Skip to main content
Springer Nature - PMC COVID-19 Collection logoLink to Springer Nature - PMC COVID-19 Collection
. 1977;93(1):71–88. [Article in German] doi: 10.1007/BF01276283

Viruseinschlüsse in der Zellwand und in Protoplasten vonin vitro kultiviertenArmoracia-Geweben

Virus inclusions in the cell wall and in the protoplast fromin vitro cultivatedArmoracia tissues

M Gailhofer 1,2, I Thaler 1,2, W Rücker 1,2
PMCID: PMC7101820

Summary

Root explants ofArmoracia rusticana were cultivatedin vitro on theMurashige, andSkoog 1962 nutrient medium with addition of 2,4 D (2,4-Dichlorophenoxyacetic acid). Under such conditions callus tissue containing several apical meristems developed. Without 2,4 D the explants were growing to aseptic small plants; when further cultivated in soil they developed into big plants showing leaves with different deformations. These leaves, aseptically cultivated plants and callus tissue were examined by light and electron microscopy.

There occured two types of inclusions consisting of isometric and elongated particles, respectively. Those of the isometric type were observed in the cytoplasm of meristematic cells of the callus; the isometric particles had a diameter of about 20–22 nm and were arranged hexagonally or in curvilinear arrays. In all other tissues that were examined such aggregates were to be seen only in vacuoles. Isometric particles were also found in plasmodesmata of all tissues examined. They lay in a tubulus which protrudes into the cytoplasm on one side of the cell wall.

Desmotubuli appeared only in particle-free plasmodesmata. Protrusions of the cell wall into the cytoplasm containing tubuli and isometric particles within were observed only in callus tissue and in epidermic cells of leaves. In the cell wall of callus cells, conspicuous cavities connected with the cytoplasm by plasmodesmata contained many particles which were arranged in hexagonal structures. It seemed as if they had been put away into the cell walls or into the vacuoles. The occurence of fibrillar inclusions together with those consisting of isometric particles in the same cell was extremely rare.

The fibrillar inclusions were observed in the cytoplasm and in the nucleus. The diameter of one fibril is about 12 nm.

The thylacoids in well differentiated chloroplasts in callus and in cells of leaves are curved; single swelled thylacoids lie as vesicles in peripheral stroma.

As tissues ofArmoracia rusticana plants from different localities do not contain such inclusions we assume that the root segment examined was infected with two different viruses. The isolation of the viruses has not yet been possible.

Footnotes

Wir danken dem Österreichischen Fonds zur Förderung der wissenschaftlichen Forschung für die Unterstützung der Arbeit.

