Abstract
Excessive or inappropriate inflammation and immunosuppression are components of the response to surgery, trauma, injury, and infection in some individuals and these can lead, progressively, to sepsis and septic shock. The hyperinflammation is characterized by the production of inflammatory cytokines, arachidonic acid-derived eicosanoids, and other inflammatory mediators, while the immunosuppression is characterized by impairment of antigen presentation and of T helper cell type-1 responses. Long-chain n−3 FA from fish oil decrease the production of inflammatory cytokines and eicosanoids. They act both directly (by replacing arachidonic acid as an eicosanoid substrate and by inhibiting arachidonic acid metabolism) and indirectly (by altering the expression of inflammatory genes through effects on transcription factor activation). Thus, long-chain n−3 FA are potentially useful anti-inflammatory agents and may be of benefit in patients at risk of developing sepsis. As such, an emerging application of n−3 FA is in surgical or critically ill patients where they may be added to parenteral or enteral formulas. Parenteral or enteral nutrition including n−3 FA appears to preserve immune function better than standard formulas and appears to partly prevent some aspects of the inflammatory response. Studies to date are suggestive of clinical benefits from these approaches, especially in postsurgical patients.
Keywords: Arachidonic Acid, Septic Shock, Enteral Nutrition, Eicosanoid, Total Parenteral Nutrition
Abbreviations
- COX
cyclooxygenase
- DHA
docosahexaenoic acid
- EPA
eicosapentaenoic acid
- HEPE
hydroxyeicosapentaenoic acid
- HETE
hydroxyeicosatetraenoic acid
- HLA
human leukocyte antigen
- IFN
interferon
- IkB
inhibitory subunit of nuclear factor kappa B
- IL
interleukin
- IL-1ra
interleukin-1 receptor antagonist
- LOX
lipoxygenase
- LT
leukotriene
- NFkB
nuclear factor kappa B
- PG
prostaglandin
- SNPs
single nucleotide polymorphisms
- Th
T helper
- TNF
tumor necrosis factor
- TX
thromboxane
References
- 1.Bone R.C., Balk R.A., Cerra F.B., Dellinger R.P., Fein A.M., Knaus W.A., Schein R.M., Sibbald W.J. Definitions for Sepsis and Organ Failure and Guidelines for the Use of Innovative Therapies in Sepsis. Chest. 1997;101:1644–1655. doi: 10.1378/chest.101.6.1644. [DOI] [PubMed] [Google Scholar]
- 2.Warren H.S. Strategies for the Treatment of Sepsis. N. Engl. J. Med. 1997;336:952–953. doi: 10.1056/NEJM199703273361311. [DOI] [PubMed] [Google Scholar]
- 3.Angus D.C., Linde-Zwirble W.T., Lidicker J., Clermont G., Carcillo J., Pinsky M.R. Epidemiology of Severe Sepsis in the United States: Analysis of Incidence, Outcome, and Associated Costs of Care. Crit. Care Med. 2001;29:1303–1310. doi: 10.1097/00003246-200107000-00002. [DOI] [PubMed] [Google Scholar]
- 4.Friedman G., Silva E., Vincent J.-L. Has the Mortality of Septic Shock Changed with Time? Crit. Care Med. 1998;26:2078–2086. doi: 10.1097/00003246-199812000-00045. [DOI] [PubMed] [Google Scholar]
- 5.Brun-Buisson C. The Epidemiology of the Systemic Inflammatory Response Syndrome. Intensive Care Med. 2000;26:S64–S74. doi: 10.1007/s001340051121. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 6.Vervloet M.G., Thijs L.G., Hack C.E. Derangements of Coagulation and Fibrinoloysis in Critically Ill Patients with Sepsis and Septic Shock. Semin. Thromb. Hemostas. 1998;24:33–44. doi: 10.1055/s-2007-995821. [DOI] [PubMed] [Google Scholar]
- 7.Girardin E., Grau G.E., Dayer J.-M., Roux-Lombard P., Jr., Study Group, Lambert P.H. Tumor Necrosis Factor and Interleukin-1 in the Serum of Children with Severe Infectious Purpura. N. Engl. J. Med. 1988;319:397–400. doi: 10.1056/NEJM198808183190703. [DOI] [PubMed] [Google Scholar]
- 8.Hatherill M., Tibby S.M., Turner C., Ratnavel N., Murdoch I.A. Procalcitonin and Cytokine Levels: Relationship to Organ Failure and Mortality in Pediatric Septic Shock. Crit. Care Med. 2000;28:2591–2594. doi: 10.1097/00003246-200007000-00068. [DOI] [PubMed] [Google Scholar]
- 9.Arnalich F., Garcia-Palomero E., Lopez J., Jimenez M., Madero R., Renart J., Vazquez J.J., Montiel C. Predictive Value of Nuclear Factor κB Activity and Plasma Cytokine Levels in Patients with Sepsis. Infect. Immun. 2000;68:1942–1945. doi: 10.1128/IAI.68.4.1942-1945.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 10.Beutler B., Milsark I.W., Cerami A.C. Passive Immunization Against Cachectin/Tumor Necrosis Factor Protects Mice from Lethal Effect of Endotoxin. Science. 1985;229:869–871. doi: 10.1126/science.3895437. [DOI] [PubMed] [Google Scholar]
- 11.Tracey K.J., Fong Y., Hesse D.G., Manogue K.R., Lee A.T., Kuo G.C., Lowry S.F., Cerami A.C. Anti-Cachectin/TNF Monoclonal Antibodies Prevent Septic Shock During Lethal Bacteraemia. Nature. 1987;330:662–664. doi: 10.1038/330662a0. [DOI] [PubMed] [Google Scholar]
- 12.Alexander H.R., Doherty G.M., Buresh C.M., Venzon D.J., Norton J.A. A Recombinant Human Receptor Antagonist to Interkeukin 1 Improves Survival After Lethal Endotoxemia in Mice. J. Exp. Med. 1991;173:1029–1032. doi: 10.1084/jem.173.4.1029. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 13.Marchant A., Bruyns C., Vandenabeele P., Ducarme M., Gerard C., Delvaux A., De Groote D., Abramowicz D., Velu T., Goldman M. Interleukin-10 Controls Interferon-Gamma and Tumor Necrosis Factor Production During Experimental Endotoxemia. Eur. J. Immunol. 1994;24:1167–1171. doi: 10.1002/eji.1830240524. [DOI] [PubMed] [Google Scholar]
- 14.Pfeffer K., Matsuyama T., Kundig T.M., Wakeham A., Kishihara K., Shahinlan A., Wiegmann K., Ohashi P.S., Kronke M., Mak T.W. Mice Deficient for the 55 Kd Tumor Necrosis Factor Receptor are Resistant to Endotoxic Shock, Yet Succumb to L. monocytogenes Infection. Cell. 1993;73:457–467. doi: 10.1016/0092-8674(93)90134-C. [DOI] [PubMed] [Google Scholar]
- 15.Debets J.M.H., Kampmeijer R., van der Linden M.P.M.H., Buurman W.A., van der Linden C.J. Plasma Tumor Necrosis Factor and Mortality in Critically Ill Septic Patients. Crit. Care Med. 1989;17:489–494. doi: 10.1097/00003246-198906000-00001. [DOI] [PubMed] [Google Scholar]
- 16.Rogy M.A., Coyle S.M., Oldenburg H.S., Rock C.S., Barie P.S., Van Zee K.J., Smith C.G., Moldawer L.L., Lowry S.F. Persistently Elevated Soluble Tumor Necrosis Factor Receptor and Interleukin-1 Receptor Antagonist Levels in Critically Ill Patients. J. Am. Coll. Surg. 1994;178:132–138. [PubMed] [Google Scholar]
- 17.Pruitt J.H., Welborn M.B., Edwards P.D., Harward T.R., Seeger J.W., Martin T.D., Smith C., Kenney J.A., Wesdrop R.I., Meijer S., Cuesta M.A., Abouhanze A., Copeland E.M., 3rd, Giri J., Sims J.E., Moldawer L.L., Oldenburg H.S. Increased Soluble Interleukin-1 Type II Receptor Concentrations in Postoperative Patients and in Patients with Sepsis Syndrome. Blood. 1996;87:3282–3288. [PubMed] [Google Scholar]
- 18.Oberholzer A., Oberholzer C., Moldawer L.L. Cytokine Signalling—Regulation of the Immune Response in Normal and Critically Ill States. Crit. Care Med. 2000;28(Suppl.):N3–N12. doi: 10.1097/00003246-200004001-00002. [DOI] [PubMed] [Google Scholar]
