Abstract
During the past 30 years my laboratory has generated 40+ monoclonal antibodies (mAbs) directed to structural and conformational epitopes on human ACE as well as ACE from rats, mice and other species. These mAbs were successfully used for detection and quantification of ACE by ELISA, Western blotting, flow cytometry and immunohistochemistry. In all these applications mainly single mAbs were used. We hypothesized that we can obtain a completely new kind of information about ACE structure and function if we use the whole set of mAbs directed to different epitopes on the ACE molecule. When we finished epitope mapping of all mAbs to ACE (and especially, those recognizing conformational epitopes), we realized that we had obtained a new tool to study ACE. First, we demonstrated that binding of some mAbs is very sensitive to local conformational changes on the ACE surface—due to local denaturation, inactivation, ACE inhibitor or mAbs binding or due to diseases. Second, we were able to detect, localize and characterize several human ACE mutations. And, finally, we established a new concept—conformational fingerprinting of ACE using mAbs that in turn allowed us to obtain evidence for tissue specificity of ACE, which has promising scientific and diagnostic perspectives. The initial goal for the generation of mAbs to ACE 30 years ago was obtaining mAbs to organ-specific endothelial cells, which could be used for organ-specific drug delivery. Our systematic work on characterization of mAbs to numerous epitopes on ACE during these years has lead not only to the generation of the most effective mAbs for specific drug/gene delivery into the lung capillaries, but also to the establishment of the concept of conformational fingerprinting of ACE, which in turn gives a theoretical base for the generation of mAbs, specific for ACE from different organs. We believe that this concept could be applicable for any glycoprotein against which there is a set of mAbs to different epitopes.
Keywords: angiotensin I-converting enzyme, monoclonal antibodies, conformation, tissue specificity, drug/gene lung targeting
Footnotes
Original Russian Text © S.M. Danilov, 2017, published in Molekulyarnaya Biologiya, 2017, Vol. 51, No. 6, pp. 1046–1061.
The article was translated by the author.
References
- 1.Köhler G., Milstein C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature. 1975;256:495–497. doi: 10.1038/256495a0. [DOI] [PubMed] [Google Scholar]
- 2.http://www.whatisbiotechnology.org/exhibitions/milstein/patents.
- 3.Auerbach R., Alby L., Morrissey L.W., et al. Expression of organ-specific antigens on capillary endothelial cells. Microvasc. Res. 1985;29:401–411. doi: 10.1016/0026-2862(85)90028-7. [DOI] [PubMed] [Google Scholar]
- 4.Allikmets E.Y., Danilov S.M. Mitogen-induced disorganization of capillary-like structures formed by human large vessel endothelial cells in vitro. Tissue Cell. 1986;18:481–489. doi: 10.1016/0040-8166(86)90014-5. [DOI] [PubMed] [Google Scholar]
- 5.Sturrock E.D., Anthony C.S., Danilov S.M. Peptidyl-dipeptidase A/angiotensin I-converting enzyme. In: Rawlings N.D., Salvesen G., editors. Handbook of Proteolytic Enzymes. 3rd ed. Oxford: Academic Press; 2012. pp. 480–494. [Google Scholar]
