Skip to main content
Springer Nature - PMC COVID-19 Collection logoLink to Springer Nature - PMC COVID-19 Collection
. 1987;54(1):303. doi: 10.1007/BF02899227

Effects of bile acids and endotoxin on the function and morphology of cultured hamster Kupffer cells

Satoshi Takiguchi 1, Akitoshi Koga 1,
PMCID: PMC7102470  PMID: 2895543

Summary

The mechanisms of hepatic reticuloendothelial cell dysfunction in obstructive jaundice were investigated using cultured hamster Kupffer cells. The introduction of free bile acids, cholic acid (CA) at concentrations over 2 mM and chenodeoxycholic acid (CDCA) over 1 mM inhibited colloidal carbon pinocytosis. CA and CDCA at concentrations over 0.5 mM inhibited IgG-coated sheep red blood cell phagocytosis. With the application of conjugated bile acid and endotoxin at concentrations over 50 μg/ml, endocytic function was inhibited. With bile acids, a dose-dependent increase in the concentration of β-glucuronidase occurred in the culture medium, and with endotoxin a timedependent increase in β-glucuronidase was noted. Bile acids produced alterations in cell organelles before destruction of the cell membrane. The presence of endotoxin led to the appearance of large vacuoles in the cytoplasm. These observations suggest that bile acids and endotoxin inhibit Kupffer cells by different mechanisms. We tentatively conclude that bile acids rather than endotoxin influence Kupffer cells in vivo.

