Skip to main content
Springer Nature - PMC COVID-19 Collection logoLink to Springer Nature - PMC COVID-19 Collection
. 2006;2(2):115–126. doi: 10.1385/FSMP:2:2:115

Neuropathological alterations in drug abusers

The involvement of neurons, glial, and vascular systems

Andreas Büttner 1,, Serge Weis 2
PMCID: PMC7102040  PMID: 25868590

Abstract

Because the effects of drug abuse on the cellular elements of the human brain have not been studied systematically, an investigation was performed using histology, immunohistochemistry, and morphometry. The main cortical and subcortical brain areas of 50 polydrug deaths were analyzed as compared with controls.

In the brains of drug abusers, a significant neuronal loss was present. Interestingly, the number of glial fibrillary acidic protein (GFAP)-positive astrocytes was reduced. the numerical density of perivascular and parenchymal microglia was increased in the white matter and in most subcortical regions. In the white matter there were widespread β-amyloid precursor protein deposits. Furthermore, there was a prominent vascular hyalinosis, endothelial cell proliferation, and a loss of immunoreactivity for collagen type IV within the vascular basal lamina.

The neuronal loss seems to be the result of a direct impairment of nerve cells and, indirectly, to a damage of astrocytes, axons, and the microvasculature. The reduction of GFAP-positive astrocytes is also indicative of a drug-induced damage. The axonal injury suggests a toxic-metabolic drug effect, whereas the concomitant activation of microglia is indicative of a long-standing progressive process. The noninflammatory vasculopathy can be considered as the morphological substrate of a disturbed blood-brain barrier. Our findings demonstrate that drugs of abuse initiate a cascade of interacting toxic, vascular, and hypoxic factors that finally result in widespread disturbances within the complex network of central nervous system cell-cell interactions.

Key Words: Forensic neuropathology, drug abuse, neuropathology, astrocytes, microglia, microvessels

Footnotes

This study was presented at the Sixth International Symposium in Advanced Legal Medicine (ISLAM), Hamburg, Germany, September 2006.

