Skip to main content
Springer Nature - PMC COVID-19 Collection logoLink to Springer Nature - PMC COVID-19 Collection
. 1993;17(2):199–204. doi: 10.1007/BF00916105

Increased serum catalase activity in rats subjected to thermal skin injury

Jonathan A Leff 1, Lisa K Burton 1, Elaine M Berger 1, Benjamin O Anderson 1, Christian P Wilke 1, John E Repine 1
PMCID: PMC7102124  PMID: 8491514

Abstract

We found that: rats subjected to thermal skin injury (burn) had increased serum hydrogen peroxide (H2O2) scavenging activity, serum catalase activity, erythrocyte (RBC) fragility, and edematous lung injury (lung leak) when compared to sham-treated rats. Serum H2O2 scavenging activity was inhibited by addition of sodium azide, a catalase inhibitor. Treatment of rats with the oxygen radical scavenger, dimethylthiourea (DMTU), decreased RBC fragility and lung leak but did not alter increased H2O2 scavenging or catalase activity of serum from rats subjected to skin burn. We conclude that increased serum catalase activity is a consequence of thermal skin injury and that increased serum catalase activity may be a mechanism that modulates H2O2-dependcnt processes following skin burn.

Keywords: Catalase, Azide, Lung Injury, Scavenge Activity, Catalase Activity

Footnotes

All work was done during Dr. Leff's tenure of a Clinician-Scientist Award from the American Heart Association and supported by grants from the National Institutes of Health (PO1-AM-35098, BRS 983), Colorado Heart Association, American Lung Association, Ronald McDonald Children's Charities, Johnson & Johnson, Williams Family Foundation, Council for Tobacco Research Inc., Swan, Hill, Kleberg, Sachs, Etonner and American Express Foundations.

References

  • 1.Pruitt B. A., Erickson D. R., Morris A. Progressive pulmonary insufficiency and other pulmonary complications of thermal injury. J. Trauma. 1975;15:369–379. [PubMed] [Google Scholar]
  • 2.Fowler A. A., Hamman R. F., Good J. T., Benson K. N., Baird M., Eberle D. J., Petty T. L., Hyers T. M. Adult respiratory distress syndrome: Risk with common predispositions. Ann. Intern. Med. 1983;98:593–597. doi: 10.7326/0003-4819-98-5-593. [DOI] [PubMed] [Google Scholar]
  • 3.Saez J. C., Ward P. H., Gunther B., Vivaldi E. Superoxide radical involvement in the pathogenesis of burn shock. Circ. Shock. 1984;12:229–239. [PubMed] [Google Scholar]
  • 4.Till G. O., Beauchamp C., Menapace D., Tourtellotte W., Kunkel R., Johnson K., Ward P. A. Oxygen radical dependent lung damage following thermal injury of rat skin. J. Trauma. 1983;23:269–277. doi: 10.1097/00005373-198304000-00001. [DOI] [PubMed] [Google Scholar]
  • 5.Till G. O., Guilds L. S., Mahrougui M., Friedl H. P., Trentz O., Ward P. A. Role of xanthine oxidase in thermal injury of skin. Am. J. Pathol. 1989;135:195–202. [PMC free article] [PubMed] [Google Scholar]
  • 6.Leff J. A., Parsons P. E., Day C. E., Oppegard M. A., Moore E. E., Moore F., Repine J. E. Increased hydrogen peroxide scavenging and catalase activity in serum from septic patients who subsequently develop the adult respiratory distress syndrome. Am. Rev. Respir. Dis. 1991;143:A805. doi: 10.1164/ajrccm/146.4.985. [DOI] [PubMed] [Google Scholar]
  • 7.Beehler C. J., Simchuk M. L., McCord J. M., Repine J. E. Effects of dimethylthiourea in hyperoxic injury. J. Lab. Clin. Med. 1992;119:508–513. [PubMed] [Google Scholar]
  • 8.Weiss S. J., Young J., LoBuglio A. F., Slivka A., Nimeh N. F. Role of hydrogen peroxide in neutrophil-mediated destruction of cultured endothelial cells. J. Clin. Invest. 1981;68:714–721. doi: 10.1172/JCI110307. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.Leff J. A., Oppegard M. A., Terada L. S., McCarty E. C., Repine J. E. Human serum catalase decreases endothelial cell injury from hydrogen peroxide. J. Appl. Physiol. 1991;71(5):1903–1906. doi: 10.1152/jappl.1991.71.5.1903. [DOI] [PubMed] [Google Scholar]
  • 10.Leff J. A., Kennedy D. A., Terada L. S., Emmett M., McCutchan H. J., Walden D. L., Repine J. E. Reperfusion of ischemic skeletal muscle causes erythrocyte hemolysis and decreases subsequent oxidant mediated lung injury. J. Lab. Clin. Med. 1991;118:352–358. [PubMed] [Google Scholar]
  • 11.Oldham K. T., Guice K. S., Till G. O., Ward P. A. Activation of complement by hydroxyl radical in thermal injury. Surgery. 1988;104:272–279. [PubMed] [Google Scholar]
  • 12.Friedl H. P., Till G. O., Trentz O., Ward P. A. Roles of histamine, complement and xanthine oxidase in thermal injury of skin. Am. J. Pathol. 1989;135:203–217. [PMC free article] [PubMed] [Google Scholar]
  • 13.Burton L. K., Patt A., Velasco S. E., Terada L. S., Grosso M. A., Mulvin D. W., Harken A. H., Repine J. E. Xanthine oxidase increases in blood and contributes to neutrophil recruitment and oxidative edematous injury (ARDS) in lungs of rats subjected to skin bum. Clin. Res. 1989;37:145A. [Google Scholar]
  • 14.Leff J. A., Oppegard M. A., Curiel T. J., Brown K. S., Schooley R. T., Repine J. E. Progressive increases in serum catalase activity in advancing human immunodeficiency virus infection. Free Radical Biol. Med. 1992;13:143–149. doi: 10.1016/0891-5849(92)90076-s. [DOI] [PubMed] [Google Scholar]
  • 15.Toth K. M., Clifford D. P., Berger E. M., White C. W., Repine J. E. Intact human erythrocytes prevent hydrogen peroxide-mediated damage to isolated perfused rat lungs and pulmonary artery endothelial cells. J. Clin. Invest. 1984;74:292–295. doi: 10.1172/JCI111414. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Inflammation are provided here courtesy of Nature Publishing Group

RESOURCES