- 6.Bernstein K.E., Ong F.S., Blackwell W.L., et al. A modern understanding of the traditional and nontraditional biological functions of angiotensin-converting enzyme. Pharmacol. Rev. 2013;65:1–46. doi: 10.1124/pr.112.006809. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 7.Danilov S.M., Franke F.E., Erdos E.G. Angiotensin-converting enzyme (CD143) In: Kishimoto T., editor. Leucocyte Typing VI: White Cell Differentiation Antigens. New York: Garland; 1997. pp. 746–749. [Google Scholar]
- 8.Dzau V.J., Bernstein K., Celermajer D., et al. The relevance of tissue angiotensin-converting enzyme: Manifestations in mechanistic and endpoint data. Am. J. Cardiol. 2001;88:1L–20L. doi: 10.1016/S0002-9149(01)01878-1. [DOI] [PubMed] [Google Scholar]
- 9.Metzger R., Franke F.F., Bohle R.-M., et al. Heterogeneous distribution of angiotensin I-converting enzyme (CD143) in the human and rat vascular systems: Vessels, organs and species specificity. Microvasc. Res. 2011;82:206–215. doi: 10.1016/j.mvr.2010.12.003. [DOI] [PubMed] [Google Scholar]
- 10.Silverstein E., Friedland J., Setton C. Angiotensin-converting enzyme in macrophages and Freund's adjuvant granuloma. Isr. J. Med. Sci. 1978;14:314–318. [PubMed] [Google Scholar]
- 11.Danilov S.M., Sadovnikova E., Scharenbourg N., et al. Angiotensin-converting enzyme (CD143) is abundantly expressed by dendritic cells and discriminates human monocytes-derived dendritic cells from acute myeloid leukemia-derived dendritic cells. Exp. Hem. 2003;31:1301–1309. doi: 10.1016/j.exphem.2003.08.018. [DOI] [PubMed] [Google Scholar]
- 12.Parkin E.T., Turner A.J., Hooper N.M. Secretase-mediated cell surface shedding of the angiotensin-converting enzyme. Protein Pept. Lett. 2004;11:423–432. doi: 10.2174/0929866043406544. [DOI] [PubMed] [Google Scholar]
- 13.Alhenc-Gelas F., Richard J., Courbon D., et al. Distribution of plasma angiotensin I-converting enzyme levels in healthy men: Relationship to environmental and hormonal parameters. J. Lab. Clin. Med. 1991;117:33–39. [PubMed] [Google Scholar]
- 14.Lieberman J. Elevation of serum angiotensin-converting enzyme level in sarcoidosis. Am. J. Med. 1975;59:365–372. doi: 10.1016/0002-9343(75)90395-2. [DOI] [PubMed] [Google Scholar]
- 15.Lieberman J., Beutler E. Elevation of angiotensin-converting enzyme in Gaucher's disease. N. Engl. J. Med. 1976;294:1442–1444. doi: 10.1056/NEJM197606242942609. [DOI] [PubMed] [Google Scholar]
- 16.Silverstein E., Friedland J. Elevated serum and spleen angiotensin converting enzyme and serum lysozyme in Gaucher's disease. Clin. Chim. Acta. 1977;74:21–25. doi: 10.1016/0009-8981(77)90382-5. [DOI] [PubMed] [Google Scholar]
- 17.Rigat B., Hubert C., Alhenc-Gelas F., et al. An insertion/deletion polymorphism in the angiotensin I-converting enzyme gene accounting for half the variance of serum enzyme levels. J. Clin. Invest. 1990;86:1343–1346. doi: 10.1172/JCI114844. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 18.Danilov S.M., Savoie F., Lenoir B., et al. Development of enzyme-linked immunoassays for human angiotensin I-converting enzyme suitable for largescale studies. J. Hypertens. 1996;14:719–727. doi: 10.1097/00004872-199606000-00007. [DOI] [PubMed] [Google Scholar]
- 19.Gribouval O., Gonzales M., Neuhaus T. Mutations in genes in the renin-angiotensin system are associated with autosomal recessive renal tubular dysgenesis. Nat. Genet. 2005;37:964–968. doi: 10.1038/ng1623. [DOI] [PubMed] [Google Scholar]