References

  • 1.Büttner A, Weis S. Central nervous system alterations in durg abuse. In: Tsokos M, editor. Forensic Pathology Reviews. Totowa, NJ: Humana Press; 2004. pp. 79–136. [Google Scholar]
  • 2.Karch SB. Karch's Pathology of Drug Abuse. 3rd ed. Boca Raton: CRC Press; 2002. [Google Scholar]
  • 3.Kaufman M.J. Brain Imaging in Substance Abuse: Research, Clinical, and Forensic Applications. Totowa, NJ: Humana Press; 2001. [Google Scholar]
  • 4.Weis S. Morphometry in the neurosciences. In: Wenger E, Dimitov L, editors. Digital Image Processing and Computer Graphics. Theory and Applications. München: Oldenburg Verlag; 1991. pp. 306–326. [Google Scholar]
  • 5.Büttner A, Rohrmoser K., Mall G, Penning R, Weis S. Widespread axonal damage in the brain of drug abusers as evidenced by accumulation of β-amyloid precursor protein (β-APP): An immunohistochemical investigation. Addiction in press. [DOI] [PubMed]
  • 6.Büttner A, Korehling C, Mall G, Penning R, Weis S. Alterations of the vascular basal lamina in the cerebral cortex in drug abuse: A combined morphometric and immunohistochemical investigation. Drug Alc Dep. 2005;69:63–70. doi: 10.1016/j.drugalcdep.2004.12.010. [DOI] [PubMed] [Google Scholar]
  • 7.Oehmichen M, Meiner C, Reiter A, Birkholz M. Neutropathology in non-human immunodeficiency virus-infected drug addicts: hypoxic brain damage after chronic intravenous drug abuse. Acta Neurpathol. 1996;91:642–646. doi: 10.1007/s004010050478. [DOI] [PubMed] [Google Scholar]
  • 8.Mansour A, Khachaturian H, Lewis ME, Akil H, Watson SJ. Anatomy of CNS opioid receptors. Trends Neurosci. 1988;11:308–314. doi: 10.1016/0166-2236(88)90093-8. [DOI] [PubMed] [Google Scholar]
  • 9.Stefano GB, Hartman A, Bilfinger TV, et al. Presence of the μ3 opiate receptor in endothelial cells. Coupling to nitric oxideproduction and vasodilation. J Biol Chem. 1995;270:30,290–30,293. doi: 10.1074/jbc.270.51.30290. [DOI] [PubMed] [Google Scholar]
  • 10.Gosztonyi G, Schmidt V, Nickel R, et al. Neuropathologic analysis of postmortal brain samples of HIV-seropositive and-seronegative i.v. drug addicts. Forensic Sci Int. 1993;62:101–105. doi: 10.1016/0379-0738(93)90052-C. [DOI] [PubMed] [Google Scholar]
  • 11.Makrigeorgi-Butera M, Hagel C, Laas R, Püschel K, Stavrou D. Comparative brain pathology of HIV-seronegative and HIV-infected drug addicts. Clin Neuropathol. 1996;15:324–329. [PubMed] [Google Scholar]
  • 12.Pearson J, Richter RW. Addiotion to opiates: neurologic aspects. In: Vinken PJ, Bruyn GW, editors. Handbook of Clinical Neurology. Intoxications of the Nervous System, Part II. Amsterdam: North-Holland; 1979. pp. 365–400. [Google Scholar]
  • 13.Hart MN, Galloway GM, Dunn MJ. Perivascularanoxia-ischemia lesions in the human brain. Neurology. 1975;25:477–482. doi: 10.1212/wnl.25.5.477. [DOI] [PubMed] [Google Scholar]
  • 14.Yuan J, Yankner BA. Apoptosis in the nervous system. Nature. 2000;407:802–809. doi: 10.1038/35037739. [DOI] [PubMed] [Google Scholar]
  • 15.Boronat MA, García-Fuster MJ, García-Sevilla JA. Chronic morphine induces up-regulation of the pro-apoptotic Fas receptor and down-regulation of the anti-apoptotic Bcl-2 oncoprotein in rat brain. Br J Pharmacol. 2001;134:1263–1270. doi: 10.1038/sj.bjp.0704364. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Campbell VA. Tetrahydrocannabinol-induced apoptosis of cultured cortical neurones is associated with cytochrome c release and caspase-3 activation. Neuropharmacology. 2001;40:702–709. doi: 10.1016/S0028-3908(00)00210-0. [DOI] [PubMed] [Google Scholar]
  • 17.Davidson C, Gow AJ, Lee TH, Ellinwood EH. Methamphetamineneurotoxicity: necrotic and apoptotic mechanisms and relevance to human abuse and treatment. Brain Res Rev. 2001;36:1–22. doi: 10.1016/S0165-0173(01)00054-6. [DOI] [PubMed] [Google Scholar]
