Skip to main content
Springer Nature - PMC COVID-19 Collection logoLink to Springer Nature - PMC COVID-19 Collection
. 2001;217(1):107–112. doi: 10.1023/A:1007264411006

Levels of IL-8 and myeloperoxidase in the lungs of pneumonia patients

H Abul 1,, A Abul 2, I Khan 3, TC Matthew 4, A Ayed 5, E Al-Athary 1
PMCID: PMC7102223  PMID: 11269653

Abstract

Interleukin-8 (IL-8) is considered as the major polymorphonuclear neutrophils (PMNs) chemoattractant cytokine in lung diseases such as asthma and adult respiratory distress syndrome (ARDS). However, controversial results were obtained regarding the involvement of IL-8 in the pathogenesis of pneumonia. This study examines the role of IL-8 in the recruitment and activation of PMNs in the lung of pneumonia patients. The interesting aspect of this study is that it is a site- specific analysis of the infected and uninfected lungs of the same patient. The level of IL-8 mRNA, protein and myeloperoxidase present in the cells of the bronchioalveolar lavages (BALs) taken from the areas of known pneumonic consolidations on chest X-ray (infected lung) are compared with the BALs obtained from areas of no obvious infiltrate (non-infected lung). The results obtained from the infected and non-infected lungs of pneumonic patients were further compared with that of a control group of non-smoking patients. The level of IL-8 mRNA and protein were determined by RT-PCR and ELISA respectively. There was a significant increase in the level of IL-8 mRNA in the infected lung as compared to its level in the non-infected lung (p < 0.001). In correlation with the increase in mRNA, IL-8 protein concentrations in BAL fluids from the infected lung were 6 fold higher than those taken from the non-infected lung (p < 0.0001). This pattern was also consistent with MPO activity in the BALs (4.5 fold more MPO activity in the infected lung as compared to that of the non-infected lung), indicating that IL-8 is directly implicated in neutrophil accumulation that follows acute respiratory infection. The results of the present study, therefore, indicate the involvement of IL-8 in the pathogenesis of pneumonia.

Keywords: interleukin-8, bronchioalveolar lavage, polymerase chain reaction, IL-8 mRNA, myeloperoxidase, pneumonia