- 20.Kramers C., Danilov S.M., Deinum J., et al. A point mutation in the stalk of angiotensin-converting enzyme causes a dramatic increase in serum ACE, but no cardiovascular disease. Circulation. 2001;104:1236–1240. doi: 10.1161/hc3601.095932. [DOI] [PubMed] [Google Scholar]
- 21.Danilov S.M., Gordon K., Nesterovitch A.B., et al. Angiotensin I-converting enzyme mutation (Y465D) causes dramatic increase in blood ACE via accelerated ACE shedding due to changes of ACE dimerization. PLoS ONE. 2011;6:e25952. doi: 10.1371/journal.pone.0025952. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 22.Nesterovitch A.B., Hogarth K.D., Adarichev V.A., et al. Point mutation of angiotensin I-converting enzyme (Trp1197Stop) determines a dramatic increase in blood ACE. PLoS ONE. 2009;4:e8282. doi: 10.1371/journal.pone.0008282. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 23.Persu A., Lambert M., Deinum J., et al. PLoS ONE. 2013. A novel splice-site mutation in angiotensin I-converting enzyme (ACE) gene, c.3691+1G>A (IVS25+1G>A), causes a dramatic increase in circulating ACE through deletion of the transmembrane anchor; p. e59537. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 24.Soubrier F., Alhenc-Gelas F., Hubert C., et al. Two putative active centers in human angiotensin I-converting enzyme revealed by molecular cloning. Proc. Natl. Acad. Sci. U. S. A. 1988;85:9386–9390. doi: 10.1073/pnas.85.24.9386. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 25.Chen H.-L., Lunsdorf H., Hecht H.-J., Tsai H. Porcine pulmonary angiotensin I-converting enzyme: Biochemical characterization and spatial arrangement of the N- and C-domains by three-dimensional electron-microscopic reconstruction. Micron. 2010;41:674–685. doi: 10.1016/j.micron.2010.01.005. [DOI] [PubMed] [Google Scholar]
- 26.Menard J., Patchett A.A. Angiotensin-converting enzyme inhibitors. Adv. Protein Chem. 2001;56:13–75. doi: 10.1016/S0065-3233(01)56002-7. [DOI] [PubMed] [Google Scholar]
- 27.Sakharov I.Y., Dukhanina E.A., Danilov S.M. Isolation and properties of the angiotensin-converting enzyme from human lungs. Biokhimiya. 1986;51:946–951. [PubMed] [Google Scholar]
- 28.Sakharov I.Y., Danilov S.M., Dukhanina E.A. Affinity chromatography and some properties of the angiotensin-converting enzyme from human heart. Biochim. Biophys. Acta. 1987;923:143–149. doi: 10.1016/0304-4165(87)90137-1. [DOI] [PubMed] [Google Scholar]
- 29.Sakharov I.Y., Danilov S.M., Sukhova N. Isolation of human liver angiotensin-converting enzyme by chromatofocusing. Analyt. Biochem. 1987;116:14–17. doi: 10.1016/0003-2697(87)90539-2. [DOI] [PubMed] [Google Scholar]
- 30.Danilov S.M., Jaspard E., Churakova T., et al. Structure-function analysis of angiotensin-converting enzyme using monoclonal antibodies. Selective inhibition of N-domain active center. J. Biol. Chem. 1994;269:26806–26814. [PubMed] [Google Scholar]
- 31.Tzartos S.J. Myastenia gravis studied by monoclonal antibodies to acetylcholine receptor. In Vivo. 1988;2:105–110. [PubMed] [Google Scholar]
- 32.Danilov S.M., Allikmets E.Y., Sakharov I.Y., et al. Monoclonal antibodies to human angiotensin-converting enzyme. Biotech. Appl. Biochem. 1987;9:319–312. [PubMed] [Google Scholar]