  • 18.Hu S, Sheng WS, Lokensgard JR, Peterson PK. Morphine induces apoptosis of human microglia and neurons. Neuropharmacology. 2002;42:829–836. doi: 10.1016/S0028-3908(02)00030-8. [DOI] [PubMed] [Google Scholar]
  • 19.Jiang Y, Yang W, Zhou Y, Ma L. Up-regulation of murine double minute clone 2 (MDM2) gene expression in rat brain after morphine, heroin, and cocaine administrations. Neurosci Lett. 2003;352:216–220. doi: 10.1016/j.neulet.2003.08.053. [DOI] [PubMed] [Google Scholar]
  • 20.Mao J, Sung M, Ji RR, Lim G. Neuronal apoptosis associated with morphine tolerance: evidence for an opioid-induced neurotoxic mechanism. J Neurosci. 2002;22:7650–7661. doi: 10.1523/JNEUROSCI.22-17-07650.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.Stumm G, Schlegel J, Schäfer T, et al. Amphetamines induce apoptosis and regulation of bcl-x splice variants in neocortical neurons. FASEB J. 1999;13:1065–1072. doi: 10.1096/fasebj.13.9.1065. [DOI] [PubMed] [Google Scholar]
  • 22.Thorlin T, Roginski RS, Choudhury K, et al. Regulation of the glial glutamate transporter GLT-1 by glutamate and δ-opioid receptor stimulation. FEBS Lett. 1998;425:453–459. doi: 10.1016/S0014-5793(98)00288-9. [DOI] [PubMed] [Google Scholar]
  • 23.Boronat MA, Olmos G, García-Sevilla JA. Attenuation of tolerance to opioid-induced antinociception and protection against morphine-induced decrease of neurofilament proteins by idazoxan and other I2-imidazoline ligands. Br J Pharmacol. 1998;125:175–185. doi: 10.1038/sj.bjp.0702031. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Ferrer-Alcón M, García-Sevilla JA, Jaquet PE, et al. Regulation of nonphosphorylated and phosphorylated roms of neurofilament proteins in the prefrontal cortex of human opioid addicts. J Neurosci Res. 2000;61:338–349. doi: 10.1002/1097-4547(20000801)61:3<338::AID-JNR12>3.0.CO;2-5. [DOI] [PubMed] [Google Scholar]
  • 25.García-Sevilla JA, Ventayol P, Busquets X, La Harpe R, Walzer C, Guimón J. Marked decrease of immunolabelled 68 kDa neurofilament (NF-L) proteins in brains of opiate addicts. Neuroreport. 1997;8:1561–1570. doi: 10.1097/00001756-199705060-00003. [DOI] [PubMed] [Google Scholar]
  • 26.Medana IM, Esiri MM. Axonal damage: a key predictor of out-come in human CNS diseases. Brain. 2003;126:515–530. doi: 10.1093/brain/awg061. [DOI] [PubMed] [Google Scholar]
  • 27.Ernst M, London ED. Brain imaging studies of drug abuse: therapeutic implications. Semin Neurosci. 1997;9:120–130. doi: 10.1006/smns.1997.0112. [DOI] [Google Scholar]
  • 28.Volkow ND, Valentine A, Kulkarni M. Radiological and neurological changes in the drug abuse patient. A study with MRI. J Neuroradiol. 1988;15:288–293. [PubMed] [Google Scholar]
  • 29.Chen Y, Swanson RA. Astrocytes and brain injury. J Cereb Blood Flow Metab. 2003;23:137–149. doi: 10.1097/00004647-200302000-00001. [DOI] [PubMed] [Google Scholar]
  • 30.O'Callaghan JP. Quantitative features of reactive gliosis following toxicant-induced damage of the CNS. Ann NY Acad Sci. 1993;679:195–210. doi: 10.1111/j.1749-6632.1993.tb18299.x. [DOI] [PubMed] [Google Scholar]
  • 31.Anderson CE, Tomlinson GS, Pauly B, et al. Relation ship of Nef-positve and GFAP-reactive astrocytes to drug use in early and late HIV infection. Neuropathol Appl Neurobiol. 2003;29:378–388. doi: 10.1046/j.1365-2990.2003.00475.x. [DOI] [PubMed] [Google Scholar]
  • 32.Tomlinson GS, Simmonds P, Busuttil A, Chiswick A, Bell JE. Upregulation of microglia in drug users with and without presymptomatic HIV infection. Neuropathol Appl Neurobiol. 1999;25:369–379. doi: 10.1046/j.1365-2990.1999.00197.x. [DOI] [PubMed] [Google Scholar]
