Summary
Conclusion
Cerulein-induced pancreatitis in rats associated with remote liver and lung dysfunction. Soluble complement receptor 1 (sCR1) does not reduce the local or remote injury. Thus complement activation does not moderate cerulein-induced pancreatitis or the associated liver and lung injury.
Background
The local and remote injury of pancreatitis resembles other inflammatory events that are mediated by complement. This study examines the effect of complement inhibition with sCR1 in cerulein-induced pancreatitis in rats.
Methods
Thirteen Sprague-Dawley rats received five hourly subcutaneous doses of cerulein (100 μg initially, then 50 μg/kg). Six of these animals received hourly iv sCR1 (15 mg/kg, a proven complement-inhibiting dose in rats) and the other seven received iv saline. In parallel, 12 additional rats received hourly sc and iv saline.
Results
Compared to saline controls, rats receiving cerulein showed increased pancreatic wet-to-dry ratio (3.25∶8.52) hematocrit (40 to 47%), ascites volume (2.1 to 6.1 mL), serum amylase (1680 to 10,700 U/L), and ascites amylase (32,200 to 167,000 U/L) (allp<0.05). None of these parameters were modified by treatment with sCR1. Serum SGPT, which increased from 33.4 to 46.6 U/L in cerulein-infused rats, showed a trend toward reduction to 38.8 U/L in rats treated with sCR1. Cerulein-treated rats also had increased lung myeloperoxidase (0.069 to 0.097 U/g) and lung permeability, as assessed by alveolar lavage to serum ratio of labeled albumen (0.041∶0.121) (bothp<0.05). Neither were changed by sCR1 treatment.
Key Words: Acute Pancreatitis, cerulein, complement activation, soluble complement receptor type-1, remote pulmonary injury, neutrophils, inflammation, rodents
References
- 1.Carey LC. Extra-abdominal manifestations of acute pancreatitis. Surgery. 1979;86:337–342. [PubMed] [Google Scholar]
- 2.Ranson JHC. Etiological and prognostic factors in human acute pancreatitis: a review. Am J Gastroent. 1982;77:663–683. [PubMed] [Google Scholar]
- 3.Horn JK, Ranson JHC, Goldstein IM, Weissler J, Curatola K, Taylor R, Perez D. Evidence of complement catabolism in experimental acute pancreatitis. Am J Pathol. 1980;101:205–215. [PMC free article] [PubMed] [Google Scholar]
- 4.Lankisch PG, Koop H, Kaboth U. Serum complement factors in human acute pancreatitis. Hepato-gastroenterol. 1981;28:261–263. [PubMed] [Google Scholar]
- 5.Minta JO, Man D, Movat HZ. Kinetic studies on the fragmentation of the third component of complement (C3) by trypsin. J Immunol. 1977;118:2192–2198. [PubMed] [Google Scholar]
- 6.Perez HD, Horn JK, Ong R, Goldstein IM. Complement (C5)-derived chemotactic activity in serum from patients with pancreatitis. J Lab Clin Med. 1983;101:123–129. [PubMed] [Google Scholar]
- 7.Lasson A, Laurell AB, Ohlsson K. correlation among complement activation, protease inhibitors, and clinical course in acute pancreatitis in man. Scand J Gastroent. 1985;20:335–345. doi: 10.3109/00365528509091661. [DOI] [PubMed] [Google Scholar]
- 8.Foulis AK, Murray WR, Galloway D, McCartney AC, Lang E, Veitch J, Whaley K. Endotoxaemia and complement activation in acute pancreatitis in man. Gut. 1982;23:656–661. doi: 10.1136/gut.23.8.656. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 9.Seelig R, Tschahargane EC, Seelig HP. The serum complement system-a mediator of acute pancreatitis. Virchows Arch Path A Anat and Histol. 1975;365:193–199. doi: 10.1007/BF00434038. [DOI] [PubMed] [Google Scholar]