- 19.Eskandari M.K., Bolgos G., Miller C., Nguyen D.T., De-Forge L.E., Remick D.G. Anti-Tumor Necrosis Factor Antibody Therapy Fails to Prevent Lethality After Cecal Ligation and Puncture or Endotoxemia. J. Immunol. 1992;148:2724–2730. [PubMed] [Google Scholar]
- 20.Opal S.M., Cross A.S., Jhung J.W., Young L.D., Palardy J.E., Parejo N.A., Donsky C. Potential Hazards of Combination Immunotherapy in the Treatment of Experimental Septic Shock. J. Infect. Dis. 1996;173:1415–1421. doi: 10.1093/infdis/173.6.1415. [DOI] [PubMed] [Google Scholar]
- 21.Echtenacher B., Weigl K., Lehn N., Mannel D.N. Tumor Necrosis Factor-Dependent Adhesions as a Major Protective Mechanism Early in Septic Peritonitis in Mice. Infect. Immun. 2001;69:3550–3555. doi: 10.1128/IAI.69.6.3550-3555.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 22.Fisher C.J., Jr., Agosti J.M., Opal S.M., Lowry S.F., Balk R.A., Sadoff J.C., Abraham E., Schein R.M., Benjamin E. Treatment of Septic Shock with the Tumor Necrosis Factor Receptor:Fc Fusion Protein. N. Engl. J. Med. 1996;334:1697–1702. doi: 10.1056/NEJM199606273342603. [DOI] [PubMed] [Google Scholar]
- 23.Howell W.M., Calder P.C., Grimble R.F. Gene Polymorphisms, Inflammatory Diseases and Cancer. Proc. Nutr. Soc. 2002;61:447–456. doi: 10.1079/PNS2002186. [DOI] [PubMed] [Google Scholar]
- 24.Louis E., Franchimont D., Piron A., Gevaert Y., Schaaf-Lafontaine N., Roland S., Mahieu P., Malaise M., De Groote D., Louis R., Belaiche J. Tumour Necrosis Factor (TNF) Gene Polymorphism Influences TNF-Alpha Production in Lipopolysaccharide (LPS)-Stimulated Whole Blood Cell Culture in Healthy Humans. Clin. Exp. Immunol. 1998;113:401–406. doi: 10.1046/j.1365-2249.1998.00662.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 25.Pociot F., Briant L., Jongeneel C.V., Molvig J., Worsaae H., Abbal M., Thomsen M., Nerup J., Cambon-Thomsen A. Association of Tumor Necrosis Factor (TNF) and Class II Major Histocompatibility Complex Alleles with the Secretion of TNF-Alpha and TNF-Beta by Human Mononuclear Cells: A Possible Link to Insulin-Dependent Diabetes Mellitus. Eur. J. Immunol. 1993;23:224–231. doi: 10.1002/eji.1830230135. [DOI] [PubMed] [Google Scholar]
- 26.Mira J.P., Cariou A., Grall F., Delclaux C., Losser M.-R., Heshmati F., Cheval C., Monchi M., Teboul J.-L., Riche F., Leleu G., Arbibe L., Mignon A., Delpech M., Dhainaut J.-F. Association of TNF2, a TNF-α Promoter Polymorphism, with Septic Shock Susceptibility and Mortality. J. Am. Med. Assoc. 1999;282:561–568. doi: 10.1001/jama.282.6.561. [DOI] [PubMed] [Google Scholar]
- 27.Stuber F., Peterson M., Bokelmann F., Schade U. A Genetic Polymorphism Within the Tumor Necrosis Factor Locus Influences Plasma Tumor Necrosis Factor-α Concentrations and Outcome of Patients with Severe Sepsis. Crit. Care Med. 1996;24:381–384. doi: 10.1097/00003246-199603000-00004. [DOI] [PubMed] [Google Scholar]
- 28.Kahlke V., Schafmayer C., Schniewind B., Seegert D., Schreiber S., Schroder J. Are Postoperative Complications Genetically Determined by TNF-β NcoI Gene Polymprophism? Surgery. 2004;135:365–373. doi: 10.1016/j.surg.2003.08.012. [DOI] [PubMed] [Google Scholar]
- 29.Grbic J.T., Mannick J.A., Gough D.B., Rodrick M.L. The Role of Prostaglandin E2 in Immune Suppression Following Injury. Ann. Surg. 1991;214:253–263. doi: 10.1097/00000658-199109000-00008. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 30.Ertel W., Morrison M.H., Meldrum D.R., Ayala A., Chaudry I.H. Ibuprofen Restores Cellular Immunity and Decreases Susceptibility to Sepsis Following Hemorrhage. J. Surg. Res. 1992;53:55–61. doi: 10.1016/0022-4804(92)90013-P. [DOI] [PubMed] [Google Scholar]
- 31.Kollef M.H., Schuster D.P. The Acute Respiratory Distress Syndrome. N. Engl. J. Med. 1995;332:27–37. doi: 10.1056/NEJM199501053320106. [DOI] [PubMed] [Google Scholar]
- 32.Meakins J.L., Pietsch J.B., Bubenick O., Kelly R., Rode H., Gordon J., MacLean L.D. Delayed Hypersensitivity: Indicator of Acquired Failure of Host Defenses in Sepsis and Trauma. Ann. Surg. 1977;186:241–250. doi: 10.1097/00000658-197709000-00002. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 33.Lederer J.A., Rodrick M.L., Mannick J.A. The Effects of Injury on the Adaptive Immune Response. Shock. 1999;11:153–159. doi: 10.1097/00024382-199903000-00001. [DOI] [PubMed] [Google Scholar]
- 34.Oberholzer A., Oberholzer C., Moldawer L.L. Sepsis Syndromes: Understanding the Role of Innate and Acquired Immunity. Shock. 2001;16:83–96. doi: 10.1097/00024382-200116020-00001. [DOI] [PubMed] [Google Scholar]
- 35.O'Sullivan S.T., Lederer J.A., Horgan A.F., Chin D.H.L., Mannick J.A., Rodrick M.L. Major Injury Leads to Predominance of the T Helper-2 Lymphocyte Phenotype and Diminished Interleukin-12 Production Associated with Decreased Resistance to Infection. Ann. Surg. 1995;222:482–492. doi: 10.1097/00000658-199522240-00006. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 36.Opal S.M., DePalo V.A. Anti-Inflammatory Cytokines. Chest. 2000;117:1162–1172. doi: 10.1378/chest.117.4.1162. [DOI] [PubMed] [Google Scholar]
- 37.Gerard C., Bruyns C., Marchant A., Abramowicz D., Vandenabeele P., Delvaux A., Fiers W., Goldman M., Velu T. Interleukin 10 Reduces the Release of Tumor Necrosis Factor and Prevents Lethality in Experimental Endotoxemia. J. Exp. Med. 1993;177:547–550. doi: 10.1084/jem.177.2.547. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 38.Howard M., Muchamuel T., Andrade S., Menon S. Interleukin 10 Protects Mice from Lethal Endotoxemia. J. Exp. Med. 1993;177:1205–1208. doi: 10.1084/jem.177.4.1205. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 39.Smith S.R., Terminelli C., Kenworthy-Bott L., Calzetta A., Donkin J. The Cooperative Effects of TNF-α and IFN-γ are Determining Factors in the Ability of IL-10 to Protect Mice from Lethal Endotoxemia. J. Leuk. Biol. 1994;55:711–718. doi: 10.1002/jlb.55.6.711. [DOI] [PubMed] [Google Scholar]
- 40.Hershman M., Cheadle W., Wellhausen S., Davidson P., Polk H. Monocyte HLA-DR Antigen Expression Characterises Clinical Outcome in the Trauma Patients. Br. J. Surg. 1990;77:204–207. doi: 10.1002/bjs.1800770225. [DOI] [PubMed] [Google Scholar]
- 41.Wakefield C., Carey P., Fould S., Monson J., Guillou P. Changes in Major Histocompatibility Complex Class II Expression in Monocytes and T Cells of Patients Developing Infection After Surgery. Br. J. Surg. 1993;80:205–209. doi: 10.1002/bjs.1800800224. [DOI] [PubMed] [Google Scholar]
- 42.Astiz M., Saha D., Lustbader D., Lin R., Rackow E. Monocyte Response to Bacterial Toxins, Expression of Cell Surface Receptors, and Release of Anti-Inflammatory Cytokines During Sepsis. J. Lab. Clin. Med. 1996;128:594–600. doi: 10.1016/S0022-2143(96)90132-8. [DOI] [PubMed] [Google Scholar]
- 43.Manjuck J., Saha D.C., Astiz M., Eales L.-J., Rackow E.C. Decreased Response to Recall Antigens is Associated with Depressed Costimulatory Receptor Expression in Septic Critically Ill Patients. J. Lab. Clin. Med. 2000;135:153–1260. doi: 10.1067/mlc.2000.104306. [DOI] [PubMed] [Google Scholar]