- 33.Levinson S.S., Miller J.J. Towards a better understanding of heterophile (and the like) antibody interference with modern immunoassays. Clin. Chim. Acta Int. J. Clin. Chem. 2002;325:1–15. doi: 10.1016/S0009-8981(02)00275-9. [DOI] [PubMed] [Google Scholar]
- 34.Balyasnikova I.V., Metzger R., Franke F.E., Danilov S.M. Monoclonal antibodies to denatured human ACE (CD 143): Broad species specificity, reactivity on paraffin sections and detection of subtle conformational changes in the C-terminal domain of ACE. Tissue Antigens. 2003;61:49–62. doi: 10.1034/j.1399-0039.2003.610104.x. [DOI] [PubMed] [Google Scholar]
- 35.Balyasnikova I.V., Metzger R., Franke F.E., et al. Epitope mapping of mAbs to denatured human testicular ACE. Tissue Antigens. 2008;72:354–368. doi: 10.1111/j.1399-0039.2008.01112.x. [DOI] [PubMed] [Google Scholar]
- 36.Naperova I.A., Balyasnikova I.V., Schwartz D.E., et al. Mapping of conformational mAb epitopes to the C domain of human angiotensin I-converting enzyme (ACE) J. Proteome Res. 2008;7:3396–3411. doi: 10.1021/pr800142w. [DOI] [PubMed] [Google Scholar]
- 37.Woodman Z.L., Schwager S.L., Redelinghuys P., et al. The N domain of somatic angiotensin-converting enzyme negatively regulates ectodomain shedding and catalytic activity. Biochem. J. 2005;389:739–744. doi: 10.1042/BJ20050187. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 38.Balyasnikova I.V., Sun Z.-L., Berestetskaya Y.V., et al. Monoclonal antibodies 1B3 and 5C8 as probes for monitoring the nativity of C-terminal end of soluble angiotensin-converting enzyme (ACE) Hybridoma. 2005;24:14–25. doi: 10.1089/hyb.2005.24.14. [DOI] [PubMed] [Google Scholar]
- 39.Balyasnikova I.V., Skirgello O.E., Binevski P.V., et al. Monoclonal antibodies 1G12 and 6A12 to the N-domain of human angiotensin-converting enzyme: Fine epitope mapping and antibody-based method for revelation and quantification of ACE inhibitors in the human blood. J. Proteome Res. 2007;6:1580–1594. doi: 10.1021/pr060658x. [DOI] [PubMed] [Google Scholar]
- 40.Skirgello O.E., Balyasnikova I.V., Binevski P.V., et al. Inhibitory antibodies to human angiotensin-converting enzyme: Fine epitope mapping and mechanism of action. Biochemistry. 2006;45:4831–4847. doi: 10.1021/bi052591h. [DOI] [PubMed] [Google Scholar]
- 41.Danilov S.M., Watermeyer J.M., Balyasnikova I.V., et al. Fine epitope mapping of monoclonal antibody 5F1 reveals anticatalytic activity toward the N domain of human angiotensin-converting enzyme. Biochemistry. 2007;46:9019–9031. doi: 10.1021/bi700489v. [DOI] [PubMed] [Google Scholar]
- 42.Gordon K., Balyasnikova I.V., Nesterovitch A.B., et al. Fine epitope mapping of monoclonal antibodies 9B9 and 3G8, to the N domain of human angiotensin I-converting enzyme (ACE) defines a region involved in regulating ACE dimerization and shedding. Tissue Antigens. 2010;75:136–150. doi: 10.1111/j.1399-0039.2009.01416.x. [DOI] [PubMed] [Google Scholar]
- 43.Balyasnikova I.V., Karran E.H., Albrecht R.F.I.I., Danilov S.M. Epitope-specific antibody-induced cleavage of angiotensin-converting enzyme from the cell surface. Biochem. J. 2002;362:585–595. doi: 10.1042/bj3620585. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 44.Kost O.A., Balyasnikova I.V., Chemodanova E.E., et al. Epitope-dependent blocking of the angiotensin- converting enzyme dimerization by monoclonal antibodies to N-terminal domain of ACE: Possible link of ACE dimerization and shedding from the cell surface. Biochemistry. 2003;42:6965–6976. doi: 10.1021/bi034645y. [DOI] [PubMed] [Google Scholar]
