-specific human T cell proliferation by diminishing the antigen-presenting capacity of monocytes via down-regulation of class II major histocompatibility complex expression. J Exp Med. 1991;174:915. doi: 10.1084/jem.174.4.915. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 108.Morel A.S., Coulton G., Londei M. Regulation of major histocompatibility complex class II synthesis by interleukin-10. Immunology. 2002;106:229–236. doi: 10.1046/j.1365-2567.2002.01418.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 109.Aste-Amezaga M., Ma X., Sartori A., Trinchieri G. Molecular mechanisms of the induction of IL-12 and its inhibition by IL-10. J Immunol. 1998;160:5936–5944. [PubMed] [Google Scholar]
  • 110.Randow F., Syrbe U., Meisel C., Krausch D., Zuckermann H., Platzer C., et al. Mechanism of endotoxin desensitization: involvement of interleukin 10 and transforming growth factor beta. J Exp Med. 1995;181:1887–1892. doi: 10.1084/jem.181.5.1887. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 111.Döcke W.D., Randow F., Syrbe U., Krausch D., Asadullah K., Reinke P., et al. Monocyte deactivation in septic patients: restoration by IFN-gamma treatment. Nat Med. 1997;3:678–681. doi: 10.1038/nm0697-678. [DOI] [PubMed] [Google Scholar]
  • 112.Astiz M., Saha D., Lustbader D., Lin R., Rackow E. Monocyte response to bacterial toxins, expression of cell surface receptors, and release of anti-inflammatory cytokines during sepsis. J Lab Clin Med. 1996;128:594–600. doi: 10.1016/S0022-2143(96)90132-8. [DOI] [PubMed] [Google Scholar]
  • 113.Sfeir T., Saha D.C., Astiz M., Rackow E.C. Role of interleukin-10 in monocyte hyporesponsiveness associated with septic shock. Crit Care Med. 2001;29:129–133. doi: 10.1097/00003246-200101000-00026. [DOI] [PubMed] [Google Scholar]
  • 114.Tsujimoto H., Ono S., Majima T., Efron P.A., Kinoshita M., Hiraide H., et al. Differential toll-like receptor expression after ex vivo lipopolysaccharide exposure in patients with sepsis and following surgical stress. Clin Immunol. 2006;119:180–187. doi: 10.1016/j.clim.2006.01.004. [DOI] [PubMed] [Google Scholar]
  • 115.Schaaf B., Luitjens K., Goldmann T., van Bremen T., Sayk F., Dodt C., et al. Mortality in human sepsis is associated with downregulation of Toll-like receptor 2 and CD14 expression on blood monocytes. Diagn Pathol. 2009;4:12. doi: 10.1186/1746-1596-4-12. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 116.Re F., Strominger J.L. IL-10 Released by concomitant TLR2 stimulation blocks the induction of a subset of Th1 cytokines that are specifically induced by TLR4 or TLR3 in human dendritic cells. J Immunol. 2004;173:7548–7555. doi: 10.4049/jimmunol.173.12.7548. [DOI] [PubMed] [Google Scholar]
  • 117.Tamandl D., Bahrami M., Wessner B., Weigel G., Ploder M., Furst W., et al. Modulation of toll-like receptor 4 expression on human monocytes by tumor necrosis factor and interleukin-6: tumor necrosis factor evokes lipopolysaccharide hyporesponsiveness, whereas interleukin-6 enhances lipopolysaccharide activity. Shock. 2003;20:224–229. doi: 10.1097/00024382-200309000-00005. [DOI] [PubMed] [Google Scholar]
  • 118.Salomao R., Brunialti M.K., Gomes N.E., Mendes M.E., Diaz R.S., Komninakis S., et al. Toll-like receptor pathway signaling is differently regulated in neutrophils and peripheral mononuclear cells of patients with sepsis, severe sepsis, and septic shock. Crit Care Med. 2009;37:132–139. doi: 10.1097/CCM.0b013e318192fbaf. [DOI] [PubMed] [Google Scholar]