- 44.Munoz C., Carlet J., Fitting C., Missett B., Bieriot J., Cavaillon J. Dysregulation of in vitro Cytokine Production by Monocytes During Sepsis. J. Clin. Invest. 1991;88:1747–1754. doi: 10.1172/JCI115493. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 45.Brandtzaeg P., Osnes L., Ovstebo R., Joo G., Westvik A., Kierulf P. Net Inflammatory Capacity of Human Septic Shock Plasma Evaluated by a Monocyte-Based Target Cell Assay: Identification of Interleukin-10 as a Major Functional Deactivator of Human Monocytes. J. Exp. Med. 1996;184:51–60. doi: 10.1084/jem.184.1.51. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 46.Heidecke C.D., Hensler T., Weighardt H., Zantl N., Wagner H., Siewert J.R., Holzmann B. Selective Defects of T Lymphocyte Function in Patients with Lethal Intraabdominal Infection. Am. J. Surg. 1999;178:288–292. doi: 10.1016/S0002-9610(99)00183-X. [DOI] [PubMed] [Google Scholar]
- 47.Pellegrini J.D., De A.K.K., Puyana J.C., Furse R.K., Miller-Graziano C. Relationships Between T Lymphocyte Apoptosis and Anergy Following Trauma. J. Surg. Res. 2000;88:200–206. doi: 10.1006/jsre.1999.5797. [DOI] [PubMed] [Google Scholar]
- 48.Weighardt H., Heidecke C.D., Emmanuilidis K., Maier S., Bartels H., Siewert J.R., Holzmann B. Sepsis After Major Visceral Surgery is Associated with Sustained and Interferon-γ-Resistant Defects of Monocyte Cytokine Production. Surgery. 2000;127:309–315. doi: 10.1067/msy.2000.104118. [DOI] [PubMed] [Google Scholar]
- 49.Tschaikowsky K., Hedwig-Geissing M., Schiele A., Bremer F., Schywalsky M., Schutter J. Coincidence of Proand Anti-Inflammatory Responses in the Early Phase of Severe Sepsis: Longitudinal Study of Mononuclear Histocompatibility Leukocyte Antigen-DR Expression, Procalcitonin, C-Reactive Protein, and Changes in T-Cell Subsets in Septic and Postoperative Patients. Crit. Care Med. 2000;30:1015–1023. doi: 10.1097/00003246-200205000-00010. [DOI] [PubMed] [Google Scholar]
- 50.Calder P.C. n−3 Polyunsaturated FA, Inflammation and Immunity: Pouring Oil on Troubled Waters or Another Fishy Tale? Nutr. Res. 2001;21:309–341. doi: 10.1016/S0271-5317(00)00287-6. [DOI] [Google Scholar]
- 51.Kinsella J.E., Lokesh B., Broughton S., Whelan J. Dietary Polyunsaturated Fatty Acids and Eicosanoids: Potential Effects on the Modulation of Inflammatory and Immune Cells: An Overview. Nutrition. 1990;6:24–44. [PubMed] [Google Scholar]
- 52.Calder P.C. Polyunsaturated Fatty Acids, Inflammation and Immunity. Lipids. 2001;36:1007–1024. doi: 10.1007/s11745-001-0812-7. [DOI] [PubMed] [Google Scholar]
- 53.Calder P.C. Dietary Modification of Inflammation with Lipids. Proc. Nutr. Soc. 2002;61:345–358. doi: 10.1079/PNS2002186. [DOI] [PubMed] [Google Scholar]
- 54.Calder P.C. n−3 Polyunsaturated Fatty Acids and Inflammation: From Molecular Biology to the Clinic. Lipids. 2003;38:342–352. doi: 10.1007/s11745-003-1068-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 55.Miles E.A., Allen E., Calder P.C. In vitro Effects of Eicosanoids Derived from Different 20-Carbon Fatty Acids on Production of Monocyte-Derived Cytokines in Human Whole Blood Cultures. Cytokine. 2002;20:215–223. doi: 10.1006/cyto.2002.2007. [DOI] [PubMed] [Google Scholar]
- 56.Dooper M.M.B.W., Wassink L., M'Rabet L., Graus Y.M.F. The Modulatory Effects of Prostaglandin-E on Cytokine Production by Human Peripheral Blood Mononuclear Cells are Independent of the Prostaglandin Subtype. Immunology. 2002;107:152–159. doi: 10.1046/j.1365-2567.2002.01474.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 57.Vassiliou E., Jing H., Ganea D. Prostaglandin E2 Inhibits TNF Production in Murine Bone Marrow-Derived Dendritic Cells. Cell. Immunol. 2003;223:120–132. doi: 10.1016/S0008-8749(03)00158-8. [DOI] [PubMed] [Google Scholar]
- 58.van der Pouw Kraan T.C., Boeije L.C., Smeenk R.J., Wijdenes J., Aarden L.A. Prostaglandin E2 is a Potent Inhibitor of Human Interleukin 12 Production in Murine Bone Marrow-Derived Dendritic Cells. J. Exp. Med. 1995;181:775–779. doi: 10.1084/jem.181.2.775. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 59.Rola-Pleszczynski M., Thivierge M., Gagnon N., Lacasse C., Stankova J. Differential Regulation of Cytokine and Cytokine Receptor Genes by PAF, LTB4 and PGE2. J. Lipid Mediat. 1993;6:175–181. [PubMed] [Google Scholar]
- 60.Bagga D., Wang L., Farias-Eisner R., Glaspy J.A., Reddy S.T. Differential Effects of Prostaglandin Derived From ω-6 and ω-3 Polyunsaturated Fatty Acids on COX-2 Expression and IL-6 Secretion. Proc. Natl. Acad. Sci. USA. 2003;100:1751–1756. doi: 10.1073/pnas.0334211100. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 61.Levy B.D., Clish C.B., Schmidt B., Gronert K., Serhan C.N. Lipid Mediator Class Switching During Acute Inflammation: Signals in Resolution. Nature Immunol. 2001;2:612–619. doi: 10.1038/89759. [DOI] [PubMed] [Google Scholar]
- 62.Vachier I., Chanez P., Bonnans C., Godard P., Bousquet J., Chavis C. Endogenous Anti-Inflammatory Mediators from Arachidonate in Human Neutrophils. Biochem. Biophys. Res. Commun. 2002;290:219–224. doi: 10.1006/bbrc.2001.6155. [DOI] [PubMed] [Google Scholar]
- 63.Gewirtz A.T., Collier-Hyams L.S., Young A.N., Kucharzik T., Guilford W.J., Parkinson J.F., Williams I.R., Neish A.S., Madara J.L. Lipoxin A4 Analogs Attenuate Induction of Intestinal Epithelial Proinflammatory Gene Expression and Reduce the Severity of Dextran Sodium Sulfate-Induced Colitis. J. Immunol. 2002;168:5260–5267. doi: 10.4049/jimmunol.168.10.5260. [DOI] [PubMed] [Google Scholar]
- 64.Serhan C.N., Jain A., Marleau S., Clish C., Kantarci A., Beh-behani B., Colgan S.P., Stahl G.L., Merched A., Petasis N.A., Chan L., Van Dyke T.E. Reduced Inflammation and Tissue Damage in Transgenic Rabbits Overexpressing 15-Lipoxygenase and Endogenous Anti-Inflammatory Lipid Mediators. J. Immunol. 2003;171:6856–6865. doi: 10.4049/jimmunol.171.12.6856. [DOI] [PubMed] [Google Scholar]
- 65.Calder P.C., Bevan S.J., Newsholme E.A. The Inhibition of T-Lymphocyte Proliferation by Fatty Acids is Via an Eicosanoid-Independent Mechanism. Immunology. 1992;75:108–115. [Google Scholar]
- 66.Miles E.A., Aston L., Calder P.C. In Vitro Effects of Eicosanoids Derived from Different 20-Carbon Fatty Acids on T Helper Type 1 and T Helper Type 2 Cytokine Production in Human Whole-Blood Cultures. Clin. Exp. Allergy. 2003;33:624–632. doi: 10.1046/j.1365-2222.2003.01637.x. [DOI] [PubMed] [Google Scholar]
- 67.Camandola S., Leonarduzzi G., Musso T., Varesio L., Carini R., Scavazza A., Chiarpotto E., Baeuerle P.A., Poli G. Nuclear κB is Activated by Arachidonic Acid but Not by Eicosapentaenoic Acid. Biochem. Biophys. Res. Commun. 1996;229:643–647. doi: 10.1006/bbrc.1996.1857. [DOI] [PubMed] [Google Scholar]
- 68.Priante G., Bordin L., Musacchio E., Clari G., Baggio B. Fatty Acids and Cytokine mRNA Expression in Human Osteoblastic Cells: A Specific Effect of Arachidonic Acid. Clin. Sci. 2002;102:403–409. doi: 10.1042/CS20010213. [DOI] [PubMed] [Google Scholar]