- 45.Petrov M.N., Shilo V.Y., Tarasov A.V., et al. Conformational changes of blood ACE in chronic uremia. PLoS ONE. 2012;7:e49290. doi: 10.1371/journal.pone.0049290. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 46.Danilov S.M., Deinum J., Balyasnikova I.V., et al. Detection of mutated angiotensin-converting enzyme (ACE), by serum/plasma analysis using a pair of monoclonal antibodies. Clin. Chem. 2005;51:1040–1043. doi: 10.1373/clinchem.2004.045633. [DOI] [PubMed] [Google Scholar]
- 47.Danilov S.M., Kalinin S., Chen Z., et al. Gln1069Arg angiotensin I-converting enzyme mutation impairs transport to the cell surface resulting in selective denaturation of the C-domain. PLoS ONE. 2010;5:e10438. doi: 10.1371/journal.pone.0010438. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 48.Danilov S.M., Wade M.S., Schwager S.L., et al. A novel angiotensin I-converting enzyme mutation (S333W) impairs N-domain enzymatic cleavage of the anti-fibrotic peptide, Ac-SDKP. PLoS ONE. 2014;9:e88001. doi: 10.1371/journal.pone.0088001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 49.Danilov S.M., Luensdorf H., Nesterovitch A.B., et al. Lysozyme and bilirubin bind to ACE and regulates ACE conformation and shedding. Sci. Rep. 2016;6:34913. doi: 10.1038/srep34913. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 50.Danilov S.M., Balyasnikova I.B., Danilova A.S., et al. Conformational fingerprinting of the angiotensin- converting enzyme (ACE): Application in sarcoidosis. J. Proteome Res. 2010;9:5782–5793. doi: 10.1021/pr100564r. [DOI] [PubMed] [Google Scholar]
- 51.Balyasnikova I.V., Metzger R., Visintine D., et al. A new set of monoclonal antibodies to rat angiotensin I-converting enzyme (ACE) for the lung endothelial targeting. Pulm. Pharm. Ther. 2005;18:251–267. doi: 10.1016/j.pupt.2004.12.008. [DOI] [PubMed] [Google Scholar]
- 52.Balyasnikova I.V., Metzger R., Sun Z.-L., et al. Development and characterization of rat monoclonal antibodies to denatured mouse angiotensin-converting enzyme. Tissue Antigens. 2005;65:240–251. doi: 10.1111/j.1399-0039.2005.00364.x. [DOI] [PubMed] [Google Scholar]
- 53.Balyasnikova I.V., Sun Z.-L., Metzger R., et al. Monoclonal antibodies to native mouse angiotensinconverting enzyme (CD143): ACE expression quantification, lung endothelial cell targeting and gene delivery. Tissue Antigens. 2006;67:10–29. doi: 10.1111/j.1399-0039.2005.00516.x. [DOI] [PubMed] [Google Scholar]
- 54.Nikolaeva M.A., Balyasnikova I.V., Alexinskaya M.A., et al. Testicular isoform of angiotensin I-converting enzyme (ACE, CD143) on the surface of human spermatozoa: Revelation and quantification using monoclonal antibodies. Am. J. Reprod. Immunol. 2006;55:54–68. doi: 10.1111/j.1600-0897.2005.00326.x. [DOI] [PubMed] [Google Scholar]
- 55.Franke F.E., Pauls K., Kerkman L., et al. Somatic isoform of angiotensin I-converting enzyme in the pathology of testicular germ cell tumors. Human Pathol. 2000;31:1466–1476. doi: 10.1053/hupa.2000.20382. [DOI] [PubMed] [Google Scholar]
