Abstract
Increasing lines of evidence suggest a key role of oxidative stress in neurodegenerative diseases. Alzheimer’s disease, Parkinson’s disease, myoclonus epilepsy of the Unverricht-Lundborg type, spinocerebellar degeneration, tardive dyskinesia and Down’s syndrome have been associated with several mitochondrial alterations Oxidative stress can decrease cellular bioenergetic capacity, which will then increase the generation of reactive oxygen species resulting in cellular damage and programmed cell death. First, this review examines the mechanisms of action of N-acetylcysteine (NAC), an antioxidant and a free radical-scavenging agent that increases intracellular GSH, at the cellular level. NAC can act as a precursor for glutathione synthesis as well as a stimulator of the cytosolic enzymes involved in glutathione regeneration. The chemical properties of NAC include redox interactions particularly with other members of the group XIV elements (selenium, etc.) and ebselen, a lipid-soluble seleno-organic compound. Second, NAC has been shown to protect against oxidative stress-induced neuronal death in cultured granule neurons. Recent findings on the protective effect of NAC against 4-hydroxynonenal (HNE)-induced toxicity in cerebellar granule neurons are summarized. Finally, the protective pharmacokinetics of NAC in humans and the possible usefulness of NAC for the treatment of neurodegenerative diseases are discussed with reference to basic and clinical studies.
Key words: N-acetylcysteine, ebselen, neuronal death, 4-hydroxynonenal, cerebellar granule neurons
References
- 1.Vecchiarelli A, Dottorini M, Pietrella D, Cociani C, Eslami A, Todisco T, Bistoni F. Macrophage activation by N-acetylcysteine in COPD patients. Chest. 1994;105:806–11. doi: 10.1378/chest.105.3.806. [DOI] [PubMed] [Google Scholar]
- 2.Sheffner AL. The reduction in vitro in viscosity of mucoprotein solutions by a new mucolytic agent, N-acetyl-L-cysteine. Ann N Y Acad Sci. 1963;106:298–310. doi: 10.1111/j.1749-6632.1963.tb16647.x. [DOI] [PubMed] [Google Scholar]
- 3.Boman G, Bäcker U, Larsson S, Melander B, Wåhlander L. Oral acetylcysteine reduces exacerbation rate in chronic bronchitis: Report of a trial organized by the Swedish Society for Pulmonary Diseases. Eur J Respir Dis. 1983;64:405–15. [PubMed] [Google Scholar]
- 4.Prescott LF. Paracetamol overdosage. Pharmacological considerations and clinical management. Drugs. 1983;25:290–314. doi: 10.2165/00003495-198325030-00002. [DOI] [PubMed] [Google Scholar]
- 5.Suter PM, Domenighetti G, Schaller MD, Laverriére MC, Ritz R, Perret C. N-acetylcysteine enhances recovery from acute lung injury in man. A randomized, double-blind, placebo-controlled clinical study. Chest. 1994;105:190–4. doi: 10.1378/chest.105.1.190. [DOI] [PubMed] [Google Scholar]
- 6.Särnstrand B, Tunek A, Sjödin K, Hallberg A. Effects of N-acetylcysteine stereoisomers on oxygen-induced lung injury in rats. Chem Biol Interact. 1995;94:157–64. doi: 10.1016/0009-2797(94)03332-3. [DOI] [PubMed] [Google Scholar]
- 7.Knuckey NW, Palm D, Primiano M, Epstein MH, Johanson CE. N-acetylcysteine enhances hippocampal neuronal survival after transient forebrain ischemia in rats. Stroke. 1995;26:305–11. doi: 10.1161/01.STR.26.2.305. [DOI] [PubMed] [Google Scholar]