- 69.Bordin L., Prianti G., Musacchio E., Giunco S., Tibaldi E., Clari G., Baggio B. Arachidonic Acid-Induced IL-6 Expression is Mediated by PKC-α Activation in Osteoblastic Cells. Biochemistry. 2003;42:4485–4491. doi: 10.1021/bi026842n. [DOI] [PubMed] [Google Scholar]
- 70.Hennig B., Toborek M., Joshi-Barve S., Barger S.W., Barve S., Mattson M.P., McClain C.J. Linoleic Acid Activates Nuclear Transcription Factor-Kappa B (NF-kappa B) and Induces NF-kappa B-Dependent Transcription in Cultured Endothelial Cells. Am. J. Clin. Nutr. 1996;63:322–328. doi: 10.1093/ajcn/63.3.322. [DOI] [PubMed] [Google Scholar]
- 71.Hennig B., Meerarani P., Ramadass P., Watkins B.A., Toborek M. Fatty Acid-Induced Activation of Vascular Endothelial Cells. Metabolism. 2000;49:1006–1013. doi: 10.1053/meta.2000.7736. [DOI] [PubMed] [Google Scholar]
- 72.Toborek M., Blanc E.M., Kaiser S., Mattson M.P., Hennig B. Linoleic Acid Potentiates TNF-Mediated Oxidative Stress, Disruption of Calcium Homeostasis, and Apoptosis of Cultured Vascular Endothelial Cells. J. Lipid Res. 1997;38:2155–2167. [PubMed] [Google Scholar]
- 73.Toborek M., Lee Y.W., Garrido R.S., Hennig B. Unsaturated Fatty Acids Selectively Induce an, Inflammatory Environment in Human Endothelial Cells. Am. J. Clin. Nutr. 2002;75:119–125. doi: 10.1093/ajcn/75.1.119. [DOI] [PubMed] [Google Scholar]
- 74.Young V.M., Toborek M., Yang F.J., McClain C.J., Hennig B. Effect of Linoleic Acid on Endothelial Cell Inflammatory Mediators. Metabolism. 1998;47:566–572. doi: 10.1016/S0026-0495(98)90241-4. [DOI] [PubMed] [Google Scholar]
- 75.Park H.J., Lee Y.W., Hennig B., Toborek M. Linoleic Acid-Induced VCAM-1 Expression in Human Microvascular Endothelial Cells is Mediated by NF-kappa B-Dependent Pathway. Nutr. Cancer. 2001;41:126–134. doi: 10.1207/S15327914NC41-1&2_18. [DOI] [PubMed] [Google Scholar]
- 76.Dichtl W., Ares M.P.S., Niemann Jonson A., Jovinge S., Pachinger O., Giachelli C.M., Hamsten A., Eriksson P., Nilsson J. Linoleic Acid-Stimulated Vascular Adhesion Molecule-1 Expression in Endothelial Cells Depends on Nuclear Factor-κB Activation. Metabolism. 2002;51:327–333. doi: 10.1053/meta.2002.29963. [DOI] [PubMed] [Google Scholar]
- 77.Gibney M.J., Hunter B. The Effects of Short- and Long-Term Supplementation with Fish Oil on the Incorporation of n−3 Polyunsaturated Fatty Acids into Cells of the Immune System in Healthy Volunteers. Eur. J. Clin. Nutr. 1993;47:255–259. [PubMed] [Google Scholar]
- 78.Yaqoob P., Pala H.S., Cortina-Borja M., Newsholme E.A., Calder P.C. Encapsulated Fish Oil Enriched in α-Tocopherol Alters Plasma Phospholipid and Mononuclear Cell Fatty Acid Compositions but not Mononuclear Cell Functions. Eur. J. Clin. Invest. 2000;30:260–274. doi: 10.1046/j.1365-2362.2000.00623.x. [DOI] [PubMed] [Google Scholar]
- 79.Healy D.A., Wallace F.A., Miles E.A., Calder P.C., Newsholme P. The Effect of Low to Moderate Amounts of Dietary Fish Oil on Neutrophil Lipid Composition and Function. Lipids. 2000;35:763–768. doi: 10.1007/s11745-000-0583-1. [DOI] [PubMed] [Google Scholar]
- 80.Endres S., Ghorbani R., Kelley V.E., Georgilis K., Lonnemann G., van der Meer J.M.W., Cannon J.G., Rogers T.S., Klempner M.S., Weber P.C., Schaeffer E.J., Wolff S.M., Dinarello C.A. The Effect of Dietary Supplementation with n−3 Polyunsaturated Fatty Acids on the Synthesis of Interleukin-1 and Tumor Necrosis Factor by Mononuclear Cells. N. Eng. J. Med. 1989;320:265–271. doi: 10.1056/NEJM198902023200501. [DOI] [PubMed] [Google Scholar]
- 81.Meydani S.N., Endres S., Woods M.M., Goldin B.R., Soo C., Morrill-Labrode A., Dinarello C., Gorbach S.L. Oral (n−3) Fatty Acid Supplementation Suppresses Cytokine Production and Lymphocyte Proliferation: Comparison Between Young and Older Women. J. Nutr. 1991;121:547–555. doi: 10.1093/jn/121.4.547. [DOI] [PubMed] [Google Scholar]
- 82.Caughey G.E., Mantzioris E., Gibson R.A., Cleland L.G., James M.J. The Effect on Human Tumor Necrosis Factor a and Interleukin 1β Production of Diets Enriched in n−3 Fatty Acids from Vegetable Oil or Fish Oil. Am. J. Clin. Nutr. 1996;63:116–122. doi: 10.1093/ajcn/63.1.116. [DOI] [PubMed] [Google Scholar]
- 83.Trebble T.M., Wootton S.A., Miles E.A., Mullee M., Arden N.K., Ballinger A.B., Stroud M.A., Calder P.C. Prostaglandin E2 Production and T-Cell Function After Fish-Oil Supplementation: Response to Antioxidant Co-supplementation. Am. J. Clin. Nutr. 2003;78:376–382. doi: 10.1093/ajcn/78.3.376. [DOI] [PubMed] [Google Scholar]
- 84.Lee T.H., Hoover R.L., Williams J.D., Sperling R.I., Ravalese J., Spur B.W., Robinson D.R., Corey E.J., Lewis R.A., Austen K.F. Effects of Dietary Enrichment with Eicosapentaenoic Acid and Docosahexaenoic Acid on In Vitro Neutrophil and Monocyte Leukotriene Generation and Neutrophil Function. N. Eng. J. Med. 1985;312:1217–1224. doi: 10.1056/NEJM198505093121903. [DOI] [PubMed] [Google Scholar]
- 85.Sperling R.I., Benincaso A.I., Knoell C.T., Larkin J.K., Austen K.F., Robinson D.R. Dietary ω-3 Polyunsaturated Fatty Acids Inhibit Phosphoinositide Formation and Chemotaxis in Neutrophils. J. Clin. Invest. 1993;91:651–660. doi: 10.1172/JCI116245. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 86.Von Schacky C., Kiefl R., Jendraschak E., Kaminski W.E. n−3 Fatty Acids and Cysteinyl-Leukotriene Formation in Humans in vitro, ex vivo and in vivo. J. Lab. Clin. Med. 1993;121:302–309. [PubMed] [Google Scholar]
- 87.Needleman P., Whitaker M.O., Wyche A., Watters K., Sprecher H., Raz A. Manipulation of Platelet Aggregation by Prostaglandins and Their Fatty Acid Precursors: Pharmacological Basis for a Therapeutic Approach. Prostaglandins. 1980;19:165–181. doi: 10.1016/0090-6980(80)90163-X. [DOI] [PubMed] [Google Scholar]
- 88.Kulmacz R.J., Pendleton R.B., Lands W.E.M. Interaction Between Peroxidase and Cyclooxygenase Activities in Prostaglandin-Endoperoxide Synthase. J. Biol. Chem. 1994;269:5527–5536. [PubMed] [Google Scholar]
- 89.Obata T., Nagakura T., Masaki T., Maekawa K., Yamashita K. Eicosapentaenoic Acid Inhibits Prostaglandin D2 Generation by Inhibiting Cyclo-oxygenase-2 in Cultured Human Mast Cells. Clin. Exp. Allergy. 1999;29:1129–1135. doi: 10.1046/j.1365-2222.1999.00604.x. [DOI] [PubMed] [Google Scholar]
- 90.Lee T.H., Mencia-Huerta J.M., Shih C., Corey E.J., Lewis R.A., Austen F.A. Effects of Exogenous Arachidonic Eicosapentaenoic, and Docosahexaenoic Acids on the Generation of 5-Lipoxygenase Pathway Products by Ionophore-Activated Human Neutrophils. J. Clin. Invest. 1984;74:1922–1933. doi: 10.1172/JCI111612. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 91.Rao G.H., Radha E., White J.G. Effect of Docosahexaenoic Acid (DHA) on Arachidonic Acid Metabolism and Platelet Function. Biochem. Biophys. Res. Commun. 1983;16:549–55. doi: 10.1016/0006-291X(83)91235-4. [DOI] [PubMed] [Google Scholar]