- 10.Tahamont MV, Barie PS, Blumenstock FA, Hussain MH, Malik AB. Increased lung vascular permeability after pancreatitis and trypsin infusion. Am J Pathol. 1982;109:15–26. [PMC free article] [PubMed] [Google Scholar]
- 11.Hohn DC, Meyers AJ, Gherini ST, Beckmann A, Markison RE, Churg AM. Production of acute pulmonary injury by leukocytes and activated complement. Surgery. 1980;88:48–58. [PubMed] [Google Scholar]
- 12.Hammerschmidt DE, Weaver LJ, Hudson LD, Craddock PR, Jacob HS. Association of complement activation and elevation and elevated plasma-C5a with adult respiratory distress syndrome, pathophysiological relevance and possible prognostic value. Lancet. 1980;8175:947–949. doi: 10.1016/S0140-6736(80)91403-8. [DOI] [PubMed] [Google Scholar]
- 13.Hill J, Lindsay TF, Ortiz F, Yeh CG, Hectman HB, Moore FD. Soluble complement receptor type I ameliorates the local and remote organ injury after intestinal ischemia-reperfusion in the rat. J Immunol. 1992;149:1723–1728. [PubMed] [Google Scholar]
- 14.Lindsay TF, Hill J, Ortiz F, Rudolph A, Valeri CR, Hechtman HB, Moore FD. Blockade of complement activation prevents local and pulmonary albumen leak after lower torso ischemia-reperfusion. Ann Surg. 1992;216:677–683. doi: 10.1097/00000658-199212000-00010. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 15.Whicher JT, Barnes MP, Brown A, Cooper MJ, Read R, Walters G, Williamson RCN. Complement activation and complement control proteins in acute pancreatitis. Gut. 1982;23:944–950. doi: 10.1136/gut.23.11.944. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 16.Kelly RH, Rao KN, Harvey VS, Lombardi B. Acute hemorrhagic pancreatic necrosis in mice: lack of a pathogenetic role for complement. Acta Hepato-Gastroenterol. 1979;26:302309–302309. [PubMed] [Google Scholar]
- 17.Kelly RH, Rao KN, Harvey S, Lombardi B. Acute hemorrhagic pancreatic necrosis in mice: alterations of serum complement. Digestion. 1981;22:1–7. doi: 10.1159/000198588. [DOI] [PubMed] [Google Scholar]
- 18.Steer ML. Workshop on Experimental pancreatitis. Dig Dis Sci. 1985;30:575–581. doi: 10.1007/BF01320266. [DOI] [PubMed] [Google Scholar]
- 19.Orda R, Hadas N, Orda S, Wiznitzer T. Experimental acute pancreatitis. Arch Surg. 1980;115:327–329. doi: 10.1001/archsurg.1980.01380030073018. [DOI] [PubMed] [Google Scholar]
- 20.Aho HJ, Koskensalo SML, Nevalainen TJ. Experimental pancreatitis in the rat. Scand J Gastroent. 1980;16:411–416. doi: 10.3109/00365528009181493. [DOI] [PubMed] [Google Scholar]
- 21.Zhou W, Levine BA, Olson MS. Platelet-activating factor: a mediator of pancreatic inflammation during cerulin hyperstimulation. Am J Pathol. 1993;142:1504–1512. [PMC free article] [PubMed] [Google Scholar]
- 22.Lampel M, Kern HF. Acute interstitial pancreatitis in the rat induced by excessive doses of a pancreatic secretagogue. Virchows Arch Path A Anat and Histol. 1977;373:97–117. doi: 10.1007/BF00432156. [DOI] [PubMed] [Google Scholar]