- 8.Miquel J, Ferrándiz ML, De Juan E, Sevila I, Martínez M. N-acetylcysteine protects against age-related decline of oxidative phosphorylation in liver mitochondria. Eur J Pharmacol. 1995;292:333–5. doi: 10.1016/0926-6917(95)90041-1. [DOI] [PubMed] [Google Scholar]
- 9.Witschi A, Junker E, Schranz C, Speck RF, Lauterburg BH. Supplementation of N-acetylcysteine fails to increase glutathione in lymphocytes and plasma of patients with AIDS. AIDS Res Hum Retroviruses. 1995;11:141–3. doi: 10.1089/aid.1995.11.141. [DOI] [PubMed] [Google Scholar]
- 10.Simonian NA, Coyle JT. Oxidative stress in neurodegenerative diseases. Ann Rev Pharmacol Toxicol. 1996;36:83–106. doi: 10.1146/annurev.pa.36.040196.000503. [DOI] [PubMed] [Google Scholar]
- 11.Cotgreave IA, Sandy MS, Berggren M, Moldéus PW, Smith MT. N-acetylcysteine and glutathione-dependent protective effect of PZ51 (Ebselen) against diquat-induced cytotoxicity in isolated hepatocytes. Biochem Pharmacol. 1987;36:2899–904. doi: 10.1016/0006-2952(87)90200-0. [DOI] [PubMed] [Google Scholar]
- 12.Arakawa M, Ushimaru N, Osada N, Oda T, Ishige K, Ito Y. N-acetylcysteine selectively protects cerebellar granule cells from 4-hydroxynonenal-induced cell death. Neurosci Res. 2006;55:255–63. doi: 10.1016/j.neures.2006.03.008. [DOI] [PubMed] [Google Scholar]
- 13.Mayer M, Noble M. N-acetyl-l-cysteine is a pluripotent protector against cell death and enhancer of trophic factor-mediated cell survival in vitro. Proc Natl Acad Sci USA. 1994;91:7496–500. doi: 10.1073/pnas.91.16.7496. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 14.Bannai S, Tateishi N. Role of membrane transport in metabolism and function of glutathione in mammals. J Membr Biol. 1986;89:1–8. doi: 10.1007/BF01870891. [DOI] [PubMed] [Google Scholar]
- 15.Ishige K, Tanaka M, Arakawa M, Saito H, Ito Y. Distinct nuclear factor-κB/Rel proteins have opposing modulatory effects in glutamate-induced cell death in HT22 cells. Neurochem Int. 2005;47:545–55. doi: 10.1016/j.neuint.2005.07.010. [DOI] [PubMed] [Google Scholar]
- 16.Sen CK. Nutritional biochemistry of cellular glutathione. J Nutr Biochem. 1997;8:660–72. doi: 10.1016/S0955-2863(97)00113-7. [DOI] [Google Scholar]
- 17.Meister A. Glutathione metabolism. Meth Enzymol. 1995;251:3–7. doi: 10.1016/0076-6879(95)51106-7. [DOI] [PubMed] [Google Scholar]
- 18.Richman PG, Meister A. Regulation of γ-glutamyl-cysteine synthetase by nonallosteric feedback inhibition by glutathione. J Biol Chem. 1975;250:1422–6. doi: 10.1016/S0021-9258(19)41830-9. [DOI] [PubMed] [Google Scholar]
- 19.Townsend DM, Tew KD, Tapiero H. The importance of glutathione in human disease. Biomed Pharmacother. 2003;57:145–55. doi: 10.1016/S0753-3322(03)00043-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 20.Bump EA, Brown JM. Role of glutathione in the radiation response of mammalian cells in vitro and in vivo. Pharmacol Ther. 1990;47:117–36. doi: 10.1016/0163-7258(90)90048-7. [DOI] [PubMed] [Google Scholar]