- 92.Corey E.J., Shih C., Cashman J.R. Docosahexaenoic Acid is a Strong Inhibitor of Prostaglandin but Not Leukotriene Biosynthesis. Proc. Natl. Acad. Sci. USA. 1983;80:3581–3584. doi: 10.1073/pnas.80.12.3581. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 93.Curtis C.L., Hughes C.E., Flannery C.R., Little C.B., Harwood J.L., Caterson B. n−3 Fatty Acids Specifically Modulate Catabolic Factors Involved in Articular Cartilage Degradation. J. Biol. Chem. 2000;275:721–724. doi: 10.1074/jbc.275.2.721. [DOI] [PubMed] [Google Scholar]
- 94.Curtis C.L., Rees S.G., Little C.B., Flannery C.R., Hughes C.E., Wilson C., Dent C.M., Otterness I.G., Harwood J.L., Caterson B. Pathologic Indicators of Degradation and Inflammation in Human Osteoarthritic Cartilage are Abrogated by Exposure to n−3 Fatty Acids. Arthritis Rheum. 2002;46:1544–1553. doi: 10.1002/art.10305. [DOI] [PubMed] [Google Scholar]
- 95.Laneuville O., Breuer D.K., Xu N., Huang Z.H., Gage D.A., Watson J.T., Lagarde M., DeWitt D.L., Smith W.L. Fatty Acid Substrate Specificities of Human Prostaglandin-Endoperoxide H Synthase-1 and-2. J. Biol. Chem. 1995;270:19330–19336. doi: 10.1074/jbc.270.33.19330. [DOI] [PubMed] [Google Scholar]
- 96.Malkowski M.G., Thuresson E.D., Lakkides K.M., Rieke C.J., Micielli R., Smith W.L., Garavito R.M. Structure of Eicosapentaenoic and Linoleic Acids in the Cyclooxygenase Site of Prostaglandin Endoperoxidase H Synthase-1. J. Biol. Chem. 2001;276:37547–37555. doi: 10.1074/jbc.M105982200. [DOI] [PubMed] [Google Scholar]
- 97.Hawkes J.S., James M.J., Cleland L.G. Separation and Quantification of PGE3 Following Derivatization with Panacyl Bromide by High Pressure Liquid Chromatography with Fluorometric Detection. Prostaglandins. 1991;42:355–368. doi: 10.1016/0090-6980(91)90084-S. [DOI] [PubMed] [Google Scholar]
- 98.Goldman D.W., Pickett W.C., Goetzl E.J. Human Neutrophil Chemotactic and Degranulating Activities of Leukotriene B5 (LTB5) Derived from Eicosapentaenoic Acid. Biochem. Biophys. Res. Commun. 1983;117:282–288. doi: 10.1016/0006-291X(83)91572-3. [DOI] [PubMed] [Google Scholar]
- 99.Lee T.H., Mencia-Huerta J.M., Shih C., Corey E.J., Lewis R.A., Austen K.F. Characterization and Biologic Properties of 5,12-Dihydroxy Derivatives of Eicosapentaenoic Acid, Including Leukotriene-B5 and the Double Lipoxygenase Product. J. Biol. Chem. 1984;259:2383–2389. [PubMed] [Google Scholar]
- 100.Grimminger F., Mayer K., Kiss L., Wahn H., Walmrath D., Bahkdi S., Seeger W. Synthesis of 4-Series and 5-Series Leukotrienes in the Lung Microvasculature Challenged with Escherichia coli Hemolysin: Critical Dependence on Exogenous Free Fatty Acid Supply. Am. J. Resp. Cell. Mol. Biol. 1997;16:317–324. doi: 10.1165/ajrcmb.16.3.9070617. [DOI] [PubMed] [Google Scholar]
- 101.Grimminger F., Wahn H., Mayer K., Kiss L., Walmrath D., Seeger W. Impact of Arachidonic Acid Versus Eicosapentaenoic Acid on Exotoxin-Induced Lung Vascular Leakage—Relation to 4-Series Versus 5-Series Leukotriene Generation. Am. J. Resp. Crit. Care Med. 1997;155:513–519. doi: 10.1164/ajrccm.155.2.9032187. [DOI] [PubMed] [Google Scholar]
- 102.Breil I., Koch T., Heller A., Schlotzer E., Grunert A., van Ackern K., Neuhof H. Alteration of n−3 Fatty Acid Composition in Lung Tissue After Short-Term Infusion of Fish Oil Emulsion Attenuates Inflammatory Vascular Reaction. Crit. Care Med. 1996;24:1893–1902. doi: 10.1097/00003246-199611000-00021. [DOI] [PubMed] [Google Scholar]
- 103.Serhan C.N., Clish C.B., Brannon J., Colgan S.P., Gronert K., Chiang N. Anti-Inflammatory Lipid Signals Generated From Dietary n−3 Fatty Acids via Cyclooxygenase-2 and Transcellular Processing: A Novel Mechanism for NSAID and n−3 PUFA Therapeutic Actions. J. Physiol. Pharmacol. 2000;4:643–654. [PubMed] [Google Scholar]
- 104.Serhan C.N., Clish C.B., Brannon J., Colgan S.P., Chiang N., Gronert K. Novel Functional Sets of Lipid-derived Mediators with Anti-inflammatory Actions Generated From Omega-3 Fatty Acids Via Cyclooxygenase 2-Nonsteroidal Antiinflammatory Drugs and Transcellular Processing. J. Exp. Med. 2000;192:1197–1204. doi: 10.1084/jem.192.8.1197. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 105.Serhan C.N., Hong S., Gronert K., Colgan S.P., Devchand P.R., Mirick G., Moussignac R-L. Resolvins: A Family of Bioactive Products of Omega-3 Fatty Acid Transformation Circuits Initiated by Aspirin Treatment That Counter Pro-Inflammation Signals. J. Exp. Med. 2002;196:1025–1037. doi: 10.1084/jem.20020760. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 106.Hong S., Gronert K., Devchand P., Moussignac R.-L., Serhan C.N. Novel Docosatrienes and 17S-Resolvins Generated from Docosahexaenoic Acid in Urine Brain, Human Blood and Glial Cells: Autocoids in Anti-inflammation. J. Biol. Chem. 2003;278:14677–14687. doi: 10.1074/jbc.M300218200. [DOI] [PubMed] [Google Scholar]
- 107.Marcheselli V.L., Hong S., Lukiw W.J., Hua Tian X., Gronert K., Musto A., Hardy M., Gimenez J.M., Chiang N., Serhan C.N., Bazan N.G. Novel Docosanoids Inhibit Brain Ischemia-Reperfusion-Mediated Leukocyte Infiltration and Pro-Inflammatory Gene Expression. J. Biol. Chem. 2003;278:43807–43817. doi: 10.1074/jbc.M305841200. [DOI] [PubMed] [Google Scholar]
- 108.Mukherjee P.K., Marcheselli V.L., Serhan C.N., Bazan N.G. Neutroprotectin D1: A Docosahexaenoic Acid-Derived Docosatriene Protects Human Retinal Pigment Epithelial Cells from Oxidative Stress. Proc. Natl. Acad. Sci. USA. 2004;101:8491–8496. doi: 10.1073/pnas.0402531101. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 109.De Caterina R., Cybulsky M.I., Clinton S.K., Gimbrone M.A., Libby P. The Omega-3 Fatty Acid Docosahexaenoate Reduces Cytokine-Induced Expression of Proatherogenic and Proinflammatory Proteins in Human Endothelial Cells. Arterioscler. Thromb. 1994;14:1829–1836. doi: 10.1161/01.atv.14.11.1829. [DOI] [PubMed] [Google Scholar]
- 110.Khalfoun B., Thibault F., Watier H., Bardos P., Lebranchu Y. Docosahexaenoic and Eicosapentaenoic Acids Inhibits in vitro Human Endothelial Cell Production of Interleukin-6. Adv. Exp. Biol. Med. 1997;400:589–597. [PubMed] [Google Scholar]
- 111.Lo C.J., Chiu K.C., Fu M., Lo R., Helton S. Fish Oil Decreases Macrophage Tumor Necrosis Factor Gene Transcription by Altering the NFκB Activity. J. Surg. Res. 1999;82:216–222. doi: 10.1006/jsre.1998.5524. [DOI] [PubMed] [Google Scholar]
- 112.Babcock T.A., Novak T., Ong E., Jho D.H., Helton W.S., Espat N.J. Modulation of Lipopolysaccharide-Stimulated Macrophage Tumor Necrosis Factor-α Production by ω-3 Fatty Acid Is Associated with Differential Cyclooxygenase-2 Protein Expression and is Independent of Interleukin-10. J. Surg. Res. 2002;107:135–139. doi: 10.1006/jsre.2002.6498. [DOI] [PubMed] [Google Scholar]
- 113.Novak T.E., Babcock T.A., Jho D.H., Helton W.S., Espat N.J. NF-κB Inhibition by ω-3 Fatty Acids Modulates LPS-Stimulated Macrophage TNF-α Transcription. Am. J. Physiol. 2003;284:L84–L89. doi: 10.1152/ajplung.00077.2002. [DOI] [PubMed] [Google Scholar]
- 114.Zhao Y., Joshi-Barve S., Barve S., Chen L.H. Eicosapentaenoic Acid Prevents LPS-Induced TNF-α Expression by Preventing NF-κB Activation. J. Am. Coll. Nutr. 2004;23:71–78. doi: 10.1080/07315724.2004.10719345. [DOI] [PubMed] [Google Scholar]