- 56.Varki A., Cummings R.D., Esko J.D., editors. Essentials in Glycobiology. 2nd ed. Cold Spring Harbor, NY: Cold Spring Harbor Lab. Press; 2009. [PubMed] [Google Scholar]
- 57.Su Y., Royle L., Radcliffe C.M., et al. Detailed N-glycan analysis of mannose receptor purified from murine spleen indicates tissue specific sialylation. Biochem. Biophys. Res. Commun. 2009;384:436–443. doi: 10.1016/j.bbrc.2009.04.159. [DOI] [PubMed] [Google Scholar]
- 58.Fishman A. Handbook of Physiology. Washington, DC: Am. Physiol. Soc.; 1963. Dynamics of the pulmonary circulation; p. 1667. [Google Scholar]
- 59.Silverstein E., Friedland J., Lyons H.A., Gourin A. Elevation of angiotensin-converting enzyme in granulomatous lymph nodes and serum in sarcoidosis: Clinical and possible pathological significance. Ann. N. Y. Acad. Sci. 1976;278:498–513. doi: 10.1111/j.1749-6632.1976.tb47062.x. [DOI] [PubMed] [Google Scholar]
- 60.Kost O.A., Petrov M.N., Naperova I.A., et al. Conformational fingerprinting of angiotensin-converting enzyme in the blood in health and disease. Moscow Univ. Chem. Bull. 2016;71(1):32–36. doi: 10.3103/S0027131416010089. [DOI] [Google Scholar]
- 61.Sidransky E. Gaucher disease: Insights from a rare Mendelian disorder. Discov. Med. 2012;14:273–281. [PMC free article] [PubMed] [Google Scholar]
- 62.Kryukova O.V., Tikhomirova V.E., Golukhova E.Z., et al. Tissue specificity of human angiotensin I-converting enzyme. PLoS ONE. 2015;10:e0143455. doi: 10.1371/journal.pone.0143455. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 63.Liddy K.A., White M.Y., Cordwell S.J. Functional decorations: Post-translational modifications and heart disease delineated by targeted proteomics. Genome Med. 2013;5:20. doi: 10.1186/gm424. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 64.Falkenhahn M., Franke F., Bohle R.M., et al. Cellular distribution of angiotensin converting enzyme after myocardial infarction. Hypertension. 1995;25:219–226. doi: 10.1161/01.HYP.25.2.219. [DOI] [PubMed] [Google Scholar]
- 65.Tikhomirova V.E., Kost O.A., Kryukova O.V., et al. ACE phenotyping in human heart. PLoS ONE. 2017;128:e0181976. doi: 10.1371/journal.pone.0181976. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 66.Goette A., Staack T., Rocken C., et al. Increased expression of extracellular signal-regulated kinase and angiotensin-converting enzyme in human atria during atrial fibrillation. J. Am. Coll. Cardiol. 2000;35:1669–1677. doi: 10.1016/S0735-1097(00)00611-2. [DOI] [PubMed] [Google Scholar]
- 67.Xiao H.D., Fuchs S., Campbell D.J., et al. Mice with cardiac-restricted angiotensin-converting enzyme (ACE) have atrial enlargement, cardiac arrhythmia, and sudden death. Am. J. Pathol. 2004;165:1019–1032. doi: 10.1016/S0002-9440(10)63363-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 68.Romer F.K. Clinical and biochemical aspects of sarcoidosis. With special reference to angiotensin-converting enzyme (ACE) Acta Med. Scand. Suppl. 1984;690:3–96. [PubMed] [Google Scholar]
- 69.Hohlbrugger G., Pschorr J., Dahlheim H. Angiotensin I converting enzyme in the ejaculate of fertile and infertile men. Fertil. Steril. 1984;41:324–325. doi: 10.1016/S0015-0282(16)47614-4. [DOI] [PubMed] [Google Scholar]
- 70.Ferrara N. Vascular endothelial growth factor: Basic science and clinical progress. Endocr. Rev. 2004;25:581–611. doi: 10.1210/er.2003-0027. [DOI] [PubMed] [Google Scholar]