Key words: Kupffer cell, Bile acid, Endotoxin, Bile duct obstruction

References

  1. Adler RD, Wannagat FJ, Ockner RK. Bile secretion in selective biliary obstruction. Gastroenterology. 1977;73:129–136. [PubMed] [Google Scholar]
  2. Al-Tuwaijri A, Akdamar K, Di Luzio NR. Modification of galactosamine-induced liver injury in rats by reticuloendothelial system stimulation or depression. Hepatology. 1981;1:107–113. doi: 10.1002/hep.1840010204. [DOI] [PubMed] [Google Scholar]
  3. Anderson KE, Kok E, Javitt N. Bile acid synthesis in man; metabolism of 7-hydroxycholesterol C and 26-hydroxycholesterol-H. J Clin Invest. 1972;51:112–117. doi: 10.1172/JCI106780. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Babson AL, Philips GE. A rapid colorimetric assay for serum lactic dehydrogenase. Clin Chim Acta. 1965;12:210–215. doi: 10.1016/0009-8981(65)90032-X. [DOI] [PubMed] [Google Scholar]
  5. Bailey ME. Endotoxin, bile salts and renal function in obstructive jaundice. Br J Surg. 1976;63:774–778. doi: 10.1002/bjs.1800631011. [DOI] [PubMed] [Google Scholar]
  6. Bhatnagar R, Schirmer R, Ernst M, Decker K. Superoxide release by zymosan-stimulated rat Kupffer cells in vitro. Eur J Biochem. 1981;119:171–175. doi: 10.1111/j.1432-1033.1981.tb05590.x. [DOI] [PubMed] [Google Scholar]
  7. Cahill CJ. Prevention of postoperative renal failure in patients with obstructive jaundice — the role of bile salts. Br J Surg. 1983;70:590–595. doi: 10.1002/bjs.1800701008. [DOI] [PubMed] [Google Scholar]
  8. Danielsson H. Effect of biliary obstruction on formation and metabolism of bile acids in rat. Steroid. 1973;22:567–579. doi: 10.1016/0039-128X(73)90013-5. [DOI] [PubMed] [Google Scholar]
  9. Drivas G, James O, Warkle N. Study of reticuloendothelial phagocytic capacity in patients with cholestasis. Br Med J. 1976;1:1568–1569. doi: 10.1136/bmj.1.6025.1568. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Eklund A, Norlander A, Norman A. Bile acid synthesis and excretion following release of total extrahepatic cholestasis by percutaneous transhepatic drainage. Eur J Clin Invest. 1980;10:349–355. doi: 10.1111/j.1365-2362.1980.tb00044.x. [DOI] [PubMed] [Google Scholar]
  11. Erlinger S, Dhumeaux D. Mechanism and control of secretion of bile, water and electrolytes. Gastroenterology. 1974;66:281–304. [PubMed] [Google Scholar]
  12. Evans HJR, Torrealbe V, Hudd C, Knight M. The effect of preoperative bile salt administration on postoperative renal function in patients with obstructive jaundice. Br J Surg. 1982;69:706–708. doi: 10.1002/bjs.1800691207. [DOI] [PubMed] [Google Scholar]
  13. Fedorowski T, Salen G, Zaki FG, Shefer S, Mosbach EH. Comparative effects of ursodeoxycholic acid and chenodeoxycholic acid in the rhesus monkey. Gastroenterology. 1978;74:75–81. [PubMed] [Google Scholar]
  14. Forker EL. The effect of estrogen on bile formation in the rat. J Clin Invest. 1969;48:654–663. doi: 10.1172/JCI106023. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Frenzel H, Kremer B, Hucker H. In: Kupffer cells and other liver sinusoidal cells. Wisse E, Knook DL, editors. Amsterdam: Elsevier/North-Holland; 1977. pp. 213–222. [Google Scholar]
  16. Greim H, Trulzsch D, Roboz J, Dressier K, Crygan P, Hutterer F, Schaffner F, Popper H. Mechanism of cholestasis 5. Bile acids in normal rat livers and in those after bile duct ligation. Gastroenterology. 1972;63:837–845. [PubMed] [Google Scholar]
  17. Holman JM, Rikkers LF. Biliary obstruction and host defense failure. J Surg Res. 1982;32:208–213. doi: 10.1016/0022-4804(82)90092-0. [DOI] [PubMed] [Google Scholar]
  18. Kakis G, Yousef IM. Pathogenesis of lithocholate and taurolithocholate-induced intrahepatic cholestasis in rats. Gastroenterology. 1978;75:595–607. [PubMed] [Google Scholar]
  19. Kaplan G, Gandernack G, Seljelid R. Localization of receptors and early events of phagocytosis in the macrophage. Exp Cell Res. 1975;95:365–375. doi: 10.1016/0014-4827(75)90562-5. [DOI] [PubMed] [Google Scholar]
  20. Kato K, Yoshida K, Tsukamoto H, Nobunaka M, Masuya T, Sawada T. β-D-glucophranosiduronic acid and its utilization as a substrate for the assay of β-glucuronidase activity. Chem Pharmaceut Bull. 1960;8:239–242. [Google Scholar]
  21. Keller GA, West MA, Cerra FB, Simmons RJ. Multiple systems organ failure. Modulation of hepatocyte protein synthesis by endotoxin activated Kupffer cells. Ann Surg. 1985;201:87–95. [PMC free article] [PubMed] [Google Scholar]
  22. Kirn A, Steffan AM, Bingen A. Inhibition of erythrophagocytosis by cultured rat Kupffer cells infected with Frog Virus 3. J Reticuloendothel Soc. 1980;28:381–389. [PubMed] [Google Scholar]
  23. Klaassen CD. Does bile acid secretion determine canalicular bile production in rats? Am J Physiol. 1971;220:667–673. doi: 10.1152/ajplegacy.1971.220.3.667. [DOI] [PubMed] [Google Scholar]