- 21.Ferrari G, Yan CY, Greene LA. N-acetylcysteine (d- and l-stereoisomers) prevents apoptotic death of neuronal cells. J Neurosci. 1995;15:2857–66. doi: 10.1523/JNEUROSCI.15-04-02857.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 22.Aruoma OI, Halliwell B, Hoey BM, Butler J. The antioxidant action of N-acetylcysteine: its reaction with hydrogen peroxide, hydroxyl radical, superoxide, and hypochlorous acid. Free Radic Biol Med. 1989;6:593–7. doi: 10.1016/0891-5849(89)90066-X. [DOI] [PubMed] [Google Scholar]
- 23.Moldéus P, Cotgreave IA. N-acetylcysteine. Methods Enzymol. 1994;234:482–92. doi: 10.1016/0076-6879(94)34119-2. [DOI] [PubMed] [Google Scholar]
- 24.Biewenga GP, Bast A. Reaction of lipoic acid with ebselen and hypochlorous acid. Meth Enzymol. 1995;251:303–14. doi: 10.1016/0076-6879(95)51133-4. [DOI] [PubMed] [Google Scholar]
- 25.Sies H. Ebselen: A glutathione peroxidase mimic. Methods Enzymol. 1994;234:476–82. doi: 10.1016/0076-6879(94)34118-4. [DOI] [PubMed] [Google Scholar]
- 26.Masumoto H, Sies H. The reaction of ebselen with peroxynitrite. Chem Res Toxicol. 1996;9:262–7. doi: 10.1021/tx950115u. [DOI] [PubMed] [Google Scholar]
- 27.Glass RS, Farooqui R, Sabahi M, Ehler KW. Formation of thiocarbonyl compounds in the reaction of ebselen oxide with thiols. J Org Chem. 1989;54:1092–7. doi: 10.1021/jo00266a018. [DOI] [Google Scholar]
- 28.Kruman I, Bruce-Keller AJ, Bredesen D, Waeg G, Mattson MI. Evidence that 4-hydroxynonenal mediates oxidative stress-induced neuronal apoptosis. J Neurosci. 1997;17:5089–100. doi: 10.1523/JNEUROSCI.17-13-05089.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 29.Awasthi YC, Sharma R, Cheng JZ, Yang Y, Sharma A, Singhal SS, Awasthi S. Role of 4-hydroxynonenal in stressmediated mediated apoptosis signaling. Mol Aspects Med. 2003;24:219–30. doi: 10.1016/S0098-2997(03)00017-7. [DOI] [PubMed] [Google Scholar]
- 30.Blanc EM, Kelly JF, Mark RJ, Waeg G, Mattson MP. 4-Hydroxynonenal, an aldehydic product of lipid peroxidation, impairs signal transduction associated with muscarinic acetylcholine and metabotropic glutamate receptors: possible action on Gαq/11. J Neurochem. 1997;69:570–80. doi: 10.1046/j.1471-4159.1997.69020570.x. [DOI] [PubMed] [Google Scholar]
- 31.Keller JN, Mattson MP. Roles of lipid peroxidation in modulation of cellular signaling pathways, cell dysfunction, and death in the nervous system. Rev Neurosci. 1998;9:105–16. doi: 10.1515/REVNEURO.1998.9.2.105. [DOI] [PubMed] [Google Scholar]
- 32.Neely MD, Zimmerman L, Picklo MJ, Ou JJ, Morales CR, Montine KS, Amaranth V, Montine TJ. Congeners of Nα-acetyl-l-cysteine but not aminoguanidine act as neuro-protectants from the lipid peroxidation product 4-hydroxy-2-nonenal. Free Radic Biol Med. 2000;29:1028–36. doi: 10.1016/S0891-5849(00)00411-1. [DOI] [PubMed] [Google Scholar]
- 33.Picklo MJ, Amarnath V, McIntyre JO, Graham DG, Montine TJ. 4-Hydroxy-2(E)-nonenal inhibits CNS mitochondrial respiration at multiple sites. J Neurochem. 1999;72:1617–24. doi: 10.1046/j.1471-4159.1999.721617.x. [DOI] [PubMed] [Google Scholar]
- 34.Akaishi T, Nakazawa K, Sato K, Ohno Y, Ito Y. 4-Hydroxynonenal modulates the long-term potentiation induced by L-type Ca2+ channel activation in the rat dentate gyrus in vitro. Neurosci Lett. 2004;370:155–9. doi: 10.1016/j.neulet.2004.08.015. [DOI] [PubMed] [Google Scholar]