- 71.Grivas N., Goussia A., Stefanou D., Giannakis D. Microvascular density and immunohistochemicalexpression of VEGF, VEGFR-1 and VEGFR-2 in benign prostatic hyperplasia, high-grade prostate intraepithelial neoplasia and prostate cancer. Cent. Eur. J. Urol. 2016;69:63–71. doi: 10.5173/ceju.2016.726. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 72.Roberts W.G., Palade G.E. Increased microvascular permeability and endothelial fenestration induced by vascular endothelial growth factor. J. Cell Sci. 1995;108(6):2369–2379. doi: 10.1242/jcs.108.6.2369. [DOI] [PubMed] [Google Scholar]
- 73.Hiemisch H., Gavrilyuk V., Atochina E., et al. Purification of radiolabeled monoclonal antibodies to angiotensin-converting enzyme significantly improves specificity and efficacy of its targeting into the lung. Nucl. Med. Biol. 1993;20:435–441. doi: 10.1016/0969-8051(93)90074-5. [DOI] [PubMed] [Google Scholar]
- 74.Danilov S.M., Sakharov I.Y., Martynov A.V., et al. Monoclonal antibody to angiotensin-converting enzyme: A powerful tool for lung and vessel studies. J. Mol. Cell. Cardiol. 1989;21(Suppl.1):165–170. doi: 10.1016/0022-2828(89)90853-5. [DOI] [PubMed] [Google Scholar]
- 75.Danilov S.M., Muzykantov V.R., Martynov A.V., et al. Lung is the target organ for a monoclonal antibody to angiotensin-converting enzyme. Lab. Invest. 1991;64:118–124. [PubMed] [Google Scholar]
- 76.Danilov S.M., Gavriljuk V.D., Franke F.E., et al. Lung uptake of antibodies to endothelial antigens: Key determinants of vascular immunotargeting. Am. J. Physiol. Lung Physiol. 2001;280:L1335–L1347. doi: 10.1152/ajplung.2001.280.6.L1335. [DOI] [PubMed] [Google Scholar]
- 77.Muzykantov V.R. Biomedical aspects of targeted delivery of drugs to pulmonary endothelium. Expert Opin. Drug Deliv. 2005;5:909–926. doi: 10.1517/17425247.2.5.909. [DOI] [PubMed] [Google Scholar]
- 78.Chrastina A., Valadon P., Massey K.A., Schnitzer J.E. Lung vascular targeting using antibody to aminipeptidase P: CT-SPECT imaging, biodistribution and pharmacokinetic analysis. J. Vasc. Res. 2010;47:531–543. doi: 10.1159/000313880. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 79.Somia N., Verma I.M. Gene therapy: Trials and tribulations. Nat. Rev. Genet. 2000;2:91–99. doi: 10.1038/35038533. [DOI] [PubMed] [Google Scholar]
- 80.Reynolds P.N., Zinn K.R., Gavrilyuk V.D., et al. A targetable, injectable adenoviral vector for selective gene delivery to pulmonary endothelium in vivo. Mol. Ther. 2000;2:562–578. doi: 10.1006/mthe.2000.0205. [DOI] [PubMed] [Google Scholar]
- 81.Muzykantov V.R., Barnathan E., Atochina E., Fisher A. Targeting of conjugated plasminogen activators to the pulmonary vasculature. J. Pharm. Exp. Ther. 1996;279:1026–1034. [PubMed] [Google Scholar]
- 82.Muzykantov V.R., Atochina E.N., Ischiropoulos H., et al. Immunotargeting of antioxidant enzymes to the pulmonary endothelium. Proc. Natl. Acad. Sci. U. S. A. 1996;93:5213–5218. doi: 10.1073/pnas.93.11.5213. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 83.Atochina E.N., Balyasnikova I.V., Danilov S.M., et al. Catalasetargeting to the surface endothelial antigens protects pulmonary vasculature against oxidative insult. Am. J. Physiol. Lung Physiol. 1998;275:L806–L817. doi: 10.1152/ajplung.1998.275.4.L806. [DOI] [PubMed] [Google Scholar]