References

  • 1.Hiemstra PS. Role of neutrophils and mononuclear phagocytes in host defense and inflammation. JIFCC. 1993;5:224–231. [Google Scholar]
  • 2.Goldstein IM, Hoffstein S, Gallin JI, Weissmann G. Mechanisms of lysosomal enzyme release from human leukocytes: Microtubule assembly and membrane fusion induced by a component of complement. Proc Natl Acad Sci USA. 1973;70:2916–2920. doi: 10.1073/pnas.70.10.2916. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3.Becker EL, Showell HJ, Henson PM, Hsu LS. The ability of chemotactic factors to induce lysosomal enzyme release. I. The characteristics of the enzyme release, importance of surfaces and the relation of enzyme release to chemotactic responsiveness. J Immunol. 1974;12:2047–2054. [PubMed] [Google Scholar]
  • 4.Zurier RB, Hoffstein S, Weissmann G. Cytochalasin B: Effect of lysosomal enzyme release from human leukocytes. Proc Natl Acad Sci USA. 1973;70:844–848. doi: 10.1073/pnas.70.3.844. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Showell HJ, Freer RJ, Zigmond SH, Schiffmann E, Aswankumar S, Corcoran B, Becker EL. The structure activity relations of synthetic peptides as chemotactic factors and inducers of lysosomal enzyme secretion for neutrophils. J Exp Med. 1976;143:1154–1169. doi: 10.1084/jem.143.5.1154. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Becker EL. Some interrelations of neutrophil chemotaxis, lysosomal enzyme secretion, and phagocytosis as revealed by synthetic peptides. Am J Pathol. 1976;85:385–394. [PMC free article] [PubMed] [Google Scholar]
  • 7.Bainton DF, Ullyot JL, Farquhar MG. The development of neutrophilic polymorphonuclear leukocytes in human bone marrow: Origin and content of azurophil and specific granules. J Exp Med. 1971;134:907–1000. doi: 10.1084/jem.134.4.907. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Bainton DF. Sequential degranulation of the two types of polymorphonuclear leukocyte granules during phagocytosis of microorganisms. J Cell Biol. 1973;58:249–261. doi: 10.1083/jcb.58.2.249. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.Kudo C, Yamashita T, Araki A, Terashita M, Watanabe T, Atsumi M, Tamura M, Sendo F. Modulation of in vivo immune response by selective depletion of neutrophils using a monoclonal antibody, RP-3. I. Inhibition by RP-3 treatment of the priming and effector phases of delayed type hypersensitivity to sheep red blood cells in rats. J Immunol. 1993;150:3728–3738. [PubMed] [Google Scholar]
  • 10.Lewis RA, Austin KF. The biologically active leukotrienes. J Clin Invest. 1984;73:889–897. doi: 10.1172/JCI111312. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Oppenheim JJ, Zachariae COC, Mukaida N, Matsushima K. Properties of the novel proinflammatory supergene ‘intercrine’ cytokine family. Annu Rev Immunol. 1991;9:617–648. doi: 10.1146/annurev.iy.09.040191.003153. [DOI] [PubMed] [Google Scholar]
  • 12.Larsen CG, Anderson AO, Appella E, Oppenheim JJ, Matsushima K. The neutrophil-activating protein (NAP-1) is also chemotactic for T lymphocytes. Science. 1989;243:1464–1466. doi: 10.1126/science.2648569. [DOI] [PubMed] [Google Scholar]
  • 13.Virchow JC, Kroegel C, Walker C, Matthys H. Inflammatory determinants of asthma severity: Mediator and cellular changes in bronchoalveolar lavage fluid of patients with severe asthma. J Allergy Clin Immunol. 1996;98:S27–S33. [PubMed] [Google Scholar]
  • 14.Chanez P, Enander I, Jones I, Godard P, Bousquet J. Interleukin 8 in bronchoalveolar lavage of asthmatic and chronic bronchitis patients. Int Arch Allergy Immunol. 1996;111:83–88. doi: 10.1159/000237350. [DOI] [PubMed] [Google Scholar]
  • 15.Folkard SG, Westwick J, Millar AB. Production of interleukin-8, RANTES and MCP-1 in intrinsic and extrinsic asthmatics. Eur Respir J. 1997;10:2097–2104. doi: 10.1183/09031936.97.10092097. [DOI] [PubMed] [Google Scholar]
  • 16.Shute JK. IL-8 is a potent eosinophil chemoattractant. Clin Exp Allergy. 1994;24:203–206. doi: 10.1111/j.1365-2222.1994.tb00220.x. [DOI] [PubMed] [Google Scholar]
  • 17.Nocker RE, et al. Interleukin-8 in airway inflammation in patients with asthma and chronic obstructive pulmonary disease. Int Arch Allergy Immunol. 1996;109:183–191. doi: 10.1159/000237218. [DOI] [PubMed] [Google Scholar]
  • 18.Robinson DS, et al. Predominant TH2-like bronchoalveolar T-lymphocyte population in atopic asthma. N Engl J Med. 1992;326:298–304. doi: 10.1056/NEJM199201303260504. [DOI] [PubMed] [Google Scholar]