- 35.Akaishi T, Nakazawa K, Sato K, Saito H, Ohno Y, Ito Y. Modulation of voltage-gated Ca2+ current by 4-hydroxynonenal in dentate granule cells. Biol Pharm Bull. 2004;27:174–9. doi: 10.1248/bpb.27.174. [DOI] [PubMed] [Google Scholar]
- 36.Markesbery WR, Lovell MA. Four-hydroxynonenal, a product of lipid peroxidation, is increased in the brain in Alzheimer’s disease. Neurobiol Aging. 1998;19:33–6. doi: 10.1016/S0197-4580(98)00009-8. [DOI] [PubMed] [Google Scholar]
- 37.McGrath LT, McGleenon BM, Brennan S, McColl D, McILroy S, Passmore AP. Increased oxidative stress in Alzheimer’s disease as assessed with 4-hydroxynonenal but not malondialdehyde. QJM. 2001;94:485–90. doi: 10.1093/qjmed/94.9.485. [DOI] [PubMed] [Google Scholar]
- 38.Yamashita T, Ando Y, Obayashi K, Terazaki H, Sakashita N, Uchida K, Ohama E, Ando M, Uchino M. Oxidative injury is present in Purkinje cells in patients with olivopontocerebellar atrophy. J Neurol Sci. 2000;175:107–10. doi: 10.1016/S0022-510X(00)00296-3. [DOI] [PubMed] [Google Scholar]
- 39.Ito Y, Arakawa M, Ishige K, Fukuda H. Comparative study of survival signal withdrawal- and 4-hydroxynonenal-induced cell death in cerebellar granule cells. Neurosci Res. 1999;35:321–7. doi: 10.1016/S0168-0102(99)00097-8. [DOI] [PubMed] [Google Scholar]
- 40.Kosuge Y, Koen Y, Ishige K, Minami K, Urasawa H, Saito H, Ito Y. S-allyl-L-cysteine selectively protects cultured rat hippocampal neurons from amyloid β-protein-and tunica-mycin-induced neuronal death. Neuroscience. 2003;122:885–95. doi: 10.1016/j.neuroscience.2003.08.026. [DOI] [PubMed] [Google Scholar]
- 41.Meyer MJ, Mosely DE, Amarnath V, Picklo MJ. Metabolism of 4-hydroxy-trans-2-nonenal by central nervous system mitochondria is dependent on age and NAD+ availability. Chem Res Toxicol. 2004;17:1272–9. doi: 10.1021/tx049843k. [DOI] [PubMed] [Google Scholar]
- 42.Murphy TC, Amarnath V, Picklo MJ. Mitochondrial oxidation of 4-hydroxy-2-nonenal in rat cerebral cortex. J Neurochem. 2003;84:1313–21. doi: 10.1046/j.1471-4159.2003.01628.x. [DOI] [PubMed] [Google Scholar]
- 43.Laurent A, Perdu-Durand E, Alary J, Debrauwer L, Cravedi JP. Metabolism of 4-hydroxynonenal, a cytotoxic product of lipid peroxidation, in rat precision-cut liver slices. Toxicol Lett. 2000;114:203–14. doi: 10.1016/S0378-4274(99)00301-X. [DOI] [PubMed] [Google Scholar]
- 44.Srivastava S, Chandra A, Wang LF, Seifert WE, DaGue BB, Ansari NH, Srivastava SK, Bhatnagar A. Metabolism of the lipid peroxidation product, 4-hydroxy-trans-2-nonenal, in isolated perfused rat heart. J Biol Chem. 1998;273:10893–900. doi: 10.1074/jbc.273.18.10893. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 45.Raha S, Robinson BH. Mitochondria, oxygen free radicals, disease and ageing. Trends Biochem Sci. 2000;25:502–8. doi: 10.1016/S0968-0004(00)01674-1. [DOI] [PubMed] [Google Scholar]
- 46.Xie C, Lovell MA, Markesbery WR. Glutathione transferase protects neuronal cultures against four hydroxynonenal toxicity. Free Radic Biol Med. 1998;25:979–88. doi: 10.1016/S0891-5849(98)00186-5. [DOI] [PubMed] [Google Scholar]