- 115.Ross J.A., Moses A.G.W., Fearon K.C.H. The Anti-catabolic Effects of n−3 Fatty Acids. Curr. Opin. Clin. Nutr. Metab. Care. 1999;2:219–226. doi: 10.1097/00075197-199905000-00005. [DOI] [PubMed] [Google Scholar]
- 116.Lo C.J., Chiu K.C., Fu M.J., Chu A., Helton S. Fish Oil Modulates Macrophage P44/42 Mitogen-Activated Protein Kinase Activity Induced by Lipopolysaccharide. J. Parent. Ent. Nutr. 2000;24:159–163. doi: 10.1177/0148607100024003159. [DOI] [PubMed] [Google Scholar]
- 117.Xi S., Cohen D., Barve S., Cohen L.H. Fish Oil Suppressed Cytokines and Nuclear Factor kappaB Induced by Murine AIDS Virus Infection. Nutr. Res. 2001;21:865–878. doi: 10.1016/S0271-5317(01)00290-1. [DOI] [Google Scholar]
- 118.Sadeghi S., Wallace F.A., Calder P.C. Dietary Lipids Modify the Cytokine Response to Bacterial Lipopolysaccharide in Mice. Immunology. 1999;96:404–410. doi: 10.1046/j.1365-2567.1999.00701.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 119.Abbate R., Gori A.M., Martini F., Brunelli T., Filippini M., Francalanci I., Paniccia R., Prisco D., Gensini G.F., Serneri G.G.N. n−3 PUFA Supplementation, Monocyte PCA Expression and Interleukin-6 Production. Prostaglandins Leukot. Essent. Fatty Acids. 1996;54:439–444. doi: 10.1016/S0952-3278(96)90028-9. [DOI] [PubMed] [Google Scholar]
- 120.Trebble T., Arden N.K., Stroud M.A., Wootton S.A., Burdge G.C., Miles E.A., Ballinger A.B., Thompson R.L., Calder P.C. Inhibition of Tumour Necrosis Factor-α and Inter-leukin-6 Production by Mononuclear Cells Following Dietary Fish-Oil Supplementation in Healthy Men and Response to Antioxidant Co-Supplementation. Br. J. Nutr. 2003;90:405–412. doi: 10.1079/BJN2003892. [DOI] [PubMed] [Google Scholar]
- 121.Wallace F.A., Miles E.A., Calder P.C. Comparison of the Effects of Linseed Oil and Different Doses of Fish Oil on Mononuclear Cell Function in Healthy Human Subjects. Br. J. Nutr. 2003;89:679–689. doi: 10.1079/BJN2002821. [DOI] [PubMed] [Google Scholar]
- 122.Grimble R.F., Howell W.M., O'Reilly G., Turner S.J., Markovic O., Hirrell S., East J.M., Calder P.C. The Ability of Fish Oil to Suppress Tumor Necrosis Factor-α Production by Peripheral Blood Mononuclear Cells in Healthy Men is Associated with Polymorphisms in Genes that Influence Tumor Necrosis Factor α Production. Am. J. Clin. Nutr. 2002;76:454–459. doi: 10.1093/ajcn/76.2.454. [DOI] [PubMed] [Google Scholar]
- 123.Mascioli E.A., Leader L., Flores E., Trimbo S., Bistrian B., Blackburn G. Enhanced Survival to Endotoxin in Guinea Pigs Fed IV Fish Oil Emulsion. Lipids. 1988;23:623–625. doi: 10.1007/BF02535609. [DOI] [PubMed] [Google Scholar]
- 124.Mascioli E.A., Iwasa Y., Trimbo S., Leader L., Bistrian B.R., Blackburn G.L. Endotoxin Challenge After Menhaden Oil Diet: Effects on Survival of Guinea Pigs. Am. J. Clin. Nutr. 1989;49:277–282. doi: 10.1093/ajcn/49.2.277. [DOI] [PubMed] [Google Scholar]
- 125.Utsunomiya T., Chavali S.R., Zhong W.W., Forse R.A. Effects of Continuous Tube Feeding of Dietary Fat Emulsions on Eicosanoid Production and on Fatty Acid Composition During an Acute Septic Shock in Rats. Biochim. Biophys. Acta. 1994;1214:333–339. doi: 10.1016/0005-2760(94)90081-7. [DOI] [PubMed] [Google Scholar]
- 126.Sane S., Baba M., Kusano C., Shirao K., Andoh T., Kamada T., Aikou T. Eicosapentaenoic Acid Reduces Pulmonary Edema in Endotoxemic Rats. J. Surg. Res. 2000;93:21–27. doi: 10.1006/jsre.2000.5960. [DOI] [PubMed] [Google Scholar]
- 127.Mulrooney H.M., Grimble R.F. Influence of Butter and of Corn, Coconut and Fish Oils on the Effects of Recombinant Human Tumour Necrosis Factor-α in Rats. Clin. Sci. 1994;84:105–112. doi: 10.1042/cs0840105. [DOI] [PubMed] [Google Scholar]
- 128.Pomposelli J., Mascioli E.A., Bistrian B.R., Flores S.M. Attenuation of the Febrile Response in Guinea Pigs by Fish Oil Enriched Diets. J. Parent. Ent. Nutr. 1990;13:136–140. doi: 10.1177/0148607189013002136. [DOI] [PubMed] [Google Scholar]
- 129.Pomposelli J.J., Flores E.A., Blackburn G., Zeisel S.H., Bistrian B.R. Diets Enriched with n−3 Fatty Acids Ameliorate Lactic Acidosis by Improving Endotoxin-Induced Tissue Hypoperfusion in Guinea Pigs. Ann. Surg. 1991;213:166–176. doi: 10.1097/00000658-199102000-00012. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 130.Teo T.C., Selleck K.M., Wan J.M.F., Pomposelli J.J., Babayan V.K., Blackburn G.L., Bistrian B.R. Long-Term Feeding with Structured Lipid Composed of Medium-Chain and n−3 Fatty Acids Ameliorates Endotoxic Shock in Guinea-Pigs. Metabolism. 1991;40:1152–1159. doi: 10.1016/0026-0495(91)90209-F. [DOI] [PubMed] [Google Scholar]
- 131.Murray M.J., Kanazi G., Moukabary K., Tazelaar H.D., DeMichele S.J. Effects of Eicosapentaenoic and γ-Linolenic Acids (Dietary Lipids) on Pulmonary Surfactant Composition and Function During Porcine Endotoxemia. Chest. 2000;117:1720–1727. doi: 10.1378/chest.117.6.1720. [DOI] [PubMed] [Google Scholar]
- 132.Mancuso P., Whelan J., DeMichele S.J., Snider C.C., Guszcza J.A., Karlstad M.D. Dietary Fish Oil and Fish and Borage Oil Suppress Intrapulmonary Proinflammatory Eicosanoids Biosynthesis and Attenuate Pulmonary Neutrophil Accumulation in Endotoxic Rats. Crit. Care Med. 1997;25:1198–1206. doi: 10.1097/00003246-199707000-00023. [DOI] [PubMed] [Google Scholar]
- 133.Mancuso P., Whelan J., DeMichele S.J., Snider C.C., Guszcza J.A., Claycombe K.J., Smith G.T., Gregory T.J., Karlstad M.D. Effects of Eicosapentaenoic and Gamma-Linolenic Acid on Lung Permeability and Alveolar Macrophage Eicosanoid Synthesis in Endotoxic Rats. Crit. Care Med. 1997;25:523–532. doi: 10.1097/00003246-199703000-00024. [DOI] [PubMed] [Google Scholar]
- 134.Murray M.J., Svinger B.A., Holman R.T., Yaksh T.L. Effects of a Fish Oil Diet on Pig's Cardiopulmonary Response to Bacteremia. J. Parent. Ent. Nutr. 1991;15:152–158. doi: 10.1177/0148607191015002152. [DOI] [PubMed] [Google Scholar]
- 135.Murray M.J., Svinger B.A., Yaksh T.L., Holman R.T. Effects of Endotoxin on Pigs Prefed Omega-3 Vs. Omega-6 Fatty Acids-Enriched Diets. Am. J. Physiol. 1993;265:E920–E927. doi: 10.1152/ajpendo.1993.265.6.E920. [DOI] [PubMed] [Google Scholar]
- 136.Murray M.J., Kumar M., Gregory T.J., Banks P.L., Tazelaar H.D., DeMichele S.J. Select Dietary Fatty Acids Attenuate Cardiopulmonary Dysfunction During Acute Lung Injury in Pigs. Am. J. Physiol. 1995;269:H2090–H2097. doi: 10.1152/ajpheart.1995.269.6.H2090. [DOI] [PubMed] [Google Scholar]
- 137.Calder P.C., Yaqoob P., Thies F., Wallace F.A., Miles E.A. Fatty Acids and Lymphocyte Functions. Br. J. Nutr. 2002;87:S31–S48. doi: 10.1079/BJN2001482. [DOI] [PubMed] [Google Scholar]
- 138.Halvorsen D.A., Hansen J-B, Grimsgaard S., Bonna K.H., Kierulf P., Nordoy A. The Effect of Highly Purified Eicosapentaenoic and Docosahexaenoic Acids on Monocyte Phagocytosis in Man. Lipids. 1997;32:935–942. doi: 10.1007/s11745-997-0120-2. [DOI] [PubMed] [Google Scholar]