  • 33.Hauser KF, Harris-White ME, Jackson JA, Opanashuk LA, Carney JM. Opioids disrupt Ca2+ homeostasis and induce carbonyl oxyradical production in mouse astrocytes in vitro: transientincreases and adaptation to sustained exposure. Exp Neurol. 1998;151:70–76. doi: 10.1006/exnr.1998.6788. [DOI] [PubMed] [Google Scholar]
  • 34.Fattore L, Puddu MC, Picciau S, et al. Astroglial in vivo response to cocaine in mouse dentate gyrus: a quantitative and qualitative analysis by confocal microscopy. Neuroscience. 2002;110:1–6. doi: 10.1016/S0306-4522(01)00598-X. [DOI] [PubMed] [Google Scholar]
  • 35.Stadlin A, Lau JWS, Szeto YK. A selective regional response of cultured astrocytes to methamphetamine. Ann NY Acad Sci. 1998;844:108–121. doi: 10.1111/j.1749-6632.1998.tb08226.x. [DOI] [PubMed] [Google Scholar]
  • 36.Castagnoli N, Jr, Castagnoli KP. Metabolic bioactivation reactions potentially related to drug toxicities. NIDA Res Monogr. 1997;173:85–105. [PubMed] [Google Scholar]
  • 37.Sastre M, Ventayol P, García-Sevilla JA. Decreased density of I2-imidazoline receptors in the postmortem brains of heroin addicts. Neuroreport. 1996;7:509–512. doi: 10.1097/00001756-199601310-00032. [DOI] [PubMed] [Google Scholar]
  • 38.Abbott NJ. Astrocyte-endothelial interactions and blood-brain barrier permeability. J Anat. 2002;200:629–638. doi: 10.1046/j.1469-7580.2002.00064.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 39.Liedtke W, Edelmann W, Bieri PL, et al. GFAP is necessary for the intergrity of white matter architecture and long-term maintenance myelination. Neuron. 1996;17:607–615. doi: 10.1016/S0896-6273(00)80194-4. [DOI] [PubMed] [Google Scholar]
  • 40.Brust JCM. Vasculitis owing to substance abuse. Neurol Clin. 1997;15:945–957. doi: 10.1016/S0733-8619(05)70357-1. [DOI] [PubMed] [Google Scholar]
  • 41.Connor MD, Lammie GA, Bell JE, Warlow CP, Simmonds P, Brettle RP. Cerebral infarction in adult AIDS patients: observations from the Edinburgh HIV autopsy cohort. Stroke. 2000;31:2117–2126. doi: 10.1161/01.str.31.9.2117. [DOI] [PubMed] [Google Scholar]
  • 42.Gan X, Zhang L, Berger O, et al. Cocane enhances brain endothelial adhesion molecules and leukocyte migration. Clin Immunol. 1999;91:68–76. doi: 10.1006/clim.1998.4683. [DOI] [PubMed] [Google Scholar]
  • 43.Lee YW, Hennig B, Fiala M, Kim KS, Toborek M. Cocaine activates redox-regulated transcription factors and induces TNF-α expression in human brain endothelial cells. Brain Res. 2001;920:125–133. doi: 10.1016/S0006-8993(01)03047-5. [DOI] [PubMed] [Google Scholar]
  • 44.Barroso-Moguel R, Villeda-Hernández J, Méndez-Armenta M, Ríos C. Brain capillary lesions produced by cocaine in rats. Toxicol Lett. 1997;92:9–14. doi: 10.1016/S0378-4274(97)00027-1. [DOI] [PubMed] [Google Scholar]
  • 45.Lee YW, Hennig B, Yao J, Toborek M. Methamphetamine induces AP-1 and NF-kappaB binding and transactivation in human brain endothelial cells. J Neurosci Res. 2001;66:583–591. doi: 10.1002/jnr.1248. [DOI] [PubMed] [Google Scholar]
  • 46.Christensen JD, Kaufman MJ, Levin JM, et al. Abnormal cerebral metabolism in polydrug abusers during early withdrawal: a 31P MR spectroscopy study. MRM. 1996;35:658–663. doi: 10.1002/mrm.1910350506. [DOI] [PubMed] [Google Scholar]
  • 47.Stapleton JM, Morgan MJ, Phillips RL, et al. Cerebral glucose utilization in polysubstance abuse. Neuropsychopharmacology. 1995;13:21–31. doi: 10.1016/0893-133X(94)00132-J. [DOI] [PubMed] [Google Scholar]
  • 48.Tilling T, Engelbertz C, Decker S, Korte D, Hüwel S, Galla HJ. Expression and adhesive properties of basement membrane proteins in cerebral capillary endothelial cell cultures. Cell Tissue Res. 2002;310:19–29. doi: 10.1007/s00441-002-0604-1. [DOI] [PubMed] [Google Scholar]

Articles from Forensic Science, Medicine, and Pathology are provided here courtesy of Nature Publishing Group

RESOURCES