  • 119.Martins P.S., Brunialti M.K., Martos L.S., Machado F.R., Assunçao M.S., Blecher S., et al. Expression of cell surface receptors and oxidative metabolism modulation in the clinical continuum of sepsis. Crit Care. 2008;12:R25. doi: 10.1186/cc6801. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 120.Zughaier S.M., Shafer W.M., Stephens D.S. Antimicrobial peptides and endotoxin inhibit cytokine and nitric oxide release but amplify respiratory burst response in human and murine macrophages. Cell Microbiol. 2005;7:1251–1262. doi: 10.1111/j.1462-5822.2005.00549.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 121.Wolkow P.P. Involvement and dual effects of nitric oxide in septic shock. Inflamm Res. 1998;47(4):152–166. doi: 10.1007/s000110050309. [DOI] [PubMed] [Google Scholar]
  • 122.Cauwels A., Brouckaert P. Survival of TNF toxicity: dependence on caspases and NO. Arch Biochem Biophys. 2007;462:132–139. doi: 10.1016/j.abb.2007.01.021. [DOI] [PubMed] [Google Scholar]
  • 123.Bultinck J., Sips P., Vakaet L., Brouckaert P., Cauwels A. Systemic NO production during (septic) shock depends on parenchymal and not on hematopoietic cells: in vivo iNOS expression pattern in (septic) shock. FASEB J. 2006;20:2363–2365. doi: 10.1096/fj.06-5798fje. [DOI] [PubMed] [Google Scholar]
  • 124.Annane D., Sanquer S., Sébille V., Faye A., Djuranovic D., Raphaël J.C., et al. Compartmentalised inducible nitric-oxide synthase activity in septic shock. Lancet. 2000;355(9210):1143–1148. doi: 10.1016/S0140-6736(00)02063-8. [DOI] [PubMed] [Google Scholar]
  • 125.Hirabayashi N., Tanimura H., Yamaue H. Nitrite/nitrate oxide and cytokines changes in patients with surgical stress. Dig Dis Sci. 2005;50:893–897. doi: 10.1007/s10620-005-2661-2. [DOI] [PubMed] [Google Scholar]
  • 126.Novotny A.R., Emmanuel K., Maier S., Westerholt A., Weighardt H., Stadler J., et al. Cytochrome P450 activity mirrors nitric oxide levels in postoperative sepsis: predictive indicators of lethal outcome. Surgery. 2007;141:376–384. doi: 10.1016/j.surg.2006.08.011. [DOI] [PubMed] [Google Scholar]
  • 127.Kobayashi A., Hashimoto S., Kooguchi K., Kitamura Y., Onodera H., Urata Y., et al. Expression of inducible nitric oxide synthase and inflammatory cytokines in alveolar macrophages of ARDS following sepsis. Chest. 1998;113:1632–1639. doi: 10.1378/chest.113.6.1632. [DOI] [PubMed] [Google Scholar]
  • 128.Tsukahara Y., Morisaki T., Horita Y., Torisu M., Tanaka M. Expression of inducible nitric oxide synthase in circulating neutrophils of the systemic inflammatory response syndrome and septic patients. World J Surg. 1998;22:771–777. doi: 10.1007/s002689900468. [DOI] [PubMed] [Google Scholar]
  • 129.Weinberg J.B., Misukonis M.A., Shami P.J., Mason S.N., Sauls D.L., Dittman W.A., et al. Human mononuclear phagocyte inducible nitric oxide synthase (iNOS): analysis of iNOS mRNA, iNOS protein, biopterin, and nitric oxide production by blood monocytes and peritoneal macrophages. Blood. 1995;86:1184–1195. [PubMed] [Google Scholar]
  • 130.Tashiro T., Yamamori H., Takagi K., Hayashi N., Furukawa K., Nitta H., et al. Changes in immune function following surgery for esophageal carcinoma. Nutrition. 1999;15:760–766. doi: 10.1016/S0899-9007(99)00151-3. [DOI] [PubMed] [Google Scholar]
  • 131.Faist E., Kupper T.S., Baker C.C., Chaudry I.H., Dwyer J., Baue A.E. Depression of cellular immunity after major injury. Its association with posttraumatic complications and its reversal with immunomodulation. Arch Surg. 1986;121:1000–1005. doi: 10.1001/archsurg.1986.01400090026004. [DOI] [PubMed] [Google Scholar]
  • 132.O’Mahony J.B., Palder S.B., Wood J.J., McIrvine A., Rodrick M.L., Demling R.H., et al. Depression of cellular immunity after multiple trauma in the absence of sepsis. J Trauma. 1984;24:869–875. doi: 10.1097/00005373-198410000-00001. [DOI] [PubMed] [Google Scholar]