  • 19.Sur S, Kita H, Gleich GJ, Chenier TC, Hunt LW. Eosinophil recruitment is associated with IL-5, but not with RANTES, twenty-four hours after allergen challenge. J Allergy Clin Immunol. 1996;97:1272–1278. doi: 10.1016/s0091-6749(96)70195-1. [DOI] [PubMed] [Google Scholar]
  • 20.Bousquet JP, et al. Eosinophilic inflammation in asthma. N Engl J Med. 1990;323:1033–1039. doi: 10.1056/NEJM199010113231505. [DOI] [PubMed] [Google Scholar]
  • 21.Chollet-Martins S, Montravers P, Gibert C, Elbim MC, Desmonts JM, Fagon JY, Gougerot-Pocidalo MA. High levels of interleukin-8 in the blood and alveolar spaces of patients with pneumonia and adult respiratory distress syndrome. Infect Immun. 1993;61:4553–4559. doi: 10.1128/iai.61.11.4553-4559.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.Klebanoff SJ. Oxygen metabolism and toxic properties of phagocytes. Ann Intern Med. 1980;93:480–489. doi: 10.7326/0003-4819-93-3-480. [DOI] [PubMed] [Google Scholar]
  • 23.Hurst JK, Barrette WC., Jr Leukocytic oxygen activation and microbicidal oxidative toxins. CRC Crit Rev Biochem Mol Biol. 1989;24:271–328. doi: 10.3109/10409238909082555. [DOI] [PubMed] [Google Scholar]
  • 24.Chomczynski P, Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenolchloroform extraction. Anal Biochem. 1987;162:156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  • 25.Maniatis T, Fritsch EF, Sambrook J. Molecular Cloning. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory; 1982. [Google Scholar]
  • 26.Khan I, Collins SM. Altered expression of sodium pump isoforms in the inflamed intestine of Trichinella spiralis-infected rats. Am J Physiol. 1993;264:G1160–G1168. doi: 10.1152/ajpgi.1993.264.6.G1160. [DOI] [PubMed] [Google Scholar]
  • 27.Mukaida N, Shiroo M, Matsushima K. Genomic structure of the human monocyte-derived neutrophil chemotactic factor IL-8. J Immunol. 1989;143:1366–1371. [PubMed] [Google Scholar]
  • 28.Khan I, Tabb T, Grafield RE, Grover AK. Polymerase chain reaction assay of mRNA using 28s rRNA as internal standard. Neurosci Lett. 1992;147:114–117. doi: 10.1016/0304-3940(92)90787-8. [DOI] [PubMed] [Google Scholar]
  • 29.Bradley PP, Priebat DA, Christensen RD, Rothstein G. Measurement of cutaneous inflammation: Estimation of neutrophil content with an enzyme marker. J Invest Dermatol. 1982;78:206–209. doi: 10.1111/1523-1747.ep12506462. [DOI] [PubMed] [Google Scholar]
  • 30.Dean TP, Dai Y, Shute JK, Church MK, Warner JO. Interleukin-8 concentrations are eluted in bronchoalveolar lavage, sputum and sera of children with cystic fibrosis. Pediatr Res. 1993;34:159–161. doi: 10.1203/00006450-199308000-00010. [DOI] [PubMed] [Google Scholar]
  • 31.Grunewald T, Schuler-Maue W, Ruf B. Interleukin-8 and granulocyte colony-stimulating factor in bronchoalveolar lavage fluid and plasma of human immunodeficiency virus infected patients with pneumocystis carinii pneumonia, bacterial pneumonia, or tuberculosis. J Infect Dis. 1993;168:1077–1078. doi: 10.1093/infdis/168.4.1077. [DOI] [PubMed] [Google Scholar]
  • 32.Shute JK, Vrugt B, Lindley IJD, Holgate ST, Bron A, Aalbers R, Djukanovic R. Free and complexed interleukin-8 in blood and bronchial mucosa in asthma. Am J Respir Crit Care Med. 1997;155:1877–1883. doi: 10.1164/ajrccm.155.6.9196089. [DOI] [PubMed] [Google Scholar]
  • 33.Schratzberger P, Dunzendorfer S, Reinisch N, Kähler CM, Wiedermann CJ. Interleukin-8-induced human peripheral blood B-lymphocyte chemotaxis in vitro. Immunol Lett. 1997;58:167–170. doi: 10.1016/s0165-2478(97)00085-0. [DOI] [PubMed] [Google Scholar]
  • 34.Shute JK. IL-8 is a potent eosinophil chemoattractant. Clin Exp Allergy. 1994;24:203–206. doi: 10.1111/j.1365-2222.1994.tb00220.x. [DOI] [PubMed] [Google Scholar]
  • 35.Taub DD, Anver M, Oppenheim JJ, Longo DL, Murphy WJ. T-lymphocyte recruitment by interleukin-8. IL-8-induced degranulation of neutrophils releases potent chemoattractants for human T lymphocytes both in vitro and in vivo. J Clin Invest. 1996;97:1931–1941. doi: 10.1172/JCI118625. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36.Wang JM, Xu L, Murphy WJ, Taub DD, Chertov O. IL-8-induced Tlymphocyte migration: Direct as well as indirect mechanisms. Methods. 1996;10:135–144. doi: 10.1006/meth.1996.0087. [DOI] [PubMed] [Google Scholar]