  24. Knook DL, Sleyster ECH. Separation of Kupffer and endothelial cells of the rat liver by centrifugal elutriation. Exp Cell Res. 1976;99:444–449. doi: 10.1016/0014-4827(76)90605-4. [DOI] [PubMed] [Google Scholar]
  25. Kuratsune H, Koda T, Kurahori T. The relationship between endotoxin and the phagocytic activity of the reticuloendothelial system. Hepato Gastroenterol. 1983;30:79–82. [PubMed] [Google Scholar]
  26. Kuroki S, Hoshita T. Effect of bile acid feeding on hepatic steroid 12α Hydroxylase activity in hamsters. Lipids. 1983;18:789–794. doi: 10.1007/BF02534637. [DOI] [PubMed] [Google Scholar]
  27. Maier RV, Ulevitch RJ. The response of isolated rabbit hepatic macrophages. Circ Shock. 1981;8:165–181. [PubMed] [Google Scholar]
  28. Mathison JC, Ulevitch RJ. The clearance, tissue distribution and cellular localization of intravenously injected lipopolysaccharide in rabbits. J Immunol. 1979;123:2133–2143. [PubMed] [Google Scholar]
  29. McCuskey RS, Urbascek R, McCuskey PA, Urbascek B. In vivo microscopic observations of the responses of Kupffer cells and the Mycobacterium bovis BCG alone and in combination with endotoxin. Infect Immun. 1983;42:362–367. doi: 10.1128/iai.42.1.362-367.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Morland B, Kaplan G. Macrophage activation in vivo and in vitro. Exp Cell Res. 1977;108:279–288. doi: 10.1016/S0014-4827(77)80035-9. [DOI] [PubMed] [Google Scholar]
  31. Munthe-Kaas AC. Phagocytosis in rat Kupffer cells in vitro. Exp Cell Res. 1976;99:319–327. doi: 10.1016/0014-4827(76)90589-9. [DOI] [PubMed] [Google Scholar]
  32. Munthe-Kaas AC, Berg T, Seglen PO, Seljelid R. Mass isolation and culture of rat Kupffer cells. J Exp Med. 1975;141:1–10. doi: 10.1084/jem.141.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Oka K, Shimamura K, Nakazawa M, Tsunoda R, Kojima M. The role of Kupffer cells in disseminated intravascular coagulation. Arch Pathol Lab Med. 1983;107:570–576. [PubMed] [Google Scholar]
  34. Praaning-van Dalen DP, Brouwer A, Knook DL. Clearance capacity of rat liver Kupffer, endothelial, and parenchymal cells. Gastroenterology. 1981;81:1036–1044. [PubMed] [Google Scholar]
  35. Praaning-van Dalen DP, De Leeuw AM, Brouwer A, Knook DL. In: Sinusoidal Liver Cells. Knook DL, Wisse E, editors. Amsterdam: Elsevier/North-Holland; 1982. pp. 517–524. [Google Scholar]
  36. Ruiter DJ, Meulen J, Brouwer A, Hummel MJR, Mauw BJ, Ploeg JCM, Wisse E. Uptake by liver cells of endotoxin following its intravenous injection. Lab Invest. 1981;45:38–45. [PubMed] [Google Scholar]
  37. Scharschmidt BF, Keefee EB, Bessey DA, Blankenship NM, Ockner RK. In vitro effect of bile salts on rat liver plasma membrane, lipid fluidity, and ATPase activity. Hepatology. 1981;1:137–145. doi: 10.1002/hep.1840010209. [DOI] [PubMed] [Google Scholar]
  38. Shands JW jun, Chun PW. The dispersion of Gram negative lipopolysaccharide by deoxycholate. J Biol Chem. 1980;255:1221–1226. [PubMed] [Google Scholar]
  39. Sternlieb I, Quintana N. Biliary proteins and ductular ultrastructure. Hepatology. 1985;5:139–143. doi: 10.1002/hep.1840050127. [DOI] [PubMed] [Google Scholar]
  40. Tanner AR, Keyhani AH, Ralph W. The influence of endotoxin in vitro on hepatic macrophage lysosomal enzyme release in different rat models of hepatic injury. Liver. 1983;3:151–160. doi: 10.1111/j.1600-0676.1983.tb00864.x. [DOI] [PubMed] [Google Scholar]
  41. Van Berge Hene Gouwen GP, Brandt KH, Eyssen H, Parmen-tier G. Sulphated and unsulphated bile acids in serum, bile, and urine of patients with cholestasis. Gut. 1976;17:861–869. doi: 10.1136/gut.17.11.861. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Wardle EM, Wright NA. Endotoxin and acute renal failure associated with obstructive jaundice. Br Med J. 1970;21:472–474. doi: 10.1136/bmj.4.5733.472. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Wilkinson SP, Arroyo V, Gazzard BG, Moodie H, Williams R. Relation of renal impairment and hemorrhagic diathesis the endotoxemia in fulminant hepatic failure. Lancet. 1974;1:521–524. doi: 10.1016/S0140-6736(74)92711-1. [DOI] [PubMed] [Google Scholar]
  44. Wilkinson SP, Moodie H, Stamatakis JD, Kakkar VV, Williams R. Endotoxemia and renal failure in cirrhosis and obstructive jaundice. Br Med J. 1976;2:1415–1418. doi: 10.1136/bmj.2.6049.1415. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Williams RC, Showalter R, Kern F. In vivo effect of bile salts and cholestyramine on intestinal anaerobic bacteria. Gastroenterology. 1975;69:483–491. [PubMed] [Google Scholar]

Articles from Virchows Archiv. B, Cell Pathology Including Molecular Pathology are provided here courtesy of Nature Publishing Group

RESOURCES