  • 133.McIrvine A.J., O’Mahony J.B., Saporoschetz I., Mannick J.A. Depressed immune response in burn patients: use of monoclonal antibodies and functional assays to define the role of suppressor cells. Ann Surg. 1982;196:297–304. doi: 10.1097/00000658-198209000-00008. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 134.Mosmann T.R., Cherwinski H., Bond M.W., Giedlin M.A., Coffman R.L. Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. J Immunol. 1986;136:2348–2357. [PubMed] [Google Scholar]
  • 135.Decker D., Schondorf M., Bidlingmaier F., Hirner A., von Ruecker A.A. Surgical stress induces a shift in the type-1/type-2 T-helper cell balance, suggesting down-regulation of cell-mediated and up-regulation of antibody-mediated immunity commensurate to the trauma. Surgery. 1996;119:316–325. doi: 10.1016/S0039-6060(96)80118-8. [DOI] [PubMed] [Google Scholar]
  • 136.Heidecke C.D., Hensler T., Weighardt H., Zantl N., Wagner H., Siewert J.R., et al. Selective defects of T lymphocyte function in patients with lethal intra-abdominal infection. Am J Surg. 1999;178:288–292. doi: 10.1016/S0002-9610(99)00183-X. [DOI] [PubMed] [Google Scholar]
  • 137.Zedler S., Bone R.C., Baue A.E., von Donnersmarck G.H., Faist E. T-cell reactivity and its predictive role in immunosuppression after burns. Crit Care Med. 1999;27:66–72. doi: 10.1097/00003246-199901000-00028. [DOI] [PubMed] [Google Scholar]
  • 138.Kidd P. Th1/Th2 balance: the hypothesis, its limitations, and implications for health and disease. Altern Med Rev. 2003;8:223–246. [PubMed] [Google Scholar]
  • 139.Hwang E.S., Szabo S.J., Schwartzberg P.L., Glimcher L.H. T helper cell fate specified by kinase-mediated interaction of T-bet with GATA-3. Science. 2005;307:430–433. doi: 10.1126/science.1103336. [DOI] [PubMed] [Google Scholar]
  • 140.Miller A.C., Rashid R.M., Elamin E.M. The “Tr” in trauma: the helper T-cell response and the role of immunomodulation in trauma and burn patients. J Trauma. 2007;63:1407–1417. doi: 10.1097/TA.0b013e31815b839e. [DOI] [PubMed] [Google Scholar]
  • 141.O’Garra A., Arai N. The molecular basis of T helper 1 and T helper 2 cell differentiation. Trends Cell Biol. 2000;10:542–550. doi: 10.1016/S0962-8924(00)01856-0. [DOI] [PubMed] [Google Scholar]
  • 142.O’suilleabhain C., O’sullivan S.T., Kelly J.L., Lederer J., Mannick J.A., Rodrick M.L. Interleukin-12 treatment restores normal resistance to bacterial challenge after burn injury. Surgery. 1996;120:290–296. doi: 10.1016/S0039-6060(96)80300-X. [DOI] [PubMed] [Google Scholar]
  • 143.Hensler T., Heidecke C.D., Hecker H., Heeg K., Bartels H., Zantl N., et al. Increased susceptibility to postoperative sepsis in patients with impaired monocyte IL-12 production. J Immunol. 1998;161:2655–2659. [PubMed] [Google Scholar]
  • 144.Afzali B., Lombardi G., Lechler R.I., Lord G.M. The role of T helper 17 (Th17) and regulatory T cells (Treg) in human organ transplantation and autoimmune disease. Clin Exp Immunol. 2007;148:32–46. doi: 10.1111/j.1365-2249.2007.03356.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 145.Mills K.H. Induction, function and regulation of IL-17-producing T cells. Eur J Immunol. 2008;38:2636–2649. doi: 10.1002/eji.200838535. [DOI] [PubMed] [Google Scholar]
  • 146.Chen Z., O’shea J.J. Th17 cells: a new fate for differentiating helper T cells. Immunol Res. 2008;41:87–102. doi: 10.1007/s12026-007-8014-9. [DOI] [PubMed] [Google Scholar]
  • 147.Saruta M., Yu Q.T., Fleshner P.R., Mantel P.Y., Schmidt-Weber C.B., Banham A.H., et al. Characterization of FOXP3+CD4+ regulatory T cells in Crohn’s disease. Clin Immunol. 2007;125:281–290. doi: 10.1016/j.clim.2007.08.003. [DOI] [PubMed] [Google Scholar]