- 47.Bhagwat SV, Vijayasarathy C, Raza H, Mullick J, Avadhani NG. Preferential effects of nicotine and 4-(N-methyl-N-nitrosamine)-1-(3-pyridyl)-1-butanone on mitochondrial glutathione S-transferase A4-4 induction and increased oxidative stress in the rat brain. Biochem Pharmacol. 1998;56:831–9. doi: 10.1016/S0006-2952(98)00228-7. [DOI] [PubMed] [Google Scholar]
- 48.Arakawa M, Ishimura A, Arai Y, Kawabe K, Suzuki S, Ishige K, Ito Y. Characterization of 4-hydroxynonenal-induced neuronal death in cerebellar granule neurons. Neurosci Res. in press. [DOI] [PubMed]
- 49.Cotgreave IA, Moldéus P. Methodologies for the analysis of reduced and oxidized N-acetylcysteine in biological systems. Biopharm Drug Dispos. 1987;8:365–75. doi: 10.1002/bdd.2510080407. [DOI] [PubMed] [Google Scholar]
- 50.Holdiness MR. Clinical pharmacokinetics of N-acetylcysteine. Clin Pharmacokinet. 1991;20:123–34. doi: 10.2165/00003088-199120020-00004. [DOI] [PubMed] [Google Scholar]
- 51.Watson WA, McKinney PE. Activated charcoal and acetylcysteine absorption: Issues in interpreting pharmacokinetic data. DICP. 1991;25:1081–4. doi: 10.1177/106002809102501012. [DOI] [PubMed] [Google Scholar]
- 52.Martinez M, Martínez N, Hernández AI, Ferrándiz ML. Hypothesis: Can N-acetylcysteine be beneficial in Parkinson’s disease? Life Sci. 1999;64:1253–7. doi: 10.1016/S0024-3205(98)00472-X. [DOI] [PubMed] [Google Scholar]
- 53.Farr SA, Poon HF, Dogrukol-Ak D, Drake J, Banks WA, Eyerman E, Butterfield DA, Morley JE. The antioxidants alpha-lipoic acid and N-acetylcysteine reverse memory impairment and brain oxidative stress in aged SAMP8 mice. J Neurochem. 2003;84:1173–83. doi: 10.1046/j.1471-4159.2003.01580.x. [DOI] [PubMed] [Google Scholar]
- 54.Neuwelt EA, Pagel MA, Hasler BP, Deloughery TG, Muldoon LL. Therapeutic efficacy of aortic administration of N-acetylcysteine as a chemoprotectant against bone marrow toxicity after intracarotid administration of alkylators, with or without glutathione depletion in a rat model. Cancer Res. 2001;61:7868–74. [PubMed] [Google Scholar]
- 55.Thomas Dickey D, Muldoon LL, Kraemer DF, Neuwelt EA. Protection against cisplatin-induced ototoxicity by N-acetylcysteine in a rat model. Hear Res. 2004;193:25–30. doi: 10.1016/j.heares.2004.02.007. [DOI] [PubMed] [Google Scholar]
- 56.Edwards MJ, Hargreaves IP, Heales SJ, Jones SJ, Ramachandran V, Bhatia KP, Sisodiya S. N-acetylcysteine and Unverricht-Lundborg disease: Variable response and possible side effects. Neurology. 2002;59:1447–9. doi: 10.1212/WNL.59.9.1447. [DOI] [PubMed] [Google Scholar]
- 57.Hurd RW, Wilder BJ, Helveston WR, Uthman BM. Treatment of four siblings with progressive myoclonus epilepsy of the Unverricht-Lundborg type with N-acetylcysteine. Neurology. 1996;47:1264–8. doi: 10.1212/WNL.47.5.1264. [DOI] [PubMed] [Google Scholar]
- 58.Selwa LM. N-acetylcysteine therapy for Unverricht-Lundborg disease. Neurology. 1999;52:426–7. doi: 10.1212/WNL.52.2.426. [DOI] [PubMed] [Google Scholar]
- 59.Jesberger JA, Richardson JS. Oxygen free radicals and brain dysfunction. Int J Neurosci. 1991;57:1–17. doi: 10.3109/00207459109150342. [DOI] [PubMed] [Google Scholar]
- 60.Galili R, Mosberg, Gil-Ad I, Weizman A, Melamed E, Offen D. Haloperidol-induced neurotoxicity-possible implications for tardive dyskinesia. J Neural Transm. 2000;107:479–90. doi: 10.1007/s007020070089. [DOI] [PubMed] [Google Scholar]