  • 37.Miller EJ, Cohen AB, Nagao S, Griffith D, Maunder RJ, Martin TR, Weiner-Kronish JP, Sticherling M, Christophers E, Mattay MA. Elevated levels of NAP-1/interleukin-8 are present in the airspace of patients with adult respiratory distress syndrome and are associated with increased mortality. Am Rev Respir Dis. 1992;146:427–432. doi: 10.1164/ajrccm/146.2.427. [DOI] [PubMed] [Google Scholar]
  • 38.Matsumoto T, Yokoi K, Mukaida N, Harada A, Yamashita J, Watanabe Y, Matsushima K. Pivotal role of interleukin-8 in the acute respiratory distress syndrome and cerebral reperfusion injury. J Leukocyte Biol. 1997;62:581–587. doi: 10.1002/jlb.62.5.581. [DOI] [PubMed] [Google Scholar]
  • 39.Mukaida N, Matsumoto T, Yokoi K, Harada A, Matsushima K. Inhibition of neutrophil-mediated acute lung inflammation injury by an antibody against interleukin-8 (IL-8) Inflamm Res. 1998;47:S151–S157. doi: 10.1007/s000110050308. [DOI] [PubMed] [Google Scholar]
  • 40.Hopkins H, Stull T, Von Essen SG, Robbins RA, Rennard SI. Neutrophil chemotactic factors in bacterial pneumonia. Chest. 1989;95:1021–1027. doi: 10.1378/chest.95.5.1021. [DOI] [PubMed] [Google Scholar]
  • 41.Fujimura M, et al. Sensory neuropeptides are not directly involved in bronchial hyperresponsiveness induced by interleukin-8 in guinea-pigs in vivo. Clin Exp Allergy. 1996;26:357–362. [PubMed] [Google Scholar]
  • 42.De Sanctis GT, MacLean JA, Qin S, Wolyniec WW, Grasemann H, Yandava CN, Jiao A, Noonan T, Stein-Streilein J, Green FHY, Drazen JM. Interleukin-8 receptor modulates IgE production and B-cell expansion and trafficking in allergen-induced pulmonary inflammation. J Clin Invest. 1999;4:507–515. doi: 10.1172/JCI4017. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 43.Kunkel SL, Standiford T, Kasahara K, Strieter M. Interleukin-8 (IL-8): The major neutrophil chemotactic factor in the lung. Exp Lung Res. 1991;17:17–23. doi: 10.3109/01902149109063278. [DOI] [PubMed] [Google Scholar]
  • 44.Taub DD, Oppenheim JJ. Chemokines, inflammation and the immune system. Ther Immunol. 1994;1:229–246. [PubMed] [Google Scholar]
  • 45.Strieter RM, Kasahara K, Allen RM, Standiford TJ, Rolfe MW, Becker FS, Chensue SW, Kunkel SL. Cytokine-induced neutrophil-derived interleukin-8. Am J Pathol. 1992;141:397–407. [PMC free article] [PubMed] [Google Scholar]
  • 46.Kita H, Adolphson CR, Gleich GJ. Biology of eosinophils. In: Middleton E. Jr, Ellis E.F., Yuninger J.W., Reed C.A., Adkinson N.F. Jr, Busse W.W., editors. Allergy-Principles and Practice. St. Louis: Mosby; 1998. pp. 242–260. [Google Scholar]
  • 47.Stoeckle MY. Post-transcriptional regulation of gro, and IL-8 mRNAs by IL-1. Nucleic Acids Res. 1991;19:917–920. doi: 10.1093/nar/19.4.917. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 48.Booth JL, Metcalf JP. Type-specific induction of interleukin-8 by adenovirus. Am J Respir Cell Mol Biol. 1999;21:521–527. doi: 10.1165/ajrcmb.21.4.3677. [DOI] [PubMed] [Google Scholar]
  • 49.Sanz MJ, Weg VB, Bolanowski MA, Nourshargh S. IL-1 is a potent inducer of eosinophil accumulation in rat skin: Inhibition of response by a platelet-activating factor antagonist and an anti-human IL-8 antibody. J Immunol. 1995;154:1364–1373. [PubMed] [Google Scholar]
  • 50.Faccioli LH, Nourshargh S, Moqbel R, Williams FM, Sehmi R, Kay AB, Williams TJ. The accumulation of 111In-eosinophils induced by inflammatory mediators, in vivo. Immunology. 1991;73:222–227. [PMC free article] [PubMed] [Google Scholar]
  • 51.Walker C, Rihs S, Braun RK, Betz S, Bruijnzeel PL. Increased expression of CD11b and functional changes in eosinophils after migration across endothelial cell monolayers. J Immunol. 1993;150:4061–4071. [PubMed] [Google Scholar]
  • 52.Berends C, Dijkhuizen B, de Monchy JGR, Gerritsen J, Kauffman HF. Induction of low density and up-regulation of CD11b expression of neutrophils and eosinophils by dextran sedimentation and centrifugation. J Immunol Meth. 1994;167:183–193. doi: 10.1016/0022-1759(94)90087-6. [DOI] [PubMed] [Google Scholar]
  • 53.Youssef PP, Mantzioris BX, Roberts-Thomson PJ, Ahern MJ, Smith MD. Effects of ex vivo manipulation on the expression of cell adhesion molecules on neutrophils. J Immunol Meth. 1995;186:217–224. doi: 10.1016/0022-1759(95)00146-2. [DOI] [PubMed] [Google Scholar]

Articles from Molecular and Cellular Biochemistry are provided here courtesy of Nature Publishing Group

RESOURCES