  • 148.Xu D., Fu J., Jin L., Zhang H., Zhou C., Zou Z., et al. Circulating and liver resident CD4+CD25+ regulatory T cells actively influence the antiviral immune response and disease progression in patients with hepatitis B. J Immunol. 2006;177:739–747. doi: 10.4049/jimmunol.177.1.739. [DOI] [PubMed] [Google Scholar]
  • 149.MacConmara M.P., Maung A.A., Fujimi S., McKenna A.M., Delisle A., Lapchak P.H., et al. Increased CD4+ CD25+ T regulatory cell activity in trauma patients depresses protective Th1 immunity. Ann Surg. 2006;244:514–523. doi: 10.1097/01.sla.0000239031.06906.1f. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 150.Tiemessen M.M., Jagger A.L., Evans H.G., van Herwijnen M.J., John S., Taams L.S. CD4+CD25+Foxp3+ regulatory T cells induce alternative activation of human monocytes/macrophages. Proc Natl Acad Sci USA. 2007;104:19446–19451. doi: 10.1073/pnas.0706832104. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 151.Korn T., Anderson A.C., Bettelli E., Oukka M. The dynamics of effector T cells and Foxp3+ regulatory T cells in the promotion and regulation of autoimmune encephalomyelitis. J Neuroimmunol. 2007;191:51–60. doi: 10.1016/j.jneuroim.2007.09.009. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 152.Zheng Y., Danilenko D.M., Valdez P., Kasman I., Eastham-Anderson J., Wu J., et al. Interleukin-22, a T(H)17 cytokine, mediates IL-23-induced dermal inflammation and acanthosis. Nature. 2007;445(7128):648–651. doi: 10.1038/nature05505. [DOI] [PubMed] [Google Scholar]
  • 153.Loong C.C., Hsieh H.G., Lui W.Y., Chen A., Lin C.Y. Evidence for the early involvement of interleukin 17 in human and experimental renal allograft rejection. J Pathol. 2002;197:322–332. doi: 10.1002/path.1117. [DOI] [PubMed] [Google Scholar]
  • 154.Fujino S., Andoh A., Bamba S., Ogawa A., Hata K., Araki Y., et al. Increased expression of interleukin 17 in inflammatory bowel disease. Gut. 2003;52:65–70. doi: 10.1136/gut.52.1.65. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 155.Frangen T.M., Bogdanski D., Schinkel C., Roetman B., Kälicke T., Muhr G., et al. Systemic IL-17 after severe injuries. Shock. 2008;29(4):462–467. doi: 10.1097/shk.0b013e3181598a9d. [DOI] [PubMed] [Google Scholar]
  • 156.Hotchkiss R.S., Tinsley K.W., Swanson P.E., Schmieg R.E., Jr, Hui J.J., Chang K.C., et al. Sepsis-induced apoptosis causes progressive profound depletion of B and CD4+ T lymphocytes in humans. J Immunol. 2001;166:6952–6963. doi: 10.4049/jimmunol.166.11.6952. [DOI] [PubMed] [Google Scholar]
  • 157.Felmet K.A., Hall M.W., Clark R.S., Jaffe R., Carcillo J.A. Prolonged lymphopenia, lymphoid depletion, and hypoprolactinemia in children with nosocomial sepsis and multiple organ failure. J Immunol. 2005;174:3765–3772. doi: 10.4049/jimmunol.174.6.3765. [DOI] [PubMed] [Google Scholar]
  • 158.Hotchkiss R.S., Osmon S.B., Chang K.C., Wagner T.H., Coopersmith C.M., Karl I.E. Accelerated lymphocyte death in sepsis occurs by both the death receptor and mitochondrial pathways. J Immunol. 2005;174:5110–5118. doi: 10.4049/jimmunol.174.8.5110. [DOI] [PubMed] [Google Scholar]
  • 159.Wesche D.E., Lomas-Neira J.L., Perl M., Chung C.S., Ayala A. Leukocyte apoptosis and its significance in sepsis and shock. J Leukoc Biol. 2005;78:325–337. doi: 10.1189/jlb.0105017. [DOI] [PubMed] [Google Scholar]
  • 160.Hotchkiss R.S., Nicholson D.W. Apoptosis and caspases regulate death and inflammation in sepsis. Nat Rev Immunol. 2006;6:813–822. doi: 10.1038/nri1943. [DOI] [PubMed] [Google Scholar]

Articles from Surgery Today are provided here courtesy of Nature Publishing Group

RESOURCES