- 61.Sadan O, Bahat-Stromza M, Gilgun-Sherki Y, Atlas D, Melamed E, Offen D. A novel brain-targeted antioxidant (AD4) attenuates haloperidol-induced abnormal movement in rats: Implications for tardive dyskinesia. Clin Neuropharmacol. 2005;28:285–8. doi: 10.1097/01.wnf.0000191331.54649.e3. [DOI] [PubMed] [Google Scholar]
- 62.Busciglio J, Yankner BA. Apoptosis and increased generation of reactive oxygen species in Down’s syndrome neurons in vitro. Nature. 1995;378:776–9. doi: 10.1038/378776a0. [DOI] [PubMed] [Google Scholar]
- 63.Lehesjoki AE, Koskiniemi M. Clinical features and genetics of progressive myoclonus epilepsy of the Univerricht-Lundborg type. Ann Med. 1998;30:474–80. doi: 10.3109/07853899809002489. [DOI] [PubMed] [Google Scholar]
- 64.Lohr JB, Browning JA. Free radical involvement in neuropsychiatric illnesses. Psychopharmacol Bull. 1995;31:159–65. [PubMed] [Google Scholar]
- 65.Adams JD, Klaidman LK, Odunze IN, Shen HC, Miller CA. Alzheimer’s and Parkinson’s disease. Brain levels of glutathione, glutathione disulfide, and vitamin E. Mol Chem Neuropathol. 1991;14:213–26. doi: 10.1007/BF03159937. [DOI] [PubMed] [Google Scholar]
- 66.Jenner P. Oxidative damage in neurodegenerative disease. Lancet. 1994;344:796–8. doi: 10.1016/S0140-6736(94)92347-7. [DOI] [PubMed] [Google Scholar]
- 67.Tchantchou F, Graves M, Rogers E, Ortiz D, Shea TB. N-acetyl cysteine alleviates oxidative damage to central nervous system of ApoE-deficient mice following folate and vitamin E-deficiency. J Alzheimers Dis. 2005;7:135–8. doi: 10.3233/JAD-2005-7206. [DOI] [PubMed] [Google Scholar]
- 68.Tucker S, Ahl M, Bush A, Westaway D, Huang X, Rogers JT. Pilot study of the reducing effect on amyloidosis in vivo by three FDA pre-approved drugs via the Alzheimer’s APP 5′ untranslated region. Curr Alzheimer Res. 2005;2:249–54. doi: 10.2174/1567205053585855. [DOI] [PubMed] [Google Scholar]
- 69.Pappert EJ, Tangney CC, Goetz CG, Ling ZD, Lipton JW, Stebbins GT, Carvey PM. Alpha-tocopherol in the ventricular cerebrospinal fluid of Parkinson’s disease patients: Dose-response study and correlations with plasma levels. Neurology. 1996;47:1037–42. doi: 10.1212/WNL.47.4.1037. [DOI] [PubMed] [Google Scholar]
- 70.The Parkinson Study Group Effects of tocopherol and deprenyl on the progression of disability in early Parkinson’s disease. N Engl J Med. 1993;328:176–83. doi: 10.1056/NEJM199301213280305. [DOI] [PubMed] [Google Scholar]
- 71.Reilly DK, Hershey L, Rivera-Calimlim L, Shoulson I. On-off effects in Parkinson’s disease: A controlled investigation of ascorbic acid therapy. Adv Neurol. 1983;37:51–60. [PubMed] [Google Scholar]
- 72.Park SW, Kim SH, Park KH, Kim SD, Kim JY, Baek SY, Chung BS, Kang CD. Preventive effect of antioxidants in MPTP-induced mouse model of Parkinson’s disease. Neurosci Lett. 2004;363:243–6. doi: 10.1016/j.neulet.2004.03.072. [DOI] [PubMed] [Google Scholar]
- 73.Behar TN, Colton CA. Redox regulation of neuronal migration in a Down Syndrome model. Free Radic Biol Med. 2003;35:566–75. doi: 10.1016/S0891-5849(03)00329-0. [DOI] [PubMed] [Google Scholar]