- 139.Thies F., Miles E.A., Nebe-von-Caron G., Powell J.R., Hurst T.L., Newsholme E.A., Calder P.C. Influence of Dietary Supplementation with Long-Chain n−3 or n−6 Polyunsaturated Fatty Acids on Blood Inflammatory Cell Populations and Functions and on Plasma Soluble Adhesion Molecules in Healthy Adults. Lipids. 2001;36:1183–1193. doi: 10.1007/s11745-001-0831-4. [DOI] [PubMed] [Google Scholar]
- 140.Kew S., Banerjee T., Minihane A.M., Finnegan Y.E., Muggli R., Albers R., Williams C.M., Calder P.C. Lack of Effect of Foods Enriched with Plant- or Marine-Derived n−3 Fatty Acids on Human Immune Function. Am. J. Clin. Nutr. 2003;77:1287–1295. doi: 10.1093/ajcn/77.5.1287. [DOI] [PubMed] [Google Scholar]
- 141.Miles E.A., Banerjee T., Dooper M.W.B.W., M'Rabet L., Graus Y.M.F., Calder P.C. The Influence of Different Combinations of γ-Linolenic Acid, Stearidonic Acid and EPA on Immune Function in Healthy Young Male Subjects. Brit. J. Nutr. 2004;91:893–903. doi: 10.1079/BJN20041131. [DOI] [PubMed] [Google Scholar]
- 142.Hughes D.A., Pinder A.C., Piper Z., Johnson I.T., Lund E.K. Fish Oil Supplementation Inhibits the Expression of Major Histocompatibility Complex Class II Molecules and Adhesion Molecules on Human Monocytes. Am. J. Clin. Nutr. 1996;63:267–272. doi: 10.1093/ajcn/63.2.267. [DOI] [PubMed] [Google Scholar]
- 143.Meydani M., Natiello F., Goldin B., Free N., Woods M., Schaefer E., Blumberg J.B., Gorbach S.L. Effect of Long-Term Fish Oil Supplementation on Vitamin E Status and Lipid Peroxidation in Women. J. Nutr. 1991;121:484–491. doi: 10.1093/jn/121.4.484. [DOI] [PubMed] [Google Scholar]
- 144.Molvig J., Pociot F., Worsaae H., Wogensen L.D., Baek L., Christensen P., Mandruppoulsen T., Andersen K., Madsen P., Dyerberg J., Nerup J. Dietary Supplementation with Omega 3 Polyunsaturated Fatty Acids Decreases Mononuclear Cell Proliferation and Interleukin 1 Beta Content but Not Monokine Secretion in Healthy and Insulin Dependent Diabetic Individuass. Scand. J. Immunol. 1991;34:399–410. doi: 10.1111/j.1365-3083.1991.tb01563.x. [DOI] [PubMed] [Google Scholar]
- 145.Thies F., Nebe-von-Caron G., Powell J.R., Yaqoob P., Newsholme E.A., Calder P.C. Dietary Supplementation with γ-Linolenic Acid or Fish Oil Decreases T Lymphocyte Proliferation in Healthy Older Humans. J. Nutr. 2001;131:1918–1927. doi: 10.1093/jn/131.7.1918. [DOI] [PubMed] [Google Scholar]
- 146.Pscheidl E., Schywalsky M., Schywalsky M., Tschaikowsky K., Boke-Prols T. Fish Oil-Supplemented Parenteral Diets Normalize Splanchnic Blood Flow and Improve Killing of Translocated Bacteria in a Low-Dose Endotoxin Rat Model. Crit. Care Med. 2000;28:1489–1496. doi: 10.1097/00003246-200005000-00039. [DOI] [PubMed] [Google Scholar]
- 147.Barton R.G., Wells C.L., Carlson A., Singh R., Sullivan J.J., Cerra F.B. Dietary Omega-3 Fatty Acids Decrease Mortality and Kupffer Cell Prostaglandin E2 Production in a Rat Model of Chronic Sepsis. J. Trauma. 1991;31:768–774. doi: 10.1097/00005373-199106000-00006. [DOI] [PubMed] [Google Scholar]
- 148.Rayon J.I., Carver J.D., Wyble L.E., Wiener D., Dickey S.S., Benford V.J., Chen L.T., Lim D.V. The Fatty Acid Composition of Maternal Diet Affects Lung Prostaglandin E2 Levels and Survival from Group B Streptococcal Sepsis in Neonatal Rat Pups. J. Nutr. 1997;127:1989–1992. doi: 10.1093/jn/127.10.1889. [DOI] [PubMed] [Google Scholar]
- 149.Lanza-Jacoby S., Flynn J.T., Miller S. Parenteral Supplementation with a Fish Oil Emulsion Prolong Survival and Improves Lymphocyte Function During Sepsis. Nutrition. 2001;17:112–116. doi: 10.1016/S0899-9007(00)00512-8. [DOI] [PubMed] [Google Scholar]
- 150.Johnson J.A., Griswold J.A., Muakkassa F.F., Meyer A.A., Maier R.V., Chaudry I.H., Cerra F. Essential Fatty Acids Influence Survival in Stress. J. Trauma. 1993;35:128–131. doi: 10.1097/00005373-199307000-00020. [DOI] [PubMed] [Google Scholar]
- 151.Blok W.L., Vogels M.T.E., Curfs J.H.A.J., Eling W.M.C., Buurmann W.A., van der Meer J.M.W. Dietary Fish Oil Supplementation in Experimental Gram Negative Infection and in cerebral malaria in Mice. J. Infect. Dis. 1992;165:898–903. doi: 10.1093/infdis/165.5.898. [DOI] [PubMed] [Google Scholar]
- 152.Chang H.R., Dulloo A.G., Vladoianu I.R., Piguet P.F., Arsenijevic D., Girardier L., Pechere J.C. Fish Oil Decreases Natural Rresistance of Mice to Infection with Salmonella typhimurium. Metabolism. 1992;41:1–2. doi: 10.1016/0026-0495(92)90181-9. [DOI] [PubMed] [Google Scholar]
- 153.Fritsche K.L., Shahbazian L.M., Feng C., Berg J.N. Dietaey Fish Oil Reduces Survival and Impairs Bacterial Clearance in C3H/Hen Mice Challenged with Listeria monocytogenes. Clin. Sci. 1997;92:95–101. doi: 10.1042/cs0920095. [DOI] [PubMed] [Google Scholar]
- 154.Mayatepek E., Paul K., Leichsenring M., Pfisterer M., Wagener D., Domann M., Sonntag H.G., Brener H.J. Influence of Dietary (n−3) Polyunsaturated Fatty Acids on Leukotriene B4 and Prostaglandin E2 Synthesis and the Time Course of Experimental Tuberculosis in Guinea Pigs. Infection. 1994;22:106–112. doi: 10.1007/BF01739016. [DOI] [PubMed] [Google Scholar]
- 155.D'Ambola J.B., Aeberhard E.E., Trang N., Gaffar S., Barrett C.T., Sherman M.P. Effect of Dietary (n−3) and (n−6) Fatty Acids on in vivo Pulmonary Bacterial clearance by Neonatal Rabbits. J. Nutr. 1991;121:1262–1269. doi: 10.1093/jn/121.8.1262. [DOI] [PubMed] [Google Scholar]
- 156.Kronberg D., Hansen B., Aaby P. Analysis of the Incubation Period for Measles in the Epidemic in Greenland in 1951 Using a Variance Components Model. Stat. Med. 1992;11:579–590. doi: 10.1002/sim.4780110503. [DOI] [PubMed] [Google Scholar]
- 157.Heyland D.K., MacDonald S., Keefe L., Drover J.W. Total Parenteral Nutrition in the Critically Ill Patient: A Meta-Analysis. JAMA. 1998;280:2013–2019. doi: 10.1001/jama.280.23.2013. [DOI] [PubMed] [Google Scholar]
- 158.Calder P.C., Sherrington E.J., Askanazi J., Newsholme E.A. Inhibition of Lymphocyte Proliferation in vitro by Two Lipid Emulsions with Different Fatty Acid Compositions. Clin. Nutr. 1994;13:69–74. doi: 10.1016/0261-5614(94)90062-0. [DOI] [PubMed] [Google Scholar]
- 159.Battistella F.D., Widergren J.T., Anderson J.T., Siepler J.K., Weber J.C., MacColl K. A Prospective, Randomized Trial of Intravenous Fat Emulsion Administration in Trauma Victims Requiring Total Parenteral Nutrition. J. Trauma. 1997;43:52–58. doi: 10.1097/00005373-199707000-00013. [DOI] [PubMed] [Google Scholar]
- 160.Furukawa K., Yamamori H., Takagi K., Hayashi N., Suzuki R., Nakajima N., Tashiro T. Influence of Soybean Oil Emulsion on Stress Response and Cell-Mediated Immune Function in Moderately or Severely Stressed Patients. Nutrition. 2002;18:235–240. doi: 10.1016/S0899-9007(01)00784-5. [DOI] [PubMed] [Google Scholar]
- 161.Gogos C.A., Kalfarentzos F.E., Zoumbos N.C. Effect of Different Types of Total Parenteral Nutrition on T-Lymphocyte Subpopulations and NK Cells. Am. J. Clin. Nutr. 1990;51:119–122. doi: 10.1093/ajcn/51.1.119. [DOI] [PubMed] [Google Scholar]
- 162.Sedman P.C., Somers S.S., Ramsden C.W., Brennan T.G., Guillou P.J. Effects of Different Lipid Emulsions on Lymphocyte Function During Total Parenteral Nutrition. Br. J. Surg. 1991;78:1396–1399. doi: 10.1002/bjs.1800781142. [DOI] [PubMed] [Google Scholar]
