Skip to main content
Springer Nature - PMC COVID-19 Collection logoLink to Springer Nature - PMC COVID-19 Collection
. 1994;172(4):189–213. doi: 10.1007/BF00164437

Adhesion molecules in lung diseases

J Hamacher 1, T Schaberg 1
PMCID: PMC7101890  PMID: 8028388

Abstract

The human body possesses highly specialized cellular defense mechanisms that, when activated pathologically, can induce a number of immunologic disorders. For a normal cellular immune response, the following conditions must be fulfilled: (1) accumulation of white blood cells, (2) their diapedesis through the vessel walls of the inflammatory area affected by an injurious agent, and (3) normal cellular effector functions in the tissue. This cascade of inflammatory processes has recently been shown to be regulated by a group of molecules that are termed adhesion molecules and consist of three subfamilies: selectins, the immunoglobulin supergene family, and integrins.

The cellular functions influenced by adhesion molecules include, among others, cytotoxic T-cell responses, CD4-dependent activation of B lymphocytes by T lymphocytes, activation of granulocytes and macrophages, phagocytosis of opsonized particles by monocytes, macrophages, and granulocytes, antigen-presenting function of macrophages, their antibody-dependent cytotoxicity, initiation of a respiratory burst by white blood cells, and activation of fibroblasts.

Studies performed in recent years have shown that pathogenetically relevant changes in the expression and function of adhesion molecules are involved in a variety of pulmonary diseases. These changes include the accumulation and activation of alveolar macrophages in smokers, experimentally induced bronchial hyperreactivity in bronchial asthma, accumulation of eosinophils in allergic rhinitis, bleomycin-induced pulmonary fibrosis, binding of viruses and bacteria to respiratory mucosa, and various mechanisms of acute damage to pulmonary parenchyma. Though their role in tumor development is still unclear, adhesion molecules are obviously involved in determining the route and organotropism of metastases. Further studies of the function of adhesion molecules in pulmonary diseases will contribute to our understanding of the pathomechanisms of these diseases and, through the development of specific antibodies, may provide attractive new therapeutic approaches to problems for which treatment is not yet available

Key words: Integrins, LeuCAM, Sarcoidosis, Pulmonary fibrosis, Asthma, Corticosteroids

Footnotes

Offprint requests to: T. Schaberg

References

  • 1.Albelda SM. Endothelial and epithelial cell adhesion molecules. Am J Respir Cell Mol Biol. 1991;1991:195–203. doi: 10.1165/ajrcmb/4.3.195. [DOI] [PubMed] [Google Scholar]
  • 2.Albelda SM. The alveolar-capillary barrier in the adult respiratory distress syndrome. In: Fishman AP, editor. Update: pulmonary diseases and disorders. New York, St. Louis, San Francisco: McGraw-Hill; 1992. pp. 197–211. [Google Scholar]
  • 3.Albelda SM. Role of integrins and other cell adhesion molecules in tumor progression and metastasis. Lab Invest. 1993;68:4–17. [PubMed] [Google Scholar]
  • 4.Albelda SM, Buck CA. Integrins and other cell adhesion molecules. FASEB J. 1990;4:2868–2880. [PubMed] [Google Scholar]
  • 5.Albert RA, Embree LJ, McFeely JE, Hickstein DD. Expression and function of beta-2 integrins on alveolar macrophages from human and nonhuman primates. Am J Respir Cell Mol Biol. 1992;7:182–189. doi: 10.1165/ajrcmb/7.2.182. [DOI] [PubMed] [Google Scholar]
  • 6.Alberts B, Bray D, Lewis J, Raff Martin, Roberts K, Watson JD. Molecular Biology of the Cell. 2nd ed. New York, London: Garland Publishing, Inc.; 1989. Cell growth and division; pp. 727–790. [Google Scholar]
  • 7.Altieri DC. Occupancy of CD11b/CD18 (Mac-1) divalent ion binding site(s) induces leukocyte adhesion. J Immunol. 1991;147:1891–1898. [PubMed] [Google Scholar]
  • 8.Altman DM, Hogg N, Trowsdale J, Wilkinson D. Coinfection of ICAM-1 and HLA-DR reconstitutes human antigen presenting cell function in mouse T cells. Nature. 1989;338:512–514. doi: 10.1038/338512a0. [DOI] [PubMed] [Google Scholar]
  • 9.Anderson DC, Springer TA. Leukocyte adhesion deficiency: an inherited defect in the Mac-1, LFA-1, and p 150,95 glycoproteins. Annu Rev Med. 1987;38:175–194. doi: 10.1146/annurev.me.38.020187.001135. [DOI] [PubMed] [Google Scholar]