- 84.Nowak K., Weih S., Metzger R., et al. Immunotargeting of catalase to lung endothelium via anti-ACE antibodies attenuates ischemia-reperfusion injury of the lung in vivo. Am. J. Physiol. Lung Physiol. 2007;293:L162–L169. doi: 10.1152/ajplung.00001.2007. [DOI] [PubMed] [Google Scholar]
- 85.Nowak K., Hanusch C., Nicksch K., et al. Preischemic conditioning of the pulmonary endothelium by immunotargeting of catalase via angiotensin-converting enzyme antibodies. Eur. J. Cardiothorac. Surg. 2010;37:859–863. doi: 10.1016/j.ejcts.2009.10.029. [DOI] [PubMed] [Google Scholar]
- 86.Reynolds P.N., Nicklin S.A., Kaliberova L., et al. Combined transductional and transcriptional targeting improves the specificity of transgene expression in vivo. Nat. Biotechnol. 2001;19:838–842. doi: 10.1038/nbt0901-838. [DOI] [PubMed] [Google Scholar]
- 87.Miller W.H., Brosnan M.J., Graham D., et al. Targeting endothelial cells with adenovirus expressing nitric oxide synthase prevent elevation of blood pressure in stroke prone spontaneously hypertensive rats. Mol. Ther. 2005;12:321–327. doi: 10.1016/j.ymthe.2005.02.025. [DOI] [PubMed] [Google Scholar]
- 88.Reynolds A.M., Xia M., Holmes M.D., et al. Bone morphogenetic protein type 2 receptor (BMPR2) gene therapy attenuates hypoxic pulmonary hypertension. Am. J. Physiol. Lung Physiol. 2007;292:L1182–L1192. doi: 10.1152/ajplung.00020.2006. [DOI] [PubMed] [Google Scholar]
- 89.Reynolds A.M., Holmes M.D., Danilov S.M., Reynolds P.N., et al. Targeted delivery of bone morpho-genetic protein receptor type-2 attenuates pulmonary hypertension in rats. Eur. Resp. J. 2012;39:329–343. doi: 10.1183/09031936.00187310. [DOI] [PubMed] [Google Scholar]
- 90.Morecroft I., White K., Caruso P. Gene therapy by targeted adenovirus-mediated knockdown of pulmonary endothelial Tph1 attenuates hypoxia-induced pulmonary hypertension. Mol. Ther1667. 2012;20:1516–1528. doi: 10.1038/mt.2012.70. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 91.United Network for Organ Sharing Scientific Registry Data. www.unos.org.
- 92.Chiu M.L., Gilliland G.L. Engineering antibody therapeutics. Curr. Opin. Struct. Biol. 2016;38:163–173. doi: 10.1016/j.sbi.2016.07.012. [DOI] [PubMed] [Google Scholar]
- 93.Balyasnikova I.V., Berestetskaya Y.V., Visintine D.J., et al. Cloning and characterization of a single-chain fragment of monoclonal antibody 9B9 for targeting angiotensin-converting enzyme. Microvasc. Res. 2010;80:355–364. doi: 10.1016/j.mvr.2010.09.007. [DOI] [PubMed] [Google Scholar]
- 94.Bruggemann M., Osborn M.J., Ma B., et al. Human antibody production in transgenic animals. Arch. Immunol. Ther. Exp. (Warszawa). 2015;63:101–108. doi: 10.1007/s00005-014-0322-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 95.Paduch M., Koide A., Uysal S., et al. Generating conformation-specific synthetic antibodies to trap proteins in selected functional states. Methods. 2013;60:3–14. doi: 10.1016/j.ymeth.2012.12.010. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 96.Yakimenko E.F., Yazova A.K., Goussev A.I., Abelev G.I. New approaches for the detection and characterization of alpha-fetoprotein epitope variants. Tumour Biol. 2003;24:1–8. doi: 10.1159/000070654. [DOI] [PubMed] [Google Scholar]