- 23.Guice KS, Oldham KT, Johnson KJ, Kunkel RG, Morganroth ML, Ward PA. Pancreatitis-induced acute lung injury. Ann Surg. 1988;208:71–77. doi: 10.1097/00000658-198807000-00010. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 24.Guice KS, Oldham KT, Caty MG, Johnson KJ, Ward PA. Neutrophil-dependent, oxygen-radical mediated lung injury associated with acute pancreatitis. Ann Surg. 1989;210:740–747. doi: 10.1097/00000658-198912000-00008. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 25.Fearon DT. Regulation of the amplification C3 convertase of human complement by an inhibitory protein isolated from human erythrocyte membrane. Proc Natl Acad Sci USA. 1979;76:5867–5871. doi: 10.1073/pnas.76.11.5867. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 26.Kloppel G. Pathology of acute pancreatitis. In: Bradley EL, editor. Acute Pancreatitis: Diagnosis and Therapy. Totowa: Raven; 1994. pp. 35–46. [Google Scholar]
- 27.Steer ML. Pathophysiology and pathogenesis of acute pancreatitis. In: Bradley EL, editor. Acute Pancreatitis: Diagnosis and Therapy. Totowa: Raven; 1994. pp. 3–11. [Google Scholar]
- 28.Ranson JHC. Stratification of severity for acute pancreatitis. In: Bradley EL, editor. Acute pancreatitis: Diagnosis and Therapy. Totowa: Raven; 1994. pp. 13–20. [Google Scholar]
- 29.Toriumi Y, Samuel I, Wilcockson DP, Turkelson CM, Solomon TE, Joehl RJ. Increased circulating cholecystokinin in obstruction-induced acute pancreatitis I. Bile duct obstruction with and without pancreatic duct obstruction. J Surg Res. 1993;54:132–135. doi: 10.1006/jsre.1993.1020. [DOI] [PubMed] [Google Scholar]
- 30.Freston JW, Cimetidine I. Development, pharmacology, and efficacy. Ann Intern Med. 1982;97:573–580. doi: 10.7326/0003-4819-97-4-573. [DOI] [PubMed] [Google Scholar]
- 31.Saluja AK, Saluja M, Printz H, Zavertnik A, Sengupta A, Steer ML. Experimental pancreatitis is mediated by low-affinity cholecystokinin receptors that inhibit digestive enzyme secretion. Proc Natl Acad Sci USA. 1989;86:89158–8971. doi: 10.1073/pnas.86.22.8968. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 32.Nordback IH, Clemens JA, Cameron JL. The role of cholecystokinin in the pathogenesis of acute pancreatitis in the isolated pancreas preparation. Surgery. 1991;109:301–306. [PubMed] [Google Scholar]
- 33.Weisman HF, Bartow T, Leppo MK, Marsh HC, Carson GR, Concino MF, Boyle MP, Roux KH, Weisfeldt ML, Fearon DT. Soluble human complement receptor type 1: in vivo inhibitor of complement suppressing post-ischemic myocardial inflammation and necrosis. Science. 1990;249:146–151. doi: 10.1126/science.2371562. [DOI] [PubMed] [Google Scholar]
- 34.Steer ML. How and where does acute pancreatitis begin? Arch Surg. 1992;127:1350–1353. doi: 10.1001/archsurg.1992.01420110098019. [DOI] [PubMed] [Google Scholar]
- 35.Klar E, Mall G, Messmer K, Herfarth C, Rattner DW, Warshaw AL. Improvement of impaired pancreatic microcirculation by isovolemic hemodilution protects pancreatic morphology in acute biliary pancreatitis. Surg Gynecol Obstet. 1993;176:144–150. [PubMed] [Google Scholar]
- 36.Zimmerli W, Reber AM, Dahinden CA. The role of formylpeptide receptors, C5a receptors, and cytosolic-free calcium in neutrophil priming. J Infect Dis. 1990;161:242–249. doi: 10.1093/infdis/161.2.242. [DOI] [PubMed] [Google Scholar]
- 37.Kajita T, Huglia TE. C5a-induced neutropenia. A primary humoral mechanism for recruitment of neutrophils. Am J Pathol. 1990;137:467–77. [PMC free article] [PubMed] [Google Scholar]
- 38.Goldman G, Welbourn R, Klausner JM, Kobzik L, Valeri CR, Shepro D, Hechtman HB. Intravascular chemoattractants inhibit diapedesis by selective receptor occupancy. Am J Physiol. 1991;260:H465–H472. doi: 10.1152/ajpheart.1991.260.2.H465. [DOI] [PubMed] [Google Scholar]