  • 10.Anderson DC, Schmalsteig MA, Arnaout MA, Kohl S, Tosi F, Dana N, Buffone B, Hughes BJ, Brinkley BR, Dickey WD, Abramson JS, Springer TA, Boxer LA, Hollers JM, Smith CW. Abnormalities of polymorphonuclear leukocyte function associated with a heritable deficiency of high molecular weight surface glycoproteins (gp 138): common relationship to dimished cell adherence. J Clin Invest. 1984;74:536–551. doi: 10.1172/JCI111451. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Anderson DC, Schmalstieg FC, Finegold MJ, Hughes BJ, Rothlein R, Miller LJ, Kohl S, Tosi MF, Jacobs RL, Waldrop TC, Goldan AS, Shearer WT, Springer TA. The severe and moderate phenotypes of heritable Mac-1, LFA-1 deficiency: their quantitative definition and relation to leukocyte dysfunction and clinical features. J Infect Dis. 1985;152:668–689. doi: 10.1093/infdis/152.4.668. [DOI] [PubMed] [Google Scholar]
  • 12.Arch R, Wirth K, Hofmann M, Ponta H, Matzku S, Herrlich P, Zöller M. Participation in normal immune responses of a metastasis-inducing splice variant of CD44. Science. 1992;257:682–685. doi: 10.1126/science.1496383. [DOI] [PubMed] [Google Scholar]
  • 13.Arm JP, Lee TH. The pathobiology of asthma. Adv Immunol. 1992;51:323–382. doi: 10.1016/s0065-2776(08)60491-5. [DOI] [PubMed] [Google Scholar]
  • 14.Arnaiz-Villena A, Timon M, Rodriguez-Allego C, Perez-Blas M, Corell A, Martin-Villa JM, Regueiro JR. Human T-cell activation deficiencies. Immunol Today. 1992;13:259–265. doi: 10.1016/0167-5699(92)90007-t. [DOI] [PubMed] [Google Scholar]
  • 15.Arnaout MA. Leukocyte adhesion molecules deficiency: its structural basis, pathophysiology, and implications for modulating the inflammatory response. Immunol Rev. 1990;114:145–180. doi: 10.1111/j.1600-065x.1990.tb00564.x. [DOI] [PubMed] [Google Scholar]
  • 16.Arnaout MA. Structure and function of the leukocyte adhesion molecules CD11/CD18. Blood. 1990;75:1037–1050. [PubMed] [Google Scholar]
  • 17.Arnaout MA, Dana N, Gupta SK, Tenen DG, Fathallah DM. Point mutations imparing cell surface expression of the common beta subunit (CD18) in a patient with leukocyte adhesion molecule (Leu-CAM) deficiency. J Clin Invest. 1990;85:977–981. doi: 10.1172/JCI114529. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.BAL Cooperative Group Steering Committee of The American Thoracic Society Bronchoalveolar lavage constituents in healthy individuals, idiopathic pulmonary fibrosis, and selected comparison groups. Am Rev Respir Dis. 1990;141:S169–S202. doi: 10.1164/ajrccm/141.5_Pt_2.S169. [DOI] [PubMed] [Google Scholar]
  • 19.Barbosa IL, Gant VA, Hamblin AS. Alveolar macrophages from patients with bronchgenic carcinoma and sarcoidosis express monocyte antigens. Clin Exp Immunol. 1991;86:173–178. doi: 10.1111/j.1365-2249.1991.tb05791.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Baughman RP, Corser BC, Strohofer S, Hendricks D. Spontaneous hydrogen peroxide release from alveolar macrophages of some cigarette smokers. J Lab Clin Med. 1986;107:233–237. [PubMed] [Google Scholar]
  • 21.Berton G, Laudanna C, Sorio C, Rossi F. Generation of signal activating neutrophil functions by leukocyte integrins: LFA-1 and gp 150/95, but not CR3 are able to stimulate the respiratory burst of human neutrophils. J Cell Biol. 1992;116:1007–1017. doi: 10.1083/jcb.116.4.1007. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.Bevilacqua MP, Stengelin S, Gimbrone MA, Seed B. Endothelial leukocyte adhesion molecule 1: an inducible receptor for neutrophils related to complement regulatory proteins and lectins. Science. 1989;243:1160–1165. doi: 10.1126/science.2466335. [DOI] [PubMed] [Google Scholar]
  • 23.Bohnsack JF, Zhou XN. Divalent cation substitution reveals CD18- and very late antigen-dependent pathways that mediate human neutrophil adherence to fibronectin. J Immunol. 1992;149:1340–1347. [PubMed] [Google Scholar]
  • 24.Boxer LA, Hedley-Whyte ET, Stossel TP. Neutrophil actin dysfunction and abnormal neutrophil behavior. N Engl J Med. 1974;291:1093–1094. doi: 10.1056/NEJM197411212912101. [DOI] [PubMed] [Google Scholar]
  • 25.Busse WW, Calhoun WF, Sedgwick JD. Mechanism of airway inflammation in asthma. Am Rev Respir Dis. 1993;147:S20–S24. doi: 10.1164/ajrccm/147.6_Pt_2.S20. [DOI] [PubMed] [Google Scholar]
  • 26.Campbell EJ, Senior RM. Emphysema. In: Fishman AP, editor. Update: Pulmonary Diseases and Disorders. New York, St. Louis, San Francisco: McGraw-Hill; 1992. pp. 37–51. [Google Scholar]
  • 27.Carlos TM, Harlan JM. Membrane proteins involved in phagocyte adherence to endothelium. Immunol Rev. 1990;114:5–28. doi: 10.1111/j.1600-065x.1990.tb00559.x. [DOI] [PubMed] [Google Scholar]
  • 28.Casale TB, Abbas MK, Carolan EJ. Degree of neutrophil chemotaxis is dependent upon the chemoattractant and barrier. Am J Respir Cell Mol Biol. 1992;7:112–117. doi: 10.1165/ajrcmb/7.1.112. [DOI] [PubMed] [Google Scholar]
  • 29.Casale TB, Erger RA, Little MM. Platelet-activating factor-induced human eosinophil transendothelial migration: evidence for a dynamic role of the endothelium. Am J Respir Cell Mol Biol. 1993;8:77–82. doi: 10.1165/ajrcmb/8.1.77. [DOI] [PubMed] [Google Scholar]