- 163.Lenssen P., Bruemmer B.A., Bowden R.A., Gooley T., Aker S.N., Mattson D. Intravenous Lipid Dose and Incidence of Bacteremia and Fungemia in Patients Undergoing Bone Marrow Transplantation. Am. J. Clin. Nutr. 1998;67:927–933. doi: 10.1093/ajcn/67.5.927. [DOI] [PubMed] [Google Scholar]
- 164.Morlion B.J., Torwesten E., Lessire A., Sturm G., Peskar B.M., Furst P., Puchstein C. The Effect of Parenteral Fish Oil on Leukocyte Membrane Fatty Acid Composition and Leukotriene-Synthesizing Capacity in Postoperative Trauma. Metabolism. 1996;45:1208–1213. doi: 10.1016/S0026-0495(96)90237-1. [DOI] [PubMed] [Google Scholar]
- 165.Koller M., Senkal M., Kemen M., Konig W., Zumtobel V., Muhr G. Impact of Omega-3 Fatty Acid Enriched TPN on Leukotriene Synthesis by Leukocytes After Major Surgery. Clin. Nutr. 2003;22:59–64. doi: 10.1054/clnu.2002.0592. [DOI] [PubMed] [Google Scholar]
- 166.Wachtler P., Konig W., Senkal M., Kemen M., Koller M. Influence of a Total Parenteral Nutrition Enriched with ω-3 Fatty Acids on Leukotriene Synthesis of Peripheral Leukocytes and Systemic Cytokine Levels in Patients with Major Surgery. J. Trauma. 1997;42:191–198. doi: 10.1097/00005373-199702000-00004. [DOI] [PubMed] [Google Scholar]
- 167.Weiss G., Meyer F., Matthies B., Pross M., Koenig W., Lippert H. Immunomodulation by Perioperative Administration of n−3 Fatty Acids. Br. J. Nutr. 2002;87:S89–S94. doi: 10.1079/BJN2001461. [DOI] [PubMed] [Google Scholar]
- 168.Schauder P., Rohn U., Schafer G., Korff G., Schenk H.-D. Impact of Fish Oil Enriched Total Parenteral Nutrition on DNA Synthesis, Cytokine Release and Receptor Expression by Lymphocytes in the Postoperative Period. Br. J. Nutr. 2002;87:S103–S110. doi: 10.1079/BJN2001463. [DOI] [PubMed] [Google Scholar]
- 169.Tsekos E., Reuter C., Stehle P., Boeden G. Perioperative Administration of Parenteral Fish Oil Supplements in a Routine Clinical Setting Improves Patient Outcome After Major Abdominal Surgery. Clin. Nutr. 2004;23:325–330. doi: 10.1016/j.clnu.2003.07.008. [DOI] [PubMed] [Google Scholar]
- 170.Daly J.M., Weintraub F.N., Shou J., Rosato E.F., Lucia M. Enteral Nutrition During Multimodality Therapy in Upper Gastrointestinal Cancer Patients. Ann. Surg. 1995;221:327–338. doi: 10.1097/00000658-199504000-00002. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 171.Schilling J., Vranjes N., Fierz W., Joller H., Gyurech D., Ludwig E., Marathias K., Geroulanos S. Clinical Outcome and Immunology of Postoperative Arginine, ω-3 Fatty Acids, and Nucleotide-Enriched Enteral Feeding: A Randomized Prospective Comparison with Standard Enteral and Low Calories/Low Fat IV Solutions. Nutrition. 1996;12:423–429. doi: 10.1016/S0899-9007(96)00096-2. [DOI] [PubMed] [Google Scholar]
- 172.Braga M., Vignali A., Gianotti L., Cestari A., Profili M., Di Carlo V. Immune and Nutritional Effects of Early Enteral Nutrition After Major Abdominal Operations. Eur. J. Surg. 1996;162:105–112. [PubMed] [Google Scholar]
- 173.Daly J.M., Lieberman M.D., Golfine J., Shou J., Weintraub F., Rosato E.F., Lavin P. Enteral Nutrition with Supplemental Arginine, RNA, and Omega-3 Fatty Acids in Patients after Operation: Immunologic, Metabolic, and Clinical Outcome. Surgery. 1992;112:56–67. [PubMed] [Google Scholar]
- 174.Gianotti L., Braga M., Fortis C., Soldini L., Vignali A., Colombo S., Radaelli G., Di Carlo V. A Prospective, Randomised Clinical Trial on Perioperative Feeding with an Arginine-, Omega-3 Fatty Acid-, and RNA-Enriched Enteral Diet: Effect on Host Response and Nutritional Status. J. Parent. Ent. Nutr. 1999;23:314–320. doi: 10.1177/0148607199023006314. [DOI] [PubMed] [Google Scholar]
- 175.Braga M., Gianotti L., Radaelli G., Vignali A., Mari G., Gentilini O., Di Carlo V. Perioperative Immunonutrition in Patients Undergoing Cancer Surgery. Arch. Surg. 1999;134:428–433. doi: 10.1001/archsurg.134.4.428. [DOI] [PubMed] [Google Scholar]
- 176.Heys S.D., Walker L.G., Smith I., Eremin O. Enteral Nutritional Supplementation with Key Nutrients in Patients with Critical Illness and Cancer—A Meta-Analysis of Randomized Controlled Clinical Trials. Ann. Surg. 1999;229:467–477. doi: 10.1097/00000658-199904000-00004. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 177.Beale R.J., Bryg D.J., Bihari D.J. Immunonutrition in the Critically Ill: A Systematic Review of Clinical Outcome. Crit. Care Med. 1999;27:2799–2805. doi: 10.1097/00003246-199912000-00032. [DOI] [PubMed] [Google Scholar]
- 178.Heyland D.K., Novak F., Drover J.W., Jain A., Su X.Y., Suchner U. Should Immunonutrition Become Routine in Critically Ill Patients? A Systematic Review of the Evidence. JAMA. 2001;286:944–953. doi: 10.1001/jama.286.8.944. [DOI] [PubMed] [Google Scholar]
- 179.Cerra F.B., Lehman S., Konstantinides N., Konstantinides F., Shronts E.P., Holman R. Effect of Enteral Nutrition on in vitro Tests of Immune Function in ICU Patients: A Preliminary Report. Nutrition. 1990;6:84–87. [PubMed] [Google Scholar]
- 180.Weimann A., Bastian L., Bischoff W.E., Grotz M., Hansel M., Lotz J., Trautwein C., Tusch G., Schlitt H.J., Regel G. Influence of Arginine, Omega-3 Fatty Acids and Nucleotide-Supplemented Enteral Support on Systemic Inflammatory Response Syndrome and Multiple Organ Failure in Patients After Severe Trauma. Nutrition. 1998;14:165–172. doi: 10.1016/S0899-9007(97)00429-2. [DOI] [PubMed] [Google Scholar]
- 181.Gadek J.E., DeMichele S.J., Karlstad M.D., Pacht E.R., Donahoe M., Albertson T.E., Van Hoozen C., Wennberg A.K., Nelson J., Noursalehi M., the Enteral Nutrition in ARDS Study Group Effect of Enteral Feeding with Eicosapentaenoic Acid γ-Linolenic Acid, and Antioxidants in Patients with Acute Respiratory Distress Syndrome. Crit. Care Med. 1999;27:1409–1420. doi: 10.1097/00003246-199908000-00001. [DOI] [PubMed] [Google Scholar]
- 182.Pacht E.R., DeMichele S.J., Nelson J.L., Hart J., Wennberg A.K., Gadek J.E. Enteral Nutrition with Eicosapentaenoic Acid, Gamma-Linolenic Acid, and Antioxidants Reduces Alveolar Inflammatory Mediators and Protein Influx in Patients with Acute Respiratory Distress Syndrome. Crit. Care Med. 2003;31:491–500. doi: 10.1097/01.CCM.0000049952.96496.3E. [DOI] [PubMed] [Google Scholar]
- 183.Mayer K., Fegbeutel C., Hattar K., Sibelius U., Kramer H.J., Heuer K.U., Temmesfeld-Wollbruck B., Gokorsch S., Grimminger F., Seeger W. ω-3 vs, ω-6 Lipid Emulsions Exert Differential Influence on Neutrophils in Septic Shock Patients: Impact on Plasma Fatty Acids and Lipid Mediator Generation. Intensive Care Med. 2003;29:1472–1481. doi: 10.1007/s00134-003-1900-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 184.Mayer K., Gokorsch S., Fegbeutel C., Hattar K., Rosseau S., Walmrath D., Seeger W., Grimminger F. Parenteral Nutrition with Fish Oil Modulates Cytokine Response in Patients with Sepsis. Am. J. Respir. Crit. Care Med. 2003;167:1321–1328. doi: 10.1164/rccm.200207-674OC. [DOI] [PubMed] [Google Scholar]