Literatur

  1. Amelunxen F., Thaler I. Die Feinstruktur der Eiweißspindeln vonZygocactus truncatus. Z. Pflanzenphysiol. 1967;57:269–279. [Google Scholar]
  2. Cheo P. C. Effect of 2,4-dichlorophenoxyacetic acid on tobacco mosaic virus infection. Phytopathology. 1969;59:243–244. [Google Scholar]
  3. Conti G. G., Vegetti G., Bassi M., Favali M. A. Some ultrastructural and cytochemical observations on Chinese cabbage leaves infected with cauliflower mosaic virus. Virology. 1972;47:694–700. doi: 10.1016/0042-6822(72)90559-4. [DOI] [PubMed] [Google Scholar]
  4. Davison E. M. Cell to cell movement of tobacco ringspot virus. Virology. 1969;37:694–696. doi: 10.1016/0042-6822(69)90292-x. [DOI] [PubMed] [Google Scholar]
  5. de Zoeten G. A., Gaard G. Possibilities for inter- and intracellular translocation of some icosahedral plant viruses. J. Cell Biol. 1969;40:814–823. doi: 10.1083/jcb.40.3.814. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Gerola F. M., Bassi M. An electron microscopy study of leaf vein tumours from maize plants experimentally infected with maize rough dwarf virus. Caryologia. 1966;19:13–40. [Google Scholar]
  7. Gibbs A. J. Viruses and plasmodesmata. In: Gunning B. E. S., Robards A. W., editors. Intercellular communication in plants: studies on plasmodesmata. Berlin-Heidelberg-New York: Springer; 1976. pp. 149–164. [Google Scholar]
  8. Honda Y., Matsui C. Electron microscopy of intracellular radish mosaic virus. Phytopathology. 1972;62:448–452. [PubMed] [Google Scholar]
  9. Holmes F. O. Local lesions of mosaic inNicotiana tabacum L. Contrib. Boyce Thompson Inst. 1931;3:163–172. [Google Scholar]
  10. Jones A. T., Kinninmonth A. M., Roberts I. M. Ultrastructural changes in differentiated leaf cells infected with cherry leaf roll virus. J. gen. Virol. 1973;18:61–64. [Google Scholar]
  11. Juretić N. Serological properties and inclusion bodies of a tobamo-virus isolated fromRoripa amphibia. Phytopath. Z. 1974;79:16–23. [Google Scholar]
  12. Kim K. S., Fulton J. P. Tubules with virus-like particles in leaf cells infected with bean pod mottle virus. Virology. 1971;43:329–337. doi: 10.1016/0042-6822(71)90305-9. [DOI] [PubMed] [Google Scholar]
  13. Kitajima E. W., Lauritis J. A. Plant virions in the plasmodesmata. Virology. 1969;37:681–684. doi: 10.1016/0042-6822(69)90288-8. [DOI] [PubMed] [Google Scholar]
  14. Klinkowski M. Pflanzliche Virologie II/2. Berlin: Akademie-Verlag; 1968. [Google Scholar]
  15. Lawson R. H., Hearon S. Subcellular localization of chrysanthemum aspermy virus in tobacco and chrysanthemum leaf tissue. Virology. 1970;41:30–37. doi: 10.1016/0042-6822(70)90051-6. [DOI] [PubMed] [Google Scholar]
  16. Luft J. H. Improvements in epoxy resin embedding methods. J. biophys. biochem. Cytol. 1961;9:409–414. doi: 10.1083/jcb.9.2.409. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Martelli G. P., Russo M. Electron microscopy of artichoke mottled crinkle virus in leaves ofChenopodium quinoa Willd. J. Ultrastruct. Res. 1973;42:93–107. doi: 10.1016/s0022-5320(73)80009-7. [DOI] [PubMed] [Google Scholar]
  18. Miličić, D., Z.Štefanac, and D.Mamula, 1967: Intracellular changes induced by crucifer viruses. Plant Virology Proc. 6th Conf. Czechoslov. Plant Virologists, Olomouc 1967, 54–61.
  19. Murant A. F., Roberts I. M., Goold R. A. Cytopathological changes and extractable infectivity inNicotiana clevelandii leaves infected with carrot mottle virus. J. gen. Virol. 1973;21:269–283. [Google Scholar]
  20. Murant A. F., Roberts I. M., Goold R. A., Hutcheson A. M. Effects of parsnip yellow fleck virus on plant cells. J. gen. Virol. 1975;26:277–285. [Google Scholar]
  21. Murashige T., Skoog F. A revised medium for rapid growth bio assays with tobacco tissue cultures. Physiol. Plant. 1962;15:473–497. [Google Scholar]
  22. Palade G. E. A study of fixation for electron microscopy. J. exp. Med. 1952;95:285–298. doi: 10.1084/jem.95.3.285. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Peña-Iglesias A., Rubio-Huertos M. Ultraestructura de hojas deChenopodium quinoa Wild infectadas con el virus entrenudo corto infeccioso de la vid. Microbiol. Espan. 1971;24:183–191. [PubMed] [Google Scholar]
  24. Raine J., Weintraub M., Schroeder B. Flexuous rods and vesicles in leaf and petiole phloem of little-cherry diseasedPrunus spp. Phytopathology. 1975;65:1181–1186. [Google Scholar]
  25. Reynolds E. The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J. Cell Biol. 1963;17:208–213. doi: 10.1083/jcb.17.1.208. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Roberts D. A., Christie R. G., Archers M. C., Jr. Infection of apical initials in tobacco shoot meristems by tobacco ringspot virus. Virology. 1970;42:217–220. doi: 10.1016/0042-6822(70)90255-2. [DOI] [PubMed] [Google Scholar]
  27. Roberts I. M., Harrison B. D. Inclusion bodies and tubular structures inChenopodium amaranticolor plants infected with strawberry latent ringspot virus. J. gen. Virol. 1970;7:47–54. doi: 10.1099/0022-1317-7-1-47. [DOI] [PubMed] [Google Scholar]
  28. Sabatini D. D., Bensch K., Barrnett R. J. Cytochemistry and electron microscopy. J. Cell Biol. 1963;17:19–58. doi: 10.1083/jcb.17.1.19. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Šarić A., Wrischer M. Fine structure changes in different host plants induced by grapevine fanleaf virus. Phytopathology. 1975;84:97–104. [Google Scholar]
  30. Simons T. J., Israel H. W., Ross A. F. Effect of 2,4-dichlorophenoxyacetic acid on tobacco mosaic virus lesions in tobacco and on the fine structure of adjacent cells. Virology. 1972;48:502–515. doi: 10.1016/0042-6822(72)90061-x. [DOI] [PubMed] [Google Scholar]
  31. Štefanac Z., Ljubešić N. Inclusion bodies in cells infected with radish mosaic virus. J. gen. Virol. 1971;13:51–57. doi: 10.1099/0022-1317-13-1-51. [DOI] [PubMed] [Google Scholar]
  32. Ushiyama R., Matthews R. E. F. The significance of chloroplast abnormalities associated with infection by turnip yellow mosaic virus. Virology. 1970;42:293–303. doi: 10.1016/0042-6822(70)90273-4. [DOI] [PubMed] [Google Scholar]
  33. van der Scheer C., Groenewegen J. Structure in cells ofVigna unguiculata infected with cowpea mosaic virus. Virology. 1971;46:493–497. doi: 10.1016/0042-6822(71)90051-1. [DOI] [PubMed] [Google Scholar]
  34. Weintraub M., Ragetli H. W. J. Electron microscopy of the bean and cowpea strains of southern bean mosaic virus within leaf cells. J. Ultrastruct. Res. 1970;32:167–189. doi: 10.1016/s0022-5320(70)80043-0. [DOI] [PubMed] [Google Scholar]
  35. Weintraub M., Ragetli H. W. J., Lo E. Potato virus Y particles in plasmodesmata of tobacco leaf cells. J. Ultrastruct. Res. 1974;46:131–148. doi: 10.1016/s0022-5320(74)80027-4. [DOI] [PubMed] [Google Scholar]
  36. Wrischer M. Kristalloide im Plastidenstroma. Planta. 1967;75:309–318. doi: 10.1007/BF00387354. [DOI] [PubMed] [Google Scholar]

Articles from Protoplasma are provided here courtesy of Nature Publishing Group

RESOURCES