  • 30.Chan BMC, Matsuura N, Takada Y, Zetter BR, Hemler ME. In vitro and in vivo consequences of VLA-2 expression on rhabdomyosarcoma cells. Science. 1991;251:1600–1602. doi: 10.1126/science.2011740. [DOI] [PubMed] [Google Scholar]
  • 31.Corrigan CJ, Kay AB. T cells and eosinophils in the pathogenesis of asthma. Immunol Today. 1992;13:501–507. doi: 10.1016/0167-5699(92)90026-4. [DOI] [PubMed] [Google Scholar]
  • 32.Corrigan CJ, Haczku A, Gemou-Engesaeth V, Doi S, Kikuchi Y, Takatsu K, Durham SR, Kay AB. CD4 T-lymphocyte activation in asthma is accompanied by increased serum concentrations of interleukin-5. Am Rev Respir Dis. 1993;147:540–547. doi: 10.1164/ajrccm/147.3.540. [DOI] [PubMed] [Google Scholar]
  • 33.Costantini RM, Falconi R, Battista P, Zupi G, Kennel SJ, Colasante A, Venturo I, Gurcio CG, Sacchi A. Integrin (6/4) expression in human lung cancer as monitored byt specific monoclonal antibodies. Cancer Res. 1990;50:6107–6112. [PubMed] [Google Scholar]
  • 34.Cox DW, Billingsley GD. Oxidation of plasma alpha 1-antitrypsin in smokers and nonsmokers and by oxidizing agents. Am Rev Respir Dis. 1984;130:594–599. doi: 10.1164/arrd.1984.130.4.594. [DOI] [PubMed] [Google Scholar]
  • 35.Crystal RG, Bitterman PB, Rennard SI, Hance AJ. Interstitial lung diseases of unknown cause: disorders characterized by chronic inflammation of the lower respiratory tract. N Engl J Med. 1984;310:154–166. doi: 10.1056/NEJM198401263100406. [DOI] [PubMed] [Google Scholar]
  • 36.Damjanovich L, Albelda SM, Mette SA, Buck CA. Distribution of integrin cell adhesion receptors in normal and malignant lung tissue. Am J Respir Cell Mol Biol. 1992;6:197–206. doi: 10.1165/ajrcmb/6.2.197. [DOI] [PubMed] [Google Scholar]
  • 37.Dana N, Arnaout MA. Leukocyte adhesion molecular (CD11/CD18) deficiency. In: Kazatchine M, editor. Bailliere's Clinical Immunology and Allergy. Philadelphia: Saunders; 1988. pp. 453–461. [Google Scholar]
  • 38.Daniele RP, Rossman MD, Kern AJ, Elias JA. Pathogenesis of sarcoidosis. Chest. 1986;89:174S–177S. doi: 10.1378/chest.89.3_supplement.174s. [DOI] [PubMed] [Google Scholar]
  • 39.Davies KA, Toothill VJ, Savill J, Hotchin N, Peters AM, Pearson DJ, Haslett C, Burke M, Law SKA, Mercer NFG, Walport MJ, Webster ADB. A 19-year-old man with leukocyte adhesion deficiency. In Vitro and in vivo studies of leukocyte function. Clin Exp Immunol. 1991;84:223–231. doi: 10.1111/j.1365-2249.1991.tb08153.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 40.de Fougerolles AR, Stacker SA, Schwarting R, Springer TA. Characterization of ICAM-2 and evidence for a third counter-receptor for LFA-1. J Exp Med. 1991;174:253–267. doi: 10.1084/jem.174.1.253. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 41.Doerschuk CM, Winn RK, Coxon HO, Harlan JM. CD 18-dependent and -independent mechanisms of neutrophil emigration in the pulmonary and systemic microcirculation of rabbits. J Immunol. 1990;144:2327–2333. [PubMed] [Google Scholar]
  • 42.Donnelly SC, Haslett C. Cellular mechanisms of acute lung injury: implications for future treatment of the adult respiratory distress syndrome. Thorax. 1992;47:260–263. doi: 10.1136/thx.47.4.260. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 43.Dransfield I, Cabanas C, Craig A, Hogg N. Divalent cation regulation of the function of the leukocyte integrin LFA-1. J Cell Biol. 1992;116:219–226. doi: 10.1083/jcb.116.1.219. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 44.Drost EM, Selby C, Lannan S, Lowe GDO, MacNee W. Changes in neutrophil deformability following in vitro smoke exposure: mechanism and protection. Am J Respir Cell Mol Biol. 1992;6:287–295. doi: 10.1165/ajrcmb/6.3.287. [DOI] [PubMed] [Google Scholar]
  • 45.Ebisawa M, Bochner BS, Georas SN, Schleimer RP. Eosinophil transendothelial migration induced by cytokines. Role of endothelial and eosinophil adhesion molecules in IL-1beta-induced transendothelial migration. J Immunol. 1992;149:4021–4028. [PubMed] [Google Scholar]
  • 46.Eichacker PQ, Farese A, Hoffman WD, Banks SM, Mouginis T, Richmond S, Kuo GC, Macvittie TJ, Natanson C. Leukocytes CD11b/18 antigen-directed monoclonal antibody improves early survival and decreases hypoxemia in dogs challenged with tumor necrosis factor. Am Rev Respir Dis. 1992;145:1023–1029. doi: 10.1164/ajrccm/145.5.1023. [DOI] [PubMed] [Google Scholar]
  • 47.Etzioni A, Frydman M, Pollack S, Avidor I, Laurie Phillips ML, Paulson JC, Gershoni-Baruch RG. Brief report: recurrent severe infections by a novel leukocyte adhesion deficiency. N Engl J Med. 1992;327:1789–1792. doi: 10.1056/NEJM199212173272505. [DOI] [PubMed] [Google Scholar]
  • 48.Feldman LE, Shin KC, Natale RB, Todd RF., III β1 integrin expression on human small cell lung cancer cells. Cancer Res. 1991;51:1065–1070. [PubMed] [Google Scholar]
  • 49.Fewcett J, Holness CLL, Nedham LA, Turley H, Gatter KC, Manson DY, Simmons DL. Molecular cloning of ICAM-3, a third ligand of LFA-1, constitutively expressed on resting leukocytes. Nature. 1992;360:481–484. doi: 10.1038/360481a0. [DOI] [PubMed] [Google Scholar]
  • 50.Fischer A, Lisowska-Grospierre B, Anderson DC, Springer TA. Leukocyte adhesion deficiency: molecular basis and functional consequences. Immunodef Rev. 1988;1:39–54. [PubMed] [Google Scholar]
  • 51.Fryer DR, Morgenroth ML, Rogers CE, Aranout MA, Todd RF. Regulation of surface glycoproteins CD11/CD18 by human mononuclear phagocytes. J Clin Immunol Immunopath. 1988;46:272–281. doi: 10.1016/0090-1229(88)90189-4. [DOI] [PubMed] [Google Scholar]
  • 52.Georas SN, Liu MC, Newman W, Beall LD, Stealey BA, Bochner BS. Altered adhesion molecule expression and endothelial cell activation accompany the recruitment of human granulocytes to the lung after segmental antigen challenge. Am J Respir Cell Mol Biol. 1992;7:261–269. doi: 10.1165/ajrcmb/7.3.261. [DOI] [PubMed] [Google Scholar]
  • 53.Gerritsen ME, Bloor CM. Endothelial cell gene expression in response to injury. FASEB J. 1993;7:523–532. doi: 10.1096/fasebj.7.6.8472891. [DOI] [PubMed] [Google Scholar]
  • 54.Greve JM, Davis G, Meyer AM, Forte CP, Connolly Yost S, Marlor CW, Kamarck ME, McClelland A. The major human rhinovirus receptor is ICAM-1. Cell. 1989;56:839–847. doi: 10.1016/0092-8674(89)90688-0. [DOI] [PubMed] [Google Scholar]
  • 55.Gundel RH, Kinkade P, Torcellini A, Clarke CC, Watrous J, Desau S, Homon CA, Farina PR, Wegner CD. Antigen-induced mediator release in primates. Am Rev Respir Dis. 1991;144:76–82. doi: 10.1164/ajrccm/144.1.76. [DOI] [PubMed] [Google Scholar]
  • 56.Gundel RH, Wegner CD, Torcellini CA, Letts LG. The role of intercellular adhesion molecule-1 in chronic airway inflammation. Clin Exp Allergy. 1992;22:569–575. doi: 10.1111/j.1365-2222.1992.tb00167.x. [DOI] [PubMed] [Google Scholar]
  • 57.Harlan JM, Winn RK, Vedder NB, Doerschuk CM, Rice CL, Liu DY. In vivo models of leukocyte adherence to endothelium. In: Harlan JM, editor. Adhesion. Its Role in Inflammatory Disease. New York: W. H. Freeman and Company; 1992. pp. 117–150. [Google Scholar]
  • 58.Hemler ME. VLA proteins in the integrin family: structures, functions, and their role on leucocytes. Annu Rev Immunol. 1990;8:365–400. doi: 10.1146/annurev.iy.08.040190.002053. [DOI] [PubMed] [Google Scholar]
  • 59.Hemler ME, Huang C, Schwarz L. The VLA protein family. J Biol Chem. 1987;262:3300–3309. [PubMed] [Google Scholar]
  • 60.Herrlich P, Zöller M, Pals ST, Ponta H. CD44 splice variants: metastasis meet lymphocytes. Immunol Today. 1993;14:395–399. doi: 10.1016/0167-5699(93)90141-7. [DOI] [PubMed] [Google Scholar]
  • 61.Hession C, Osborn L, Goff D, Chi-Rosso G, Vasallo C, Pasek M, Pittack C, Tizard R, Goelz S, McCarthy K, Hopple S, Lobb RR. Endothelial leukocyte adhesion molecule-1: direct expression cloning and functional interactions. Proc Natl Acad Sci (USA) 1990;87:1673–1677. doi: 10.1073/pnas.87.5.1673. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 62.Hibbs ML, Wardlaw AJ, Stracker SA, Anderson DC, Lee A, Roberts TM, Springer TA. Transfection of cells from patients with leukocyte adhesion deficiency with an integrin beta subunit (CD18) restores lymphocyte function-associated antigen-1 expression and function. J Clin Invest. 1990;85:674–681. doi: 10.1172/JCI114491. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 63.Hogg N. The leukocyte integrins. Immunol Today. 1989;10:111–114. doi: 10.1016/0167-5699(89)90238-7. [DOI] [PubMed] [Google Scholar]
  • 64.Hogg N. Roll, roll, roll you leukocyte gently down the vein. Immunol Today. 1992;13:13–115. doi: 10.1016/0167-5699(92)90103-E. [DOI] [PubMed] [Google Scholar]
  • 65.Hoidal JR, Fox RB, LeMarbe PA, Perri R, Repine JE. Altered oxidative metabolic responses in vitro of alveolar macrophages from asymptomatic cigarette smokers. Am Rev Respir Dis. 1981;123:85–89. doi: 10.1164/arrd.1981.123.1.85. [DOI] [PubMed] [Google Scholar]
  • 66.Hoogsteden HC, van Hal PTW, Wijkhuijs JM, Hop W, Verkaik APK, Hilvering C. Expression of the CD11/CD18 cell surface adhesion glycoprotein family on alveolar macrophages in smokers and nonsmokers. Chest. 1991;100:1567–1571. doi: 10.1378/chest.100.6.1567. [DOI] [PubMed] [Google Scholar]
  • 67.Hoogsteden HC, van Hal PTW, Wijkhuijs JM, Hop W, Hilvering C. Expression of the CD11/CD18 cell surface adhesion glycoprotein family and MHC class II antigen on blood monocytes and alveolar macrophages in interstitial lung diseases. Lung. 1992;170:221–233. doi: 10.1007/BF00174119. [DOI] [PubMed] [Google Scholar]
  • 68.Honn KV, Tang DG. Adhesion molecules and tumor cell interaction with endothelium and subendothelial matrix. Cancer Metastasis Rev. 1992;11:353–375. doi: 10.1007/BF01307187. [DOI] [PubMed] [Google Scholar]
  • 69.Hunninghake GW, Crystal RG. Cigarette smoking and lung destruction: accumulation of neutrophils in the lungs of cigarette smokers. Am Rev Respir Dis. 1983;128:833–838. doi: 10.1164/arrd.1983.128.5.833. [DOI] [PubMed] [Google Scholar]
  • 70.Hynes RO. Integrins: versatility, modulations, and signalling in cell adhesion. Cell. 1992;69:11–25. doi: 10.1016/0092-8674(92)90115-s. [DOI] [PubMed] [Google Scholar]
  • 71.Ina Y, Takada K, Yamamoto M, Morishita M, Miyachi A. Antigen-presenting capacity in patients with sarcoidosis. Chest. 1990;98:911–916. doi: 10.1378/chest.98.4.911. [DOI] [PubMed] [Google Scholar]
  • 72.Kahn P. Adhesion protein studies provide new clue to metastasis. Science. 1992;257:614. doi: 10.1126/science.1496370. [DOI] [PubMed] [Google Scholar]
  • 73.Kaslovsky RA, Horgan MJ, Lum H, McCandless BK, Gilboa N, Wright SD, Malik AB. Pulmonary edema induced by phagocytosing neutrophils. Protective effect of monoclonal antibody against phagocyte CD18 integrin. Circ Res. 1990;67:795–802. doi: 10.1161/01.res.67.4.795. [DOI] [PubMed] [Google Scholar]
  • 74.Kishimoto TK, Larson RS, Corbi AL, Dustin ML, Staunton DE, Springer TA. The leukocyte integrins. Adv Immunol. 1989;46:149–182. doi: 10.1016/s0065-2776(08)60653-7. [DOI] [PubMed] [Google Scholar]
  • 75.Kubes P, Arfors KE, Granger DN. Platelet-activating factor-induced mucosal dysfunction: role of oxidants and granulocytes. Am J Physiol (Gastrointest Liver Physiol) 1991;260:G965–G971. doi: 10.1152/ajpgi.1991.260.6.G965. [DOI] [PubMed] [Google Scholar]
  • 76.Kunicki TJ. Platelet membrane glycoproteins and their function: an overview. Blut. 1989;59:30–34. doi: 10.1007/BF00320245. [DOI] [PubMed] [Google Scholar]
  • 77.Larson RS, Springer TA. Structure and function of leukocyte integrins. Immunol Rev. 1990;114:181–217. doi: 10.1111/j.1600-065x.1990.tb00565.x. [DOI] [PubMed] [Google Scholar]
  • 78.Lasky LL. The homing receptor (LECAM-1/L Selectin): a carbohydrate binding mediator of adhesion in the immune system. In: Harlan JM, Liu DY, editors. Adhesion. Its Role in Inflammatory Disease. New York: W. H. Freeman and Company; 1992. pp. 43–63. [Google Scholar]
  • 79.Lawrence MB, Springer TA. Leukocytes roll on a selectin at physiologic flow rates. Distinction form and prerequisite for adhesion through integrins. Cell. 1991;65:859–873. doi: 10.1016/0092-8674(91)90393-d. [DOI] [PubMed] [Google Scholar]
  • 80.Liotta LA. Tumor invasion and metastases—role of the extracellular matrix. Cancer Res. 1986;46:1–7. [PubMed] [Google Scholar]
  • 81.Lobb RR. Integrin-immunoglobulin superfamily interactions in endothelial-leukocyte adhesion. In: Harlan JM, Liu DY, editors. Adhesion. Its Role in Inflammatory Disease. New York: W. H. Freeman and Company; 1992. pp. 1–18. [Google Scholar]
  • 82.Luna EJ, Hitt AL. Cytoskeleton-plasma membrane interactions. Science. 1992;258:955–964. doi: 10.1126/science.1439807. [DOI] [PubMed] [Google Scholar]
  • 83.Lyons CR, Ball EJ, Toews GB, Weissler JC, Stastny P, Lipscomb MF. Inability of human alveolar macrophages to stimulate resting T cells correlates with decreased antigen-specific T cell-macrophage binding. J Immunol. 1986;137:1173–1180. [PubMed] [Google Scholar]
  • 84.Mackay CR, Imhof BA. Cell adhesion in the immune system. Immunol Today. 1993;14:99–102. doi: 10.1016/0167-5699(93)90205-Y. [DOI] [PubMed] [Google Scholar]
  • 85.MacNee W, Selby C. Neutrophil traffic in the lungs: role of haemodynamics, cell adhesion, and deformability. Thorax. 1993;47:79–88. doi: 10.1136/thx.48.1.79. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 86.MacNee W, Wiggs B, Belzberg A, Hogg JC. The effect of cigarette smoking on neutrophil kinetics in human lungs. N Engl J Med. 1989;321:924–928. doi: 10.1056/NEJM198910053211402. [DOI] [PubMed] [Google Scholar]
  • 87.Mantovani A, Bussolino F, Dejana E. Cytokine regulation of endothelial cell function. FASEB J. 1992;6:2592–2599. doi: 10.1096/fasebj.6.8.1592209. [DOI] [PubMed] [Google Scholar]
  • 88.Markos J, Hooper RO, Kavanagh-Gray D, Wiggs BR, Hogg JC. Effect of raised alveolar pressure on leukocyte retention in the human lung. J Appl Physiol. 1990;69:214–221. doi: 10.1152/jappl.1990.69.1.214. [DOI] [PubMed] [Google Scholar]
  • 89.Melis M, Gjomarkaj M, Pace E, Malizia G, Spatafora M. Increased expression of leukocyte function associated antigen-1 (LFA-1) and intercellular adhesion molecule-1 (ICAM-1) by alveolar macrophages of patients with pulmonary sarcoidosis. Chest. 1991;100:910–916. doi: 10.1378/chest.100.4.910. [DOI] [PubMed] [Google Scholar]
  • 90.Mette SA, Pilewski J, Buck CA, Albelda SM. Distribution of integrin cell adhesion receptors in normal bronchial epithelial cells and lung cancer cells in vitro and in vivo. Am J Respir Cell Mol Biol. 1993;8:562–572. doi: 10.1165/ajrcmb/8.5.562. [DOI] [PubMed] [Google Scholar]
  • 91.Montefort S, Feather IH, Haskard DO, Lee TH, Holgate ST, Howarth PH. The expression of leukocyte-endothelial adhesion molecules is increased in perennial allergic rhinitis. Am J Respir Cell Mol Biol. 1992;7:393–398. doi: 10.1165/ajrcmb/7.4.393. [DOI] [PubMed] [Google Scholar]
  • 92.Montefort S, Roche WR, Howarth PH, Djukanovic R, Gratziou C, Carrol M, Smith L, Britten KM, Haskard D, Lee TH, Holgate ST. Intercellular adhesion molecule-1(ICAM-1) and endothelial leukocyte adhesion molecule (ELAM-1) expression in the mucosa of normal and asthmatic subjects. Eur Respir J. 1992;5:815–823. [PubMed] [Google Scholar]
  • 93.Montefort S, Holgate ST, Howarth PH. Leukocyte-endothelial adhesion molecules and their role in bronchial asthma and allergic rhinitis. Eur Respir J. 1993;6:1044–1054. [PubMed] [Google Scholar]
  • 94.Moolenaar CE, Pieneman C, Walsh PS, Mooi WJ, Michalides RJ. Alternative splicing of neural-cell adhesion molecule mRNA in human small-cell lung-cancer cell line H69. Int J Cancer. 1992;51:238–243. doi: 10.1002/ijc.2910510212. [DOI] [PubMed] [Google Scholar]
  • 95.Morley J. Immunopharmacology of asthma. Immunol Today. 1993;14:317–322. doi: 10.1016/0167-5699(93)90052-M. [DOI] [PubMed] [Google Scholar]
  • 96.Mullen JBM, Wright JL, Wiggs BR, Pare PD. Reassessment of inflammation of airways in chronic bronchitis. Br Med J. 1986;291:1235–1239. doi: 10.1136/bmj.291.6504.1235. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 97.Mulligan MS, Warren JS, Smith CW, Anderson DC, Yeh CG, Rudolph AR, Ward PA. Lung injury after deposition of IgA immune complexes. J Immunol. 1992;148:3086–3092. [PubMed] [Google Scholar]
  • 98.Mulligan MS, Varani J, Warren JS, Till GO, Smith CW, Anderson DC, Todd RF, III, Ward PA. Roles of beta-2 integrins of rat neutrophils in complement and oxygen radical-mediated acute inflammatory injury. J Immunol. 1992;148:1847–1857. [PubMed] [Google Scholar]
  • 99.Nathan C, Srimal S, Farber C, Sanchez E, Kabbash L, Asch A, Gailit J, Wright SD. Cytokine-induced respiratory burst of human neutrophils: dependence on extracellular matrix proteins and CD11/CD18 integrins. J Cell Biol. 1989;109:1341–1349. doi: 10.1083/jcb.109.3.1341. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 100.Nicod LP. Cytokines. 1. Overview. Thorax. 1993;48:660–667. doi: 10.1136/thx.48.6.660. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 101.Osborn L. Leukocyte adhesion to endothelium in inflammation. Cell. 1990;62:3–6. doi: 10.1016/0092-8674(90)90230-c. [DOI] [PubMed] [Google Scholar]
  • 102.Owen CA, Campbell EJ, Hill SL, Stockley RA. Increased adherence of monocytes to fibronectin in bronchiectasis. Am Rev Respir Dis. 1992;145:626–631. doi: 10.1164/ajrccm/145.3.626. [DOI] [PubMed] [Google Scholar]
  • 103.Pardi R, Inverardi L, Bender JR. Regulatory mechanisms in leukocyte adhesion: flexible receptors for sophisticated travelers. Immunol Today. 1992;13:224–230. doi: 10.1016/0167-5699(92)90159-5. [DOI] [PubMed] [Google Scholar]
  • 104.Paulson JC. Selectin/carbohydrate-mediated adhesion of leukocytes. In: Harlan JM, Liu DY, editors. Adhesion. Its Role in Inflammatory Disease. New York: W. H. Freeman; 1992. pp. 19–42. [Google Scholar]
  • 105.Pettersen HB, Johnson E, Osen SS. Phagocytosis of agarose beads by receptors for C3b (CR1) and iC3b (CR3) on alveolar macrophages from patients with sarcoidosis. Scand J Immunol. 1990;32:669–677. doi: 10.1111/j.1365-3083.1990.tb03209.x. [DOI] [PubMed] [Google Scholar]
  • 106.Picker LJ, Warnock RA, Burns AR, Doerschuk CM, Berg EL, Butcher EC. The neutrophil selectin LECAM-1 presents carbohydrate ligands to the vascular selectins ELAM-1 and GMP-140. Cell. 1991;66:921–933. doi: 10.1016/0092-8674(91)90438-5. [DOI] [PubMed] [Google Scholar]
  • 107.Piguet PF, Rosen H, Vesin C, Grau GE. Effective treatment of the pulmonary fibrosis elicited in mice by bleomycin or silica with anti-CD11 antibodies. Am Rev Respir Dis. 1993;147:435–441. doi: 10.1164/ajrccm/147.2.435. [DOI] [PubMed] [Google Scholar]
  • 108.Reeves ME. A metastatic tumor cell line has greatly reduced levels of a specific homotypic cell adhesion activity. Cancer Res. 1992;52:1546–1552. [PubMed] [Google Scholar]
  • 109.Relman D, Tuomanen E, Falkow S, Golenbock DT, Saukkonen K, Wright SD. Recognition of a bacterial adhesin by an integrin: macrophage CR3 (CD11b/CD18) binds filamentous hemagglutinin of Bordetella pertussis. Cell. 1990;61:1375–1382. doi: 10.1016/0092-8674(90)90701-f. [DOI] [PubMed] [Google Scholar]
  • 110.Ruoslahti E. Integrins. J Clin Invest. 1991;87:1–5. doi: 10.1172/JCI114957. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 111.Ruoslahti E, Pierschbacher MD. New perspectives in cell adhesion: RGD and integrins. Science. 1987;238:491–497. doi: 10.1126/science.2821619. [DOI] [PubMed] [Google Scholar]
  • 112.Salkind AR, Nichols JE, Roberts NJ. Suppressed expression of ICAM-1 and LFA-1 and abrogation of leukocyte collaboration after exposure of human mononuclear leukocytes to respiratory syncytial virus in vitro. J Clin Invest. 1991;88:505–511. doi: 10.1172/JCI115332. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 113.Saukkonen K, Cabellos C, Burroughs M, Prasad S, Tuomanen E. Integrin-mediated localization of Brodetella pertussis within macrophages: role in pulmonary colonization. J Exp Med. 1991;173:1143–1149. doi: 10.1084/jem.173.5.1143. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 114.Schaberg T, Lauer C, Lode H, Fischer J, Haller H. Increased number of alveolar macrophages expressing adhesion molecules of the leukocyte adhesion molecule family in smoking subjects: association with cell-binding ability and superoxide anion production. Am Rev Respir Dis. 1992;146:1287–1293. doi: 10.1164/ajrccm/146.5_Pt_1.1287. [DOI] [PubMed] [Google Scholar]
  • 115.Schaberg T, Rau M, Stephan H, Lode H. Increased number of alveolar macrophages expressing surface molecules of the CD11/CD18 family in sarcoidosis and idiopathic pulmonary fibrosis is related to the production of superoxide anions by these cells. Am Rev Respir Dis. 1993;147:1507–1513. doi: 10.1164/ajrccm/147.6_Pt_1.1507. [DOI] [PubMed] [Google Scholar]
  • 116.Schreiner C, Fisher M, Hussein S, Juliano RL. Increased tumorigenicity of fibronectin receptor deficient chinese hamster ovary cell variants. Cancer Res. 1991;51:1738–1740. [PubMed] [Google Scholar]
  • 117.Shakoor Z, Hamblin AS. Increased CD11/CD18 expression on periphereal blood leukocytes of patients with sarcoidosis. Clin Exp Immunol. 1992;90:99–105. doi: 10.1111/j.1365-2249.1992.tb05839.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 118.Shaw RJ, Benedict SH, Clark RA, King TE. Pathogenesis of pulmonary fibrosis in interstitial lung disease. Am Rev Respir Dis. 1991;143:167–173. doi: 10.1164/ajrccm/143.1.167. [DOI] [PubMed] [Google Scholar]
  • 119.Sheppard MN, Harrison NK. Lung injury, inflammatory mediators, and fibroblast activation in fibrosing alveolitis. Thorax. 1992;47:1064–1074. doi: 10.1136/thx.47.12.1064. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 120.Shimizu Y, Newman W, Tataka Y, Shaw S. Lymphocyte interactions with endothelial cells. Immunol Today. 1992;13:106–112. doi: 10.1016/0167-5699(92)90151-V. [DOI] [PubMed] [Google Scholar]
  • 121.Siracusa A, Vecchiarelli A, Cenci E, Felicioni D, Marabini A, Marangi M, Abbritti G, Bistoni F. Effect of prednisone on monocyte-derived tumor necrosis factor and interleukin-1 in acute asthma. Am Rev Respir Dis. 1991;143:A13. [Google Scholar]
  • 122.Sousa AR, Poston RN, Lane SJ, Nakhosteen JS, Lee TH. Detection of GM-CSF in asthmatic bronchial epithelium and decrease by inhaled corticosteroids. Am Rev Respir Dis. 1993;147:1557–1561. doi: 10.1164/ajrccm/147.6_Pt_1.1557. [DOI] [PubMed] [Google Scholar]
  • 123.Spertini O, Luscinskas FW, Kansas GS, Munro JM, Griffin JD, Gimbrone MA, Tedder TF. Leukocyte adhesion molecule 1 (LAM-1, L-selectin) interacts with an inducible endothelial cell ligand to support leukocyte adhesion. J Immunol. 1991;147:2565–2573. [PubMed] [Google Scholar]
  • 124.Springer TA. Adhesion receptors of the immune system. Nature. 1990;346:425–434. doi: 10.1038/346425a0. [DOI] [PubMed] [Google Scholar]
  • 125.Staunton DE, Merluzzi VJ, Rothlein R, Barton R, Morton SD, Springer TA. A cell adhesion molecule, ICAM-1, is the major surface receptor for rhinoviruses. Cell. 1989;56:849–853. doi: 10.1016/0092-8674(89)90689-2. [DOI] [PubMed] [Google Scholar]
  • 126.Strieter RM, Lukacs NW, Standiford TJ, Kunkel SL. Cytokines and lung inflammation: mechanisms of neutrophil recruitment to the lung. Thorax. 1993;48:765–769. doi: 10.1136/thx.48.7.765. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 127.Striz I, Wang YM, Kalaycioglu O, Costabel U. Expression of alveolar macrophage adhesion molecules in pulmonary sarcoidosis. Chest. 1992;102:882–886. doi: 10.1378/chest.102.3.882. [DOI] [PubMed] [Google Scholar]
  • 128.Szarek JL, Schmidt NL. Hydrogen peroxide-induced potentiation of contractile responses in isolated rat airways. Am J Physiol (Lung Cell Mol Physiol 2) 1990;258:L232–L237. doi: 10.1152/ajplung.1990.258.4.L232. [DOI] [PubMed] [Google Scholar]
  • 129.Takeichi M. Cadherin cell adhesion receptors as a morphogenetic regulator. Science. 1991;251:1451–1455. doi: 10.1126/science.2006419. [DOI] [PubMed] [Google Scholar]
  • 130.Tanabe KK, Ellis LM, Saya H. Expression of CD44R1 adhesion molecule in colon carcinomas and metastases. Lancet. 1993;341:724–726. doi: 10.1016/0140-6736(93)90490-8. [DOI] [PubMed] [Google Scholar]
  • 131.Tanaka Y, Adams TH, Shaw S. Proteoglycans on endothelial cells present adhesion-inducing cytokines to leukocytes. Immunol Today. 1993;14:111–115. doi: 10.1016/0167-5699(93)90209-4. [DOI] [PubMed] [Google Scholar]
  • 132.Thomassen HV, Boyko WJ, Russelll JA, Hogg JC. Transient leukopenia associated with adult respiratory distress syndrome. Lancet. 1984;I:809–812. doi: 10.1016/s0140-6736(84)92269-4. [DOI] [PubMed] [Google Scholar]
  • 133.Tosi MF, Stark JM, Smith WC, Hamedani A, Gruenert DC, Infele MD. Induction of ICAM-1 expression on human airway epithelial cells by inflammatory cytokines: effects on neutrophil-epithelial cell adhesion. Am J Respir Cell Mol Biol. 1992;7:214–221. doi: 10.1165/ajrcmb/7.2.214. [DOI] [PubMed] [Google Scholar]
  • 134.Tosi MF, Stark JM, Hamedani A, Smith WC, Gruenert DC, Huang YT. Intercellular adhesion molecule-1 (ICAM-1)-dependent and ICAM-1-independent adhesive interaction between polymorphonuclear leukocytes and human airway epithelial cells infected with parainfluenza virus type 2. J Immunol. 1992;149:3345–3349. [PubMed] [Google Scholar]
  • 135.Vadas MA, Gamble JR, Smith WB. Regulation of myeloid blood cell-endothelial interaction by cytokines. In: Harlan JM, Liu DY, editors. Adhesion. Its Role in Inflammatory Disease. New York: W. H. Freeman; 1992. pp. 65–81. [Google Scholar]
  • 136.Valmu L, Autero M, Siljander P, Patarroyo M, Gahmberg CG. Phosphorylation of the beta-subunit of CD11/CD18 integrins by protein kinase C correlates with leukocyte adhesion. Eur J Immunol. 1991;21:2857–2862. doi: 10.1002/eji.1830211130. [DOI] [PubMed] [Google Scholar]
  • 137.van de Stolpe A, Caldenhoven E, Raaijmakers JAM, van der Saag PT, Koenderman L. Glucocorticoid-mediated repression of intercellular adhesion molecule-1 expression in human monocytic and bronchial epithelial lines. Am J Respir Cell Mol Biol. 1993;8:340–347. doi: 10.1165/ajrcmb/8.3.340. [DOI] [PubMed] [Google Scholar]
  • 138.Vazeux R, Hoffman PA, Tomita JK, Dickinson ES, Jasmann RL, John ST, Gallatin WM. Cloning and characterization of a new intercellular adhesion molecule ICAM-3. Nature. 1992;360:485–488. doi: 10.1038/360485a0. [DOI] [PubMed] [Google Scholar]
  • 139.von Andrian UH, Chambers JD, McEvoy LM, Bargatze RF, Arfors KE, Butcher EC. Two-step model of leukocyte-endothelial cell interaction in inflammation: distinct roles for LECAM-1 and the leukocyte β2 integrins in vivo. Proc Natl Acad Sci USA. 1991;88:7538–7542. doi: 10.1073/pnas.88.17.7538. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 140.Walz G, Aruffo A, Kolanus W, Bevilacqua M, Seed B. Recognition by ELAM-1 of the sialyl-LeX determinant on myeloid and tumor cells. Science. 1990;250:1132–1135. doi: 10.1126/science.1701275. [DOI] [PubMed] [Google Scholar]
  • 141.Wegner CD. Adhesion molecules and inflammatory lung disease. In: Fishman AP, editor. Update: Pulmonary Diseases and Disorders. New York, St. Louis, San Francisco: McGraw-Hill; 1992. pp. 125–135. [Google Scholar]
  • 142.Wegner CD, Gundel RH, Reilly P, Haynes N, Letts G, Rothlein R. Intercellular adhesion molecule-1 (ICAM-1) in the pathogenesis of asthma. Science. 1990;247:456–459. doi: 10.1126/science.1967851. [DOI] [PubMed] [Google Scholar]
  • 143.Wegner CD, Wolyniec WW, LaPlate AM, Marschman K, Lubbe K, Haynes N, Rothlein R, Letts LG. Intercellular adhesion molecule-1 contributes to pulmonary oxygen toxicity in mice: role of leukocytes revised. Lung. 1992;170:267–279. doi: 10.1007/BF00566679. [DOI] [PubMed] [Google Scholar]
  • 144.Williams TJ, Hellewell PG. Endothelial cell biology: adhesion molecules involved in the microvascular inflammatory response. Am Rev Respir Dis. 1992;146:S45–S50. doi: 10.1164/ajrccm/146.5_Pt_2.S45. [DOI] [PubMed] [Google Scholar]
  • 145.Yoder MC, Checkley LL, Giger U, Hanson WL, Kirk KR, Capen RL, Wagner WW., JR Pulmonary microcirculatory kinetics of neutrophils deficient in leukocyte adhesion-promoting glycoproteins. J Appl Physiol. 1990;69:207–213. doi: 10.1152/jappl.1990.69.1.207. [DOI] [PubMed] [Google Scholar]
  • 146.Zhu D, Cheng CF, Pauli BU. Mediation of lung metastases of murine melanomas by a lung-specific endothelial cell adhesion molecule. Proc Natl Acad Sci USA. 1991;88:9568–9572. doi: 10.1073/pnas.88.21.9568. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 147.Zimmerman GA, McIntyre TM, Mehra M, Prescott SM. Endothelial cell-associated platelet-activating factor: a novel mechanism for signaling intercellular adhesion. J Cell Biol. 1990;110:529–540. doi: 10.1083/jcb.110.2.529. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 148.Zimmerman GA, Prescott SM, McIntyre TM. Endothelial cell interactions with granulocytes: tethering and signaling molecules. Immunol Today. 1992;13:93–100. doi: 10.1016/0167-5699(92)90149-2. [DOI] [PubMed] [Google Scholar]

Articles from Lung are provided here courtesy of Nature Publishing